
Citation: An, Q.; Zheng, L.; Yang, M.

Spatiotemporal Heterogeneities in the

Impact of Chinese Digital Economy

Development on Carbon Emissions.

Sustainability 2024, 16, 2810. https://

doi.org/10.3390/su16072810

Academic Editor: Su-Yol Lee

Received: 4 March 2024

Revised: 21 March 2024

Accepted: 25 March 2024

Published: 28 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Spatiotemporal Heterogeneities in the Impact of Chinese Digital
Economy Development on Carbon Emissions
Qiguang An, Lin Zheng * and Mu Yang

School of Statistics and Mathematics, Shandong University of Finance and Economics, Jinan 250000, China
* Correspondence: zhenglin9616@163.com

Abstract: The digital economy plays an important role in reducing the global warming process. This
paper explores the spatiotemporal heterogeneity impacts of the digital economy on provincial carbon
emissions and its underlying mechanisms. Initially, this paper examines the inhibitory impact of the
digital economy on carbon emissions, alongside the mediating role of economic agglomeration, at a
theoretical level. Subsequently, it empirically explores the quantitative associations among the digital
economy, economic agglomeration, and carbon emissions by utilizing Chinese provincial panel data
spanning from 2000 to 2021. This investigation employed static and dynamic spatial Durbin models as
well as mediation models to analyze the interrelationships. The results firstly revealed that the digital
economy notably diminishes carbon emissions, with economic agglomeration playing a significant
mediating role. This conclusion remained consistent even after substituting the explanatory variables
and weight matrix, modifying the sample period, and conducting other robustness tests. Secondly, the
impact of the digital economy on carbon emissions exhibited spatial spillovers. Compared with the
impact on the local area, the impact on neighboring provinces was found to be weaker. Thirdly, carbon
emissions showed a significant “snowball” effect in the time dimension. This paper emphasizes the
important role of digital technology in curbing carbon emissions, and it provides some policy insights
for studying the digital economy, economic agglomeration, and carbon emissions. Furthermore,
it offers valuable insight and suggestions to reduce carbon emissions and realize the goal of the
“dual-carbon” strategy.

Keywords: digital economy; carbon emission; economic agglomeration; spatial Durbin model;
spillover effect

1. Introduction

The escalating emissions of greenhouse gases, exemplified by carbon dioxide (CO2),
and consequent climate change phenomena, such as global warming, are presenting pro-
gressively severe challenges to the economic development, production, and livelihoods
of human societies. Consequently, the imperative to reduce carbon emissions and achieve
sustainable development has garnered consensus among nations worldwide [1]. Countries
around the world are striving to achieve carbon peak and carbon neutrality. According to
the United Nations Framework Convention on Climate Change, more than 130 countries
and regions have proposed “zero carbon” or “carbon neutral” climate targets [2]. As the
largest rising economies in the world, the BRICS countries accounted for about 43.19%
of global CO2 emissions in 2019 [3]. As one of the world’s major carbon-emitting coun-
tries, China is under imminent pressure from energy conservation and emission reduction
targets [4]. As a responsible, developing country, China pledged at the United Nations
General Assembly to achieve the carbon reduction targets of “peak carbon and carbon
neutrality” before 2030 and 2060, respectively. This poses a huge challenge for China, which
is in a period of economic transition, to balance environmental pollution with economic
growth. But at the same time, it also provides new opportunities for the Chinese econ-
omy to move towards high-quality green development and realize sustainable economic
development [5].
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Simultaneously, the digital economy, characterized as a novel economic paradigm,
leverages data resources as production factors and depends on digital technologies such as
big data, blockchain, and cloud computing to furnish advanced technological support and
contribute factors toward realizing the objective of “dual carbon” [6,7], for example, the
use of remote sensing technology to estimate carbon emissions and the use of blockchain
technology to track a company’s carbon footprint [8,9]. Currently, China’s digital economy
is in a period of rapid development. According to the Research Report on the Development
of China’s Digital Economy (2023) published by the China Academy of Information and
Communications Technology (CAICT), the scale of the Chinese digital economy was
projected to reach 50.2 trillion yuan in 2022, representing 41.5 percent of the country’s GDP,
a proportion equivalent to that of the secondary industry in GDP. Developing the digital
economy not only reduces the cost of traditional industries and improves management
and production efficiency but also favors the promotion of investment in renewable energy
and the development of green infrastructure services, accelerating green information
dissemination, etc. [10–14]. Hence, the advancement of the digital economy presents fresh
opportunities for carbon mitigation and stands as one of the pivotal initiatives toward
achieving the objective of carbon neutrality.

As important means and goals in the process of China’s economic transformation and
development, the development process and implementation effectiveness of the digital
economy, energy conservation, and emission reductions are keys to determining whether
China’s green transformation can be successfully realized in the future [15]. The intricate
relationship between the development process and implementation effectiveness has com-
plicated and diverse influencing mechanisms. The development of the digital economy
can not only directly provide technical support for China to achieve its emission reduc-
tion targets but also enhance the degree of economic agglomeration by strengthening the
efficiency of resource allocation and reducing the loss of marginal costs, which in turn
can reduce the level of carbon emissions. Hence, this paper integrates the concepts of the
“digital economy”, “economic agglomeration”, and “carbon emissions” within a unified
analytical framework. It explores the relationship between the digital economy and carbon
emissions from both spatial and temporal perspectives, offering significant reference value
for China’s digital economy development in pursuit of the dual-carbon objective.

The three main contributions of this paper are as follows. Firstly, the paper engages
in theoretical discussions concerning the pathways through which the rapid evolution
of the digital economy influences carbon emissions. These pathways encompass the
direct impact of the digital economy on carbon emission intensity, indirect influences
through the augmentation of economic agglomeration, and the “snowball effect” of carbon
emissions. Secondly, from a spatial perspective, empirical analyses are conducted to
examine the spatial spillover effect of digital economy development on carbon emissions,
employing the static spatial Durbin model while also verifying the mediating effect of
economic agglomeration. Lastly, from a temporal standpoint, the paper investigates the
path-dependent characteristics of carbon emissions by utilizing the dynamic spatial Durbin
model based on Han–Phillips GMM.

The subsequent sections of the paper are organized as follows. Section 2 lays out the
theoretical analyses and research hypotheses. Section 3 presents an empirical modeling
study based on the research data and methodology. Section 4 presents results of robustness
tests in terms of replacing the explanatory variables, the weight matrix, and the sample in-
terval. Section 5 divides the sample into an eastern region and a central and western region
for heterogeneity testing. Finally, we present conclusions and policy recommendations.

2. Theoretical Analysis and Hypotheses
2.1. The Impact of the Digital Economy on Carbon Emissions

In the global climate governance framework, reducing carbon emissions has become
the core task of each country. The digital economy, as a novel paradigm propelling the
evolution of the “technology–economy” interface, facilitates ecological and environmental
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governance, aligning with contemporary trends and imperatives for sustainable devel-
opment. With the ongoing advancement of China’s digital economy, the influence of the
digital economy on carbon emissions can be examined from two perspectives. On the one
hand, from a direct perspective, the development of the digital economy has given rise
to a large number of digital industries, whose green levels are significantly higher than
those of traditional industries and which are inherently environmentally friendly [7,16].
Secondly, digital technologies are gradually penetrating traditional industries and accel-
erating the process of industrial digitization; Wang et al. showed that the development
of digital economy models such as digital finance and online trade has contributed to
the high-quality development of China’s energy resources and slowed down the growth
of carbon emissions [15]. Industrial digitization not only enhances the energy efficiency
of traditional industries, hastens the production transformation of conventional sectors,
and fosters shifts towards industrial intelligence and sustainability but also facilitates im-
provements in energy conservation and emission reduction efficiency, diminishes electricity
consumption intensity, and enables the sharing of energy and carbon emissions, thereby
propelling the green sharing economy [17–21]. This is conducive to a more efficient and en-
vironmentally friendly production process, thereby reducing the level of carbon emissions
and ultimately achieving green economic development. Thirdly, as the digital economy
evolves, there is a concurrent rise in the extent of the tracking and management of carbon
emissions within the production process. For example, Fasogbon and Igboabuchukwu
showed that real-time carbon footprinting techniques based on energy consumption of-
fer a broad potential applications for quantifying and managing carbon emissions [22].
Fourthly, the increased level of development of the digital economy can not only reduce
industrial carbon emissions from business production but also reduce consumers’ living
carbon emissions. For example, the rapid development of the digital economy has given
rise to new forms of online trade, video conferencing, cloud-based information sharing, etc.,
which greatly reduce the frequency of offline travelling and trade, thus reducing the carbon
emissions generated by offline economic activities [23]. Moreover, green consumption
platforms, green consumption products, etc., which are built on digital technologies, have
greatly enhanced people’s environmental awareness while facilitating their lives [24].

On the other hand, from an indirect perspective, the digital economy can affect the
level of carbon emissions by changing the concentration of production and life within a
region. The concentration of economic activities within a region is commonly measured
by economic agglomeration indicators [25]. The digital economy can integrate and share
fragmented data and knowledge to form a systematic and scaled data and information
network, break the original information barriers between different regions and industries,
and reduce the cost of searching for information, thus increasing economic agglomeration.
Further economic agglomeration can affect the level of carbon emissions by exerting
positive externalities such as factor allocation advantages and strengthening knowledge
and technology spillovers [26]. Specifically, the “network agglomeration effect” of the
digital economy is beneficial to all kinds of economic entities attempting to break the
original form of agglomeration constrained by geographic space; these entities can use
digital technology to transform this constrained agglomeration into a digital network
agglomeration mode centered on data and information, thus increasing the degree of
economic agglomeration, which in turn has an impact on the level of carbon emissions. It
has been shown that an increase in economic agglomeration will have a two-way impact
on the level of carbon emissions. The scale effect of economic agglomeration results in an
augmentation in the spatial concentration of economic activities and a gradual expansion
in output scale, consequently resulting in an increase in carbon emissions per unit of space
and thereby engendering adverse environmental externalities [27,28]. The economies of
scale generated by economic agglomeration can enhance production efficiency and mitigate
energy consumption and transportation costs through technology spillovers and knowledge
sharing, thereby creating positive environmental externalities [11,29,30]. Shao et al. noted
that the ascent of Chinese urban agglomerations and the escalating level of economic
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agglomeration have favorably propelled China’s energy-saving and emission reduction
endeavors, facilitating the adjustment process of energy-saving and emission reduction
technological innovation [31]. Therefore, based on the above analysis, we propose H1.

H1. The digital economy not only directly reduces carbon emissions but also indirectly reduces
carbon emissions by increasing economic agglomeration.

2.2. Spatial Spillover Effects of the Digital Economy on Carbon Emissions

The development of digital technology and carbon emission levels in China is uneven.
From a regional perspective, the level of digital technology development is higher in the
east, while the west lags behind. The level of carbon emissions as a whole is characterized
by a high level in the east and a low level in the west. As a new driving force for economic
development, the digital economy breaks the traditional constraints of geography, infor-
mation sharing, and resource flow, and it promotes unconscious “exchanges” between
regions by strengthening the free flow of production factors such as information, technol-
ogy and digital resources in space, which is conducive to the integration of industries,
carbon emission reductions, technology sharing, and so on between different regions. First
of all, digital technology is creative and pervasive, and it will have a spillover effect on
the development of neighboring regions. Xue et al. showed that the development of a
digital economy will increase the complexity of the supply chain and promote the devel-
opment of the information and communication technology (ICT) industry [32]. This not
only helps to reduce local carbon emissions but also generates spatial spillovers to nearby
areas. Second, the development of digital technology accelerates the speed of information
dissemination, which amplifies spatial demonstration and competition effects [33,34]. On
the one hand, the digital economy weakens the law of diminishing technological spillovers
due to geographical distance and strengthens the demonstration effect of spatial spillovers.
This helps to guide different regions to learn from each other about carbon reduction and
emission reduction technologies. The rapid development of the digital economy has given
rise to a large number of carbon-reducing technologies, which not only help to reduce their
own carbon emissions but also influence the carbon emission reductions of neighboring
provinces in the process of their wide dissemination. As a result of the demonstration
effect, neighboring provinces will follow the example of the provinces with the faster
development of carbon emission reductions and adjust their production and consumption
patterns, and the advanced regions will have a subtle demonstration effect on the lagging
regions [35]. On the other hand, propelled by the “dual-carbon” goal, carbon reduction
and emission mitigation have emerged as shared objectives among all provinces, leading
to inter-provincial competition. Due to the competition effect, in order to better achieve
the goal of carbon emission reduction, provinces will actively compete with each other in
terms of talent, technology, environmental regulations, etc. Zheng et al. pointed out that
the competition effect is asymmetric among provinces with different degrees of economic
agglomeration [36]. Provinces with a low degree of economic agglomeration are more
likely to receive the competition effect, which will exacerbate the spatial spillover effect of
the digital economy on carbon emissions through indirect channels. Therefore, based on
the above analysis, we propose H2.

H2. The digital economy can affect carbon emissions in neighboring regions through spatial spillovers.

2.3. The Snowball Effect of Carbon Emissions

Building upon the examination of the spatial spillover effect of the digital economy on
carbon emissions, this paper additionally explores the temporal trajectory dependence of
carbon emissions. Temporal path dependence refers to the fact that carbon emission levels
are affected by not only the development level of the digital economy in the current period
but also the carbon emission levels in the previous period, i.e., there is a “snowball” effect
on carbon emission levels [37]. Provinces with higher carbon emission levels tend to have a
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closer relationship with high energy-consuming industries and traditional energy sources
in their production methods, industrial structure, and energy consumption. In the process
of low-carbon transition, they face greater difficulties in carbon emission reduction. For
example, as the energy rebound effect is significantly higher for energy-intensive industries
than for other provinces, it will reduce the carbon emission performance of energy-intensive
industries [38]. Coal-producing provinces such as Shanxi and Inner Mongolia have more
energy-intensive industries. Compared with other provinces, provinces with a higher
traditional energy dependence have worse carbon emission performance due to the energy
rebound effect, and the time accumulation effect of carbon emission levels is more obvious.
Scholarly research shows that cities that implement low-carbon construction earlier can
have stronger carbon emission reduction capacities by reserving professionals and adjusting
policy tools [39,40]. Therefore, based on the above analyses, this paper proposes H3.

H3. Carbon emission levels are affected by both the spatial spillover effects of the digital economy
and the snowball effect of carbon emission levels.

3. Methods
3.1. Model Settings

To investigate how the digital economy directly influence carbon emissions, we first
constructed a benchmark model for the direct impact mechanism, as shown below:

cei,t = α0 + α1digi,t + α2sdigi,t + αcZi,t + µi + δt + εi,t (1)

where cei,t represents the carbon emission of the province i during the period t, digi,t
represents the digital economy level of the province i during the period t, and Zi,t stands
for the control variables. µi and δt represent individual and time fixed effects, respectively.
εi,t represents random disturbance.

Secondly, in addition to the direct impact effect embodied by Model (1), there may
be an indirect mechanism of action between the digital economy and carbon emissions.
Based on previous analyses, this paper tested whether economic agglomeration (ag) is a
mediating variable between the two via the stepwise regression method [41]. The first step
involves estimating Model (1) and examining the overall impact of the digital economy
on carbon emissions. If α1 is statistically significanicates support for the total effect of the
digital economy. In the second step, we constructed the benchmark regression equations
for dig versus ag and dig and ag versus ce. To assess the presence of a mediating effect, we
examined the significance of βi, γ1, and γ2. The specific settings of the stepwise regression
model are as follows:

agi,t = β0 + β1digi,t + βcZi,t + µi + δt + εi,t (2)

cei,t = γ0 + γ1digi,t + γ2agi,t + γ3sagi,t + γcZi,t + µi + δt + εi,t (3)

where agi,t represents the economic agglomeration of the province i during period t and
sagi,t is the square term of agi,t. If β1 and γ2 are significant, the indirect effect exists. Then,
the third step is to test whether the coefficient γ1 is significant. If γ1 is not significant, the
direct effect does not exist, indicating that there is only a mediating effect known as the
full mediating effect. If γ1 is significant, the direct effect is also significant and is called the
partial mediation effect.

Thirdly, to delve deeper into the influence of the digital economy on carbon emissions,
we analyzed the spatial spillover effects within the mediation model framework. Addition-
ally, we examined the spatial spillover effect of the digital economy on carbon emissions by
incorporating their spatial interaction term into Model (1), which was further expanded
into a spatial panel econometric model:

cei,t = α0 + ρ1Wcei,t + ϕ1Wdigi,t + ϕ2Wagi,t+ϕcWZi,t + α1digi,t + α2agi,t + α3sagi,t + αcZi,t + µi + δt + εi,t (4)
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where ρ represents the spatial lag coefficient and W represents the spatial weight matrix,
which indicates the relationship of each province. Model (4) incorporates the combined
impact of the digital economy and carbon emissions on carbon emissions with spatial
lagged effects, termed the spatial Durbin model (SDM).

Finally, we comprehensively considered the dynamic spillover impacts of the digital
economy and carbon emissions. These encompassed potential path-dependence charac-
teristics of carbon emissions in the temporal dimension, as well as the endogeneity issue
arising from the potential bidirectional causality between carbon emissions and economic
and technological factors [42]. Therefore, we introduced a lag period of ce and set up the
following dynamic spatial panel model:

cei,t = η0 + θ1Wcei,t−1 + θ2Wdigi,t + θ3Wagi,t+θcWZi,t + η1cei,t−1 + η2digi,t + ηcZi,t + µi + δt + εi,t (5)

where θ1, θ2, θ3 and θc represent the elasticity coefficients of the spatial interaction terms
for the explanatory variables, the core explanatory variables, and the control variables,
respectively. Model (5) can simultaneously test the impact of the digital economy on carbon
emissions and examine the time lag effect of carbon emissions.

3.2. Spatial Weighting Matrix Settings

A spatial weighting matrix is used to reflect the effect that the neighborhood explana-
tory variables have on the explained variables. Traditional weight matrices include the 0–1
matrix and neighborhood matrix [17]. In recent years, as economic and trade exchanges
have become closer, the spillover effect between regions has been affected by not only
geographical factors but also economic conditions. Therefore, we employed the following
spatial adjacency matrix by combining the economic development status of each province
and geographical distance:

W =

{ xixj

d2
ij

, i ̸= j

0, i = j

where xi and xj represent the GDP per capita for provinces i and j, respectively. dij
represents the geographical distance between provinces i and j.

3.3. Variable Descriptions
3.3.1. Explained Variable

We focused on the variable of carbon emission (ce). We estimated carbon emissions
of provinces based on the measuring method provided by the United Nations Intergov-
ernmental Special Committee on Climate Change (IPCC) and the consumption of eight
major fossil energy sources in China. The eight major fossil energy sources are raw coal
(10,000 tons), coke (10,000 tons), crude oil (10,000 tons), gasoline (10,000 tons), paraffin
(10,000 tons), diesel fuel (10,000 tons), fuel oil (10,000 tons), and natural gas (100 million
m3). The specific calculation formula is as follows.

cei,t =
CEi,t

Li,t
=

∑8
n=1 cnEn,i,t

Li,t

where cn(n = 1, 2, · · · , 8) represents the carbon emission factors for the eight main fossil
energy sources, En,i,t represents the consumption of the energy n in province i in period t,
and Li,t represents the total population of province i in period t.

3.3.2. Core Explanatory Variable

The central explanatory variable examined in this paper is the digital economy (dig).
We constructed an index system to measure the digital economy. The index system includes
the length of long-distance fiber-optic cables; the number of people employed in the
information transmission, software and information technology services industry; the
turnover of the technology market; the total volume of telecommunications business; and
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the number of mobile phone subscribers. Then, to objectively measure the level of the
digital economy, we applied the entropy method. The specific process of the entropy
method is as follows.

Firstly, the indicators are dimensionless. When the indicator xij is positive,

bij =
xij − mj

Mi − mj

where Mi and mj are the maximum and minimum of xij, respectively. When the indicator
is negative,

bij =
Mj − xij

Mi − mj

Secondly, the indicators are normalized:

Pij =
bij

∑n
j=1 bij

Thirdly, the entropy value of the indicator is calculated.

Ij = −k
m

∑
i=1

Pijln
(

Pij
)
, j = 1, 2, 3, · · · , m

where k is a constant and k > 0, usually taken as k = 1/ln(m). Ij is greater than zero.
Fourthly, the entropy weights of the indicators are determined.

wj =
1 − Ij

∑m
j=1

(
1 − Ij

)
Finally, linear weighting was applied to obtain the final composite evaluation index.

yi =
m

∑
j=1

wj × Pij

3.3.3. Mediator

Based on the theoretical analysis presented above, this study chose economic agglom-
eration (ag) as the mediator to test the mediating mechanism. Drawing on Zhang et al.,
we used the number of employed people per unit area to measure the degree of economic
agglomeration in each province [43]. In addition, existing studies show that there is a non-
linear relationship between economic agglomeration and carbon emissions [44]. Therefore,
we added ag and its quadratic term (sag) to the regression model.

3.3.4. Control Variables

In order to more comprehensively analyze the spillover effects of the development of
the digital economy in carbon emissions, it is also necessary to study the control variables
that may have an impact on carbon emissions. Therefore, the following control variables
were selected in this paper: economic development (py), for which GDP per capita was used
to control for possible non-linear effects of the level of economic development; industrial
structure, which is expressed as the share of value added of the secondary industry in
GDP (ig) and the share of value added of the tertiary industry in GDP (sg), respectively;
technological progress (rd), characterized by patents granted per 100 R&D personnel; non-
farm output (lp), represented by consumption expenditure per urban resident; urbanization
(rm), characterized by urban population density; and talent development (pt), characterized
by the human capital index in the China Human Capital Report (2022).



Sustainability 2024, 16, 2810 8 of 19

3.4. Data Sources and Descriptive Statistics

This study employed China’s provincial-level panel data from 2000 to 2021, selected
to ensure the accuracy of research and availability of data. The data of Tibet, Hong Kong,
Macao and Taiwan were excluded due to a severe lack of relevant data. Primary sources for
this article included the China Statistical Yearbook, the China Energy Statistical Yearbook
and provincial statistical yearbooks. Table 1 presents the results of the descriptive statistics.

Table 1. Statistical description of variables.

Variable N Mean Std Min Max

Dependent Variable ce 660 2.9794 2.8883 0.2857 25.6360

Independent Variable dig 660 0.0753 0.0809 0.0012 0.6186

Mediator Variable ag 660 4.8006 1.3008 1.3474 7.6828

Control Variable

py 660 3.8482 3.0473 0.2662 18.398
ig 660 0.4684 0.2994 0.0658 4.9961
sg 660 0.4531 0.2776 0.1008 4.1660
lp 660 9.4494 0.6145 8.1952 10.8453
rd 660 2.9684 0.8564 0.2109 6.1585
rm 660 7.5874 0.7407 3.2581 8.7495
hc 660 6.8544 0.8100 4.9562 8.8030

Based on Table 1, the minimum value of ce is 0.2857, the maximum value is 25.6360, and
the standard deviation is 2.8883, implying substantial variance in per capita carbon emis-
sions among provinces throughout the sampling period. Similarly, the disparity between
the minimum and maximum values of dig is 0.6174, indicating significant discrepancies in
digital economy development across provinces as well.

4. Empirical Results
4.1. Benchmark Regression

Column (1) in Table 2 presents the findings from the estimation of the impact of the
digital economy on carbon emissions within the benchmark regression model. Here, the
estimated coefficient of the primary explanatory variable, dig, demonstrates a statistically
significant negative effect. This indicates that the development of the digital economy
reduces carbon emissions, which is in line with the findings of Zhang and Liu [45,46]. In
addition, the coefficients of py and ce exhibit a significant positive correlation, whereas
the coefficients of spy and ce demonstrate a significant negative correlation. This sug-
gests an inverted U-shaped relationship between per capita income and carbon emissions.
Furthermore, ig presents a positive and statistically significant coefficient, implying that
the rising proportion of the secondary industry within the GDP correlates with increased
carbon emissions. Conversely, sg displays a significantly negative coefficient, indicating
that the increasing proportion of the tertiary industry within the GDP is associated with a
reduction in carbon emissions. The coefficient of ig is positive and significant, suggesting
that the growing share of the secondary industry in GDP will elevate carbon emissions.
Conversely, the coefficient of sg is notably negative, implying that with a higher proportion
of tertiary industry in GDP, carbon emissions decline. This phenomenon might be at-
tributed to the dominance of manufacturing activities within the secondary industry, which
results in substantial emissions of carbon-containing pollutants during the manufacturing
process, consequently escalating carbon emissions [7]. The tertiary sector, predominantly
composed of the financial and service industries, plays a dominant role. A rise in the
tertiary sector’s contribution to GDP facilitates the mitigation of carbon emissions during
economic development. The significant positive coefficient of lp implies that higher per
capita non-agricultural output increases carbon emissions, which may mainly be due to the
fact that China is mainly driven by the development of the manufacturing sector. Thus,
the rise in non-agricultural output primarily stems from the advancement of the secondary
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industry, resulting in a notable positive correlation between lp and ce. The coefficient of
Rd is negative but not significant. This may be due to the low number of carbon-related
patents granted in China. The coefficient of rm is significantly positive, indicating that
regions with high population densities have higher levels of carbon emissions.

Table 2. Benchmark regression and mediating effect test results.

Variable
ce ag ce
(1) (2) (3)

dig −11.1086 *** −0.2105 ** −10.4128 ***
(−4.7854) (−2.3031) (−4.6981)

ag \ \ 13.9921 ***
(7.8503)

sag \ \ −1.3154 ***
(−6.6533)

py 0.6586 *** 0.0499 *** 0.4567 ***
(3.5633) (6.9218) (2.6485)

spy −0.0364 *** −0.0023 *** −0.0241 ***
(−3.9602) (−6.8703) (−2.9316)

ig 2.4163 ** 0.0915 * 2.7003 **
(2.2936) (1.8306) (2.5162)

sg −2.7732 ** −0.1578 *** −2.1980 **
(−2.5041) (−2.7849) (−1.9860)

lp 3.2146 ** 0.0098 1.2671
(2.4673) (0.1933) (1.0448)

rd
0.0295 −0.0375 *** 0.3245 *

(0.1554) (−4.7546) (1.7120)

rm 0.4546 *** 0.0083 0.2385 *
(3.2785) (0.9955) (1.8079)

hc
−4.8212 * −1.7014 *** −7.6008 **
(−1.7176) (−15.3865) (−2.1707)

shc
0.2366 0.0820 *** 0.4572 **

(1.3558) (12.6329) (2.2070)

Constant
−9.9639 14.8443 *** −14.7793

(−0.5432) (24.2531) (−0.6736)

IFE YES YES YES

TFE YES YES YES

R2 0.7815 0.9980 0.8037

F 55.34 8187.65 65.76

Note: The values in parentheses are t-values or z-values. In the table, ***, **, and * indicate that the regression
results pass the significance test at the 1%, 5%, and 10% confidence levels, respectively. The same applies to
subsequent tables.

4.2. Mediating Effect Regression

Based on the previous theoretical analyses, the digital economy not only has the ability
to reduce carbon emissions but also affects economic agglomeration, thus changing carbon
emissions. Therefore, in addition to directly affecting carbon emissions, the digital economy
also indirectly affects carbon emissions through economic agglomeration [47]. In summary,
we provide an in-depth study of the mediating effect of economic agglomeration. The
results of this mediating mechanism are shown in columns (2) and (3) of Table 2.
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Column (1) shows that the digital economy can significantly reduce the level of carbon
emissions. Then, column (2) verifies that there is a significant negative correlation between
the digital economy and economic agglomeration. In column (3), the mediating variable
is added to the regression equation of the digital economy affecting carbon emissions. By
observing the coefficient of dig, it can be seen that the regression coefficient of dig for ce in
Model (3) is significant at the 1% level, and the value is increased compared with that of
Model (1). This suggests that the increase in economic agglomeration is the mechanism
of action of the digital economy to reduce the level of carbon emissions, and this result
supports H1.

4.3. SDM

Firstly, before conducting spatial econometric analyses, it was necessary to test whether
there are spatial effects of carbon emissions and the digital economy. In this paper, we used
Moran’s I index to calculate the spatial autocorrelation of the two under the nested matrix
of economic geography, and the results are shown in Table 3.

Table 3. Moran’s I test results.

ce dig

Moran’s I
0.090 *** 0.343 ***
(7.477) (27.997)

*** indicates that the regression results pass the significance test at the 1% confidence level.

The results in Table 3 show that the Moran’s I index for both ce and dig are significant
at the 1% level under the economic geography weight matrix. This indicates that there is a
significant spatial autocorrelation between the digital economy and carbon emissions in the
provinces within the sample interval. Therefore, dig and ce show a clustering phenomenon
in their spatial distribution.

Moving on, referring to Elhorst [48], this paper sequentially conducted the Hausman
test, the LM test and the LR test. The spatial Durbin model (SDM) with spatiotemporal
double fixed effects was finally identified as the optimal choice. The results are shown in
column (1) of Table 4.

The estimation results in Table 4 show that the elasticity coefficient of dig is −13.7636
and significant at the 1% level. This result indicates that the current development of the
digital economy significantly reduces carbon emissions in the provinces. Meanwhile, both
the regression coefficients of ag and sag are statistically significant at 11.9170 and −1.0768,
respectively. This observation suggests that economic agglomeration exhibits an inverted
U-shaped relationship with carbon emissions. Specifically, when economic agglomeration
measures less than 5.5335, carbon emissions display a positive correlation with economic
agglomeration, indicating that the scale effect of the economy outweighs the economy of the
scale effect during this phase. Conversely, when economic agglomeration exceeds 5.5335, a
negative correlation emerges between the two variables. At this time, the environmental
dividend brought about by economic agglomeration gradually appears, and the scale
economy effect is greater than the scale effect.

Further examining the spatial spillover effect of the digital economy among provinces
shows that the regression coefficient of dig is negative and significant at the 1% level,
which indicates that the development of the digital economy in neighboring provinces
can significantly reduce their carbon emissions. However, the regression results of the
interaction term between the digital economy and weight matrix do not directly reflect the
marginal impact of the digital economy on carbon emissions. Therefore, we adopted the
partial differentiation of variable changes for interpretation, i.e., using direct and indirect
effects to study the heterogeneous impact of the digital economy on carbon emissions in
local and other regions [49].
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Table 4. Static and dynamic SDM results.

Variable

SDM Dynamic SDM

ce ce ag ce
(1) (2) (3) (4)

L.ce \ \ \ 1.4998 ***
(24.97)

dig −13.7636 *** −16.6513 *** −0.3427 *** −3.7661 ***
(−7.7547) (−9.2088) (−4.1404) (−3.30)

ag 11.9170 *** \ \ 7.4042 ***
(7.2632) (5.45)

sag −1.0768 *** \ \ −0.7460 ***
(−5.5107) (−5.18)

W × dig −106.8135 *** −142.4802 *** −2.7125 *** 0.0049 ***
(−5.8491) (−7.7829) (−3.2674) (3.46)

W × ag 41.8668 *** \ \ −0.0107
(3.0521) (−1.51)

W × sag −3.1848 ** \ \ 0.0015
(−2.0496) (1.50)

Control variable YES YES YES YES

Direct Effect
−10.8741 *** −13.4744 *** −0.3101 *** \(−6.2307) (−7.5124) (−3.7839)

Indirect Effect
−55.5802 *** −85.0672 *** −2.1323 *** \(−4.6435) (−5.6736) (−2.9417)

Total Effect
−66.4543 *** −98.5416 *** −2.4424 *** \(−5.2880) (−6.2727) (−3.2136)

LogL 50.9759 50.9759 50.9759 \

R2 0.2313 0.2588 0.1476 0.2799

***, ** indicate that the regression results pass the significance test at the 1%, 5% confidence levels, respectively.

In column (1) of Table 4, the results demonstrate significant reductions in carbon
emission levels within local and other areas due to the influence of the digital economy,
as indicated by the direct, indirect, and total effect measures. This finding supports H2.
Specifically, the developmental progression of the digital economy, concurrent with the
advancing maturity of digital technologies, contributes to reductions in local carbon emis-
sion levels through both production and consumption channels, and it can also give full
play to the economies of scale of economic agglomeration by enhancing the degree of
economic agglomeration, thus reducing carbon emissions. At the same time, this pro-
gression can also inhibit carbon emissions in neighboring regions through spillover and
demonstration effects.

Furthermore, based on the perspective of spatial correlation, we once again applied
the stepwise regression method to verify the mediating role of economic agglomeration
on the development of the digital economy affecting carbon emissions. In column (3)
of Table 4, the regression coefficient of dig on ag is shown to be significant. Column (2)
verifies that the regression coefficient of dig on ce is equally significant. Given that the
regression coefficients of dig and ag on ce in column (1) are both significant at the 1% level,
it can be said that the digital economy can still affect carbon emissions through economic
agglomeration under the influence of spatial spillovers. Once again, H1 is proven.

4.4. Dynamic SDM

Most previous studies have focused on the static perspective to study the factors
affecting carbon emissions, while this paper argues that carbon emissions have time-
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dependent characteristics. Therefore, the dynamic hypothesis that carbon emissions have a
snowball effect is proposed. In this paper, we used the dynamic SDM to test H3, and the
time lag term was introduced into Model (5). In order to overcome the biased estimation of
the least squares method (OLS), the endogeneity problem of the great likelihood estimation
(MLE), and the weak instrumental variable problem of the differential GMM, we referred
to the Han–Phillips generalized moment estimation to estimate the dynamic SDM. The
results are shown in column (4) of Table 4.

In Table 4, the coefficient of the lagged term of carbon emission is significantly positive
at the level of 1%. This verifies that carbon emissions have the dynamic snowball effect.
Therefore, when the carbon emissions of the previous period are at a high level, the carbon
emissions of the next period will continue to be high. Thus, H3 is proven. Specifically, every
increase of one unit of carbon emission in the current period will lead to an increase of
1.4998 units of carbon emission in the next period. This means that along with the snowball
phenomenon of carbon emissions, China’s current carbon emission reduction work has a
serious urgency and arduousness. Analyzing column (1) of Table 4 shows that the impact
of the digital economy and economic agglomeration on carbon emissions changes after
considering the path-dependent characteristics of carbon emissions. The impact of the
digital economy and economic agglomeration on local carbon emission levels remains
significant, but their spatial spillover impact on the neighboring regions decreases.

5. Robustness Test

The regressions discussed earlier provide evidence that the digital economy reduces
carbon emissions and that economic agglomeration plays a mediating role. To further
ensure the credibility of these results, this paper checked the robustness from several
perspectives. The results are presented in Table 5.

Table 5. Robustness test results.

Variable

SDM Dynamic SDM IV Method

Changing the
Dependent

Variable

Changing the
Weight Matrix

Changing the
Sample Period

Changing the
Dependent

Variable

Changing the
Weight Matrix

Changing the
Sample Period (7)

(1) (2) (3) (4) (5) (6)

L.ce \ \ \ 1.5034 *** 1.5068 *** 1.5183 *** \(16.49) (25.38) (9.12)

dig −1.2691 *** −14.0533 *** −10.8760 *** −0.4520 ** −3.8163 *** −2.575 *** −12.9828 ***
(−5.5391) (−7.7277) (−7.4797) (−2.19) (−3.35) (−2.69) (−4.6132)

ag 2.2049 *** 12.2122 *** 13.6653 *** 1.2595 *** 7.5027 *** 5.9623 *** 13.3144 ***
(10.4523) (7.4250) (11.6922) (5.12) (5.53) (6.26) (8.1316)

sag −0.1818 *** −1.0755 *** −1.4939 *** −0.1109 *** −0.7544 *** −0.6329 *** −1.2763 ***
(−7.1967) (−5.5049) (−10.6148) (−4.25) (−5.24) (−6.16) (−6.8022)

W × dig −5.5826 ** −103.0876 *** −78.6314 *** 0.0006 ** 0.0050 *** 0.0028 ** \(−2.3485) (−5.5331) (−5.3996) (2.16) (3.50) (2.31)

W × ag −2.7602 39.3231 *** 20.1965 ** 0.00003 −0.0108 −0.0119 ** \(−1.5107) (2.7741) (2.0648) (0.02) (−1.47) (−2.35)

W × sag 0.1043 −2.9065 * −5.6515 *** 0.0001 0.0015 0.0016 ** \(0.5023) (−1.8424) (−4.5997) (0.78) (1.50) (2.31)

ρ −1.0550 *** −0.8873 *** −1.2116 *** \ \ \ \(−5.2206) (−4.1582) (−5.3394)

Direct Effect
−1.1062 *** −11.2082 *** −8.1922 *** \ \ \ \(−5.0863) (−6.3790) (−5.8521)

Indirect Effect
−2.2449 * −51.4347 *** −32.4968 *** \ \ \ \(−1.8639) (−4.4195) (−4.2135)
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Table 5. Cont.

Variable

SDM Dynamic SDM IV Method

Changing the
Dependent

Variable

Changing the
Weight Matrix

Changing the
Sample Period

Changing the
Dependent

Variable

Changing the
Weight Matrix

Changing the
Sample Period (7)

Total Effect
−3.3511 *** −62.6430 *** −40.6889 *** \ \ \ \(−2.6960) (−5.1158) (−5.0372)

Control
variable YES YES YES YES YES YES YES

Fixed Effects YES YES YES YES YES YES YES

R2 0.1234 0.2252 0.2189 0.7372 0.3033 0.3191 0.8128

***, **, and * indicate that the regression results pass the significance test at the 1%, 5%, and 10% confidence
levels, respectively.

5.1. Change the Explanatory Variable

This paper previously used the per capita carbon emissions of each province as the
explanatory variable. In the current analysis, the total carbon emissions of individual
provinces served as the explanatory variable, with the regression outcomes presented in
columns (1) and (4) of Table 5. The findings indicate a persistently significant negative
regression coefficient for dig. This indicates that the development of the digital economy
has a significant reduction effect on both total and per capita carbon emissions, which is
consistent with the benchmark regression results.

5.2. Change the Geographic Weighting Matrix

In addition to the economic–geographic nested matrix, this paper applied a geographic
distance matrix (W2) for robustness testing. The results of the static and dynamic SDM
regressions are shown in columns (2) and (5) of Table 5, respectively. The static SDM
regression results in column (2) show that the elasticity coefficients and spatial elasticity
coefficients of dig to ce are significantly negative, which is consistent with the previous
results. The study suggests that the advancement of the digital economy contributes to a
reduction in carbon emissions. The results from the dynamic spatial Durbin model (SDM)
regression in column (5) indicate that the digital economy and carbon emissions of dig
and L.ce exhibit significant negative spatial spillover effects and positive time cumulative
effects, respectively. These findings align with prior research outcomes.

5.3. Change the Sample Interval

The impact of the digital economy on carbon emissions was analyzed using data from
2000 to 2021. However, the outbreak of COVID−19 at the end of 2019 had great impacts on
domestic and international living and production activities. Hence, this study modified the
sampling interval to encompass the years 2000–2019 to facilitate a more comprehensive
evaluation of the influence exerted by the digital economy and economic agglomeration
on carbon emissions. The findings are depicted in columns (3) and (6) of Table 5. Notably,
no substantial alterations were observed in the parameter estimations and their associated
significance, thus affirming the robustness of the results.

5.4. Endogeneity Treatment

The regression results show that the development of the digital economy can sig-
nificantly reduce carbon emissions. However, due to the need for green development,
regions with higher levels of carbon emissions will accelerate the promotion of local digital
economy construction levels, so there may be a bidirectional causal relationship between
them. This may lead to endogeneity problems. Thus, we chose the instrumental variable
method to verify it. The key to solving an endogeneity problem is to choose appropri-
ate instrumental variables, which need to satisfy the two assumptions of correlation and
exogeneity. In other words, the instrumental variables should exhibit correlation with
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the endogenous explanatory variables while remaining uncorrelated with the random
disturbance terms. Therefore, the lagged one period of dig was chosen as the instrumental
variable for the endogeneity test in this study. The regression results in column (7) in
Table 5 show that the impact of the digital economy on reducing carbon emissions is still
significant at the 1% level after accounting for endogeneity. In addition, the results of the
test for the under-identification of instrumental variables show that the Kleibergen–Paap
rk LM statistic is 35.017, which corresponds to a p-value of 0.0000, significantly rejecting
H0. The results of the test for weak instrumental variables show that the Kleibergen–Paap
rk Wald F statistic of 197.034 is greater than the Stock–Yogo critical value at the 10 percent
level. This justifies the selection of the instrumental variables used in this paper.

6. Heterogeneity Analysis

Due to variations in resource allocation and developmental stages, both the advance-
ment of the digital economy and carbon emissions exhibit pronounced heterogeneity
in regional distribution. Consequently, the influence of the digital economy on carbon
emissions is likely to manifest heterogeneously across regions, warranting an in-depth
examination. We conducted a heterogeneity regression analysis for the eastern, central,
and western regions. The eastern region includes Beijing, Tianjin, Hebei, Shanghai, Jiangsu,
Zhejiang, Fujian, Shandong, Guangdong, Hainan, Liaoning, Jilin and Heilongjiang. The
central and western region includes Shanxi, Anhui, Jiangxi, Henan, Hubei, Hunan, Inner
Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai,
Ningxia and Xinjiang.

Before conducting empirical analyses of regional heterogeneity, this paper first pro-
vides descriptive statistics on the differences between different regions. The results in
Table 6 show that for carbon emissions, digital economy development, and economic
agglomeration, the eastern region has higher values than the central and western region.
The differences in the mean values of the variables between the two types of regions were
found to be 0.1838, 0.0451, and 1.2761, respectively.

Table 6. Statistical description of variables in different regions.

Variable Region N Mean Std Min Max

ce Eastern Region 286 5.3763 1.0023 0.0094 7.1497
Central and Western Region 374 5.1925 0.9694 −0.2053 7.6496

dig Eastern Region 286 0.1008 0.1028 0.0015 0.6186
Central and Western Region 374 0.0557 0.0512 0.0012 0.3019

ag Eastern Region 286 5.5237 0.9597 3.4298 7.6828
Central and Western Region 374 4.2476 1.2564 1.3474 5.8578

Table 7 shows the static and dynamic SDM regression results for the eastern region
and the central and western region. The findings presented in columns (1) and (2) indicate
that the impact of the digital economy on carbon emissions is notably greater in the central
and western region compared with the eastern region. This may be due to the fact that the
development of the digital economy in the central and western region started later and
is at a lower level than that of the eastern region, and it is now in the “novice dividend
period”. On the other hand, the level of digital economy development in the eastern
region is already high. While the continued advancement of the digital economy in the
eastern region is anticipated to lead to a reduction in carbon emissions, the associated
marginal utility is notably lower compared with that observed in the central and western
region. Moreover, the coefficient of economic agglomeration in the eastern region exhibits
a significant negative value, in contrast to the significantly positive coefficients observed
in the central and western region. These findings suggest a negative correlation between
economic agglomeration and carbon emissions in the eastern region, while a positive
correlation was observed in the central and western region. A possible reason for this result
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is that the eastern provinces of China have a higher level of economic agglomeration and a
more reasonable economic structure than the central and western provinces, which makes
the economies of scale brought about by economic agglomeration greater than the scale
effect and more fully releases the green emission reduction dividend. On the other hand,
the development of economic agglomeration in the central and western region started late
and to a low degree, which makes it difficult to use the effect of economies of scale. Thus, it
is difficult for economic agglomeration to effectively reduce carbon emissions.

Table 7. Heterogeneity test results.

Variable

SDM Dynamic SDM

Eastern Region Central and Western Region Eastern Region Central and Western Region
(1) (2) (3) (4)

L.ce \ \ 1.3512 *** 1.7597 ***
(15.48) (20.33)

dig −0.6698 ** −19.7209 *** 0.4356 −15.1738 ***
(−2.0675) (−4.1556) (1.19) (−5.50)

ag −4.5967 *** −6.5964 *** 0.7113 5.2898 ***
(−7.3620) (−2.5883) (0.48) (2.66)

sag 0.3735 *** 0.5610 * −0.1476 −0.2993
(5.9945) (1.8350) (−1.18) (−1.12)

W × dig −2.6689 −14.1425 0.0005 0.0564 ***
(−1.5383) (−0.3391) (0.29) (5.21)

W × ag −1.8186 −94.5845 *** 0.0826 *** −0.0166
(−0.5570) (−3.9273) (3.61) (−0.45)

W × sag 0.3704 3.3912 −0.0072 ** 0.0080
(1.3101) (1.1788) (−3.22) (1.49)

Control variable YES YES YES YES

Fixed Effects YES YES YES YES

R2 0.5862 0.1655 0.7629 0.7015

***, **, and * indicate that the regression results pass the significance test at the 1%, 5%, and 10% confidence
levels, respectively.

The outcomes presented in columns (3) and (4) of Table 7 demonstrate that the coeffi-
cients associated with the lagged terms of carbon emissions are all notably positive. This
indicates that both the eastern region and the central and western region have significant
time-dependent carbon emissions. This means that both the eastern region and the central
and western region of China are facing urgent pressure to reduce emissions in the future,
highlighting the importance of developing the digital economy and accelerating the task of
reducing carbon emissions.

7. Discussion

In examining previous studies concerning the relationship between the digital econ-
omy and carbon emissions, this paper corroborates their findings that the digital economy
significantly reduces carbon emissions and demonstrates a spatial spillover effect on neigh-
boring provinces’ carbon emission levels [50]. What sets this paper apart from prior
research is its expansion beyond the spatial impact analysis of the digital economy on
carbon emissions [51]. This paper extends the research perspective to encompass the tem-
poral dimension, analyzing factors influencing carbon emission levels across both spatial
and temporal dimensions. Consequently, this paper confirms the existence of a snowball
effect on carbon emissions and addresses a gap in this research field. Naturally, this paper
exhibits certain limitations. We outline the limitations as follows.
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1. This paper solely examines the impact of economic agglomeration as a mediating
variable on the relationship between the digital economy and carbon emissions. Given that
the digital economy can influence carbon emissions through many mediating variables, fu-
ture research could delve deeper into analyzing different mediating transmission pathways
of the digital economy on carbon emissions.

2. This paper employs the entropy weight method to gauge the level of the develop-
ment of the digital economy. Consequently, the weight coefficients assigned to variables
such as the length of long-distance fiber-optic cables, turnover of the technology market,
and total volume of telecommunications business remain constant, indicating fixed weights
for each variable. However, given the evolving nature of the context, dynamic weighting
methods like the dynamic factor method offer a more nuanced reflection of variable weights
across different time periods, rendering them more pertinent. Therefore, future research
could explore the utilization of dynamic weighting methods to develop an approach that is
both more objective and better aligned with changes in the digital economy’s development.

3. This paper examines the influence of China’s digital economy development on the
level of carbon emissions from a provincial perspective, potentially obscuring variations in
economic development within each province. Subsequently, further in-depth investigation
into the interaction between these factors, taking into account the specific development
levels of various prefecture-level cities within each province, could be conducted.

8. Conclusions and Policy Implications
8.1. Conclusions

The digital economy presents significant potential for reducing carbon emissions in
China. This paper aimed to investigate the mechanisms through which the digital economy
influences carbon emissions. Empirical analyses were conducted using fixed-effect models,
intermediary effect models, an SDM, and a dynamic SDM by utilizing provincial panel data
spanning from 2000 to 2021. The study sought to substantiate the impact of the digital econ-
omy on carbon emissions, elucidate the intermediary role of economic agglomeration, and
assess the heterogeneity among different provinces. Ultimately, the following conclusions
were derived: (1) The digital economy can effectively reduce carbon emissions. It can either
directly reduce carbon emissions or indirectly affect carbon emissions through economic
agglomeration, and the emission reduction effect is significant in the eastern, central and
western regions. (2) The digital economy has significant spatial spillover effects. While
developing the digital economy to reduce carbon emissions, different provinces can also
influence the carbon emissions of neighboring provinces through the channels of spillover,
demonstration, and competition effects. (3) Carbon emissions have a significant snowball
effect, i.e., provinces with higher leveld of carbon emissions in the previous period will
have significantly higher leveld of carbon emissions in the next period.

8.2. Policy Implications

In light of the foregoing discoveries, we propose the subsequent policy recommendations:
(1) There are spatial gradient differences in China’s digital economy development

and carbon emissions. When setting carbon reduction targets, the government should set
“dual-carbon” targets suitable for the level of development of different provinces according
to the level of development of their digital economy.

(2) In the process of developing the digital economy, the government should pay
close attention to the levels of economic agglomeration of different provinces. In regions
characterized by limited economic agglomeration, such as the central and western areas,
governmental intervention can be strategically employed to enhance the structure and
density of economic agglomeration. This can be achieved by expediting the spillover impact
of digital technology, leveraging the demonstrative influence of economic agglomeration
observed in the eastern region, and fostering competitive dynamics.

(3) The government should consider the huge pressure of carbon reduction and
emission reduction brought by the snowball effect on large carbon-emitting provinces.
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The aim of controlling the overall national carbon emissions can be realized through the
development of the carbon market, the facilitation of carbon emission trading among
different provinces, and the formulation of a carbon emission compensation policy. Ul-
timately, the challenge of climate risk arising from greenhouse gas emissions can be
reasonably addressed.
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