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Abstract: (1) Background: As environmental issues gain more attention, switching from conventional
energy has become a recurring theme. This has led to the widespread development of photovoltaic
(PV) power generation systems. PV supports, which support PV power generation systems, are
extremely vulnerable to wind loads. For sustainable development, corresponding wind load research
should be carried out on PV supports. (2) Methods: First, the effects of several variables, including
the body-type coefficient, wind direction angle, and panel inclination angle, on the wind loads of
PV supports are discussed. Secondly, the wind-induced vibration of PV supports is studied. Finally,
the calculation method of the wind load on PV supports is summarized. (3) Conclusions: According
to the particularity of the PV support structure, the impact of different factors on the PV support’s
wind load should be comprehensively considered, and a more accurate method should be adopted
to evaluate and calculate the wind load to lessen the damage that a PV support’s wind-induced
vibration causes, improve the force safety of PV supports, and thereby enhance the power generation
efficiency of PV systems.

Keywords: photovoltaic support; wind load; panel inclination angle; wind-induced vibration;
photovoltaic system

1. Introduction

Environmental problems have become increasingly severe in recent years. Given the
goals of “peak carbon dioxide emissions”, “carbon neutrality”, and compliance with the
requirements of sustainable development, PV power generation is a promising renewable
energy generation method because of both its environmental protection and economy,
and it has been widely developed [1]. China generated 241.4 billion kWh of PV power
in 2021 and 325.9 billion kWh in 2022, indicating an annual increase of 35%. However,
wind damage to PV supports occurs from time to time, and the most significant load when
designing PV supports is the wind load. Therefore, wind resistance is essential for a safe,
durable, and sustainable PV power generation system.

There are three modes of support in PV power generation systems: fixed [2], flexible [3],
and floating [4,5]. Fixed PV supports are structures with the same rear position and angle.
They have the advantages of mature technology, wide application, and simple overhaul
and maintenance. In contrast, they face the disadvantage of limited application scope.
Meanwhile, a flexible PV panel support is installed on rows of steel cables, which are
connected by rigid supports at two ends, realizing a structure spanning 10–30 meters [6].
In addition, external tensile stay cables or internal rigid diagonal supports are used at both
ends of the support to reduce the bending moment of the top support at the ends [7,8]. As
such, it has the advantages of an extensive and flexible span range, a significant utilization
rate of land space, flexible operation, good ventilation performance, and high power
generation efficiency [9]. To a certain extent, it can be mutually beneficial regarding crops. A

Sustainability 2024, 16, 2551. https://doi.org/10.3390/su16062551 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16062551
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9655-0485
https://orcid.org/0009-0006-9728-4258
https://orcid.org/0000-0002-5056-5291
https://doi.org/10.3390/su16062551
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16062551?type=check_update&version=2


Sustainability 2024, 16, 2551 2 of 25

problem, however, is the immaturity of the technology. A floating PV support is a structure
that uses PV panels that are fixed by anchor blocks and floats on the water’s surface with a
buoy. It not only does not require the construction of a foundation but also adapts to the
fluctuations of the water level and helps to achieve the goals of “complementary fishing and
light” in water power generation and underwater fish farming [10]. It does not occupy land
resources; at the same time, the use of water to cool the PV array can improve the output
power and reduce the cost of additional cooling devices for air and water cooling [11,12].
However, floating PV supports at sea level are vulnerable to seawater erosion, and there
are few studies on floating PV supports. The specific advantages and disadvantages of the
three are shown in Figure 1.
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Figure 1. Comparison of advantages and disadvantages of three types of PV supports.

Wind often damages PV supports. The wind load is the most significant load con-
sidered while designing a PV support [13]. Therefore, wind resistance is essential for a
safe and durable PV power generation system. The impact of the wind load on a floating
PV support is smaller than that on other PV supports, but regardless of whether fixed or
flexible supports are used, the wind load is considered first. Making full use of the previous
research results, the following are the main wind load issues associated with the three types
of PV supports: (1) the factors affecting the wind loads of PV supports—the main factors
are shown in Figure 2; (2) the wind-induced vibration of PV supports; (3) the value and
calculation of the wind load of a PV support. It is hoped that this review will provide a
reference for the improvement of the wind resistance of PV supports.
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2. Influencing Factors of Wind Load of PV Panel Support
2.1. Panel Inclination Angle

The angle β between the PV panel and the horizontal plane is called the panel inclina-
tion (Figure 3). Because of the PV panel’s varying inclination angle, a PV power generation
system’s wind load varies, impacting the system’s power generation efficiency.
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Ma [14,15] et al. investigated the impact of the inclination parameters on the wind load
of a PV panel support in a pressure-measuring wind tunnel using rigid PV panel models.
The wind load of the PV support was found to be sensitive to the panel inclination angle; in
other words, the size coefficient of the PV panel and wind load increased as the inclination
angle increased. However, it is not true that the lower the panel inclination angle, the better;
when considering the power generation efficiency, the panel inclination angle will have a
critical point, but the critical point value remains to be studied. Li [16,17] et al. investigated
the influence law of the dip angle and other parameters on the PV wind load on the roof
by conducting wind tunnel tests with a rigid scaling model on a single- and double-slope
PV vehicle shed (Figures 4 and 5) with a roof dip angle of 20◦ and 30◦. The following
conclusions were drawn from their work: (1) the more significant the slope inclination,
the greater the wind load value; (2) the windward corner and the leeward ridge sections
displayed the highest and lowest wind pressure coefficients of the most disadvantageous
measuring location. The greater the slope inclination, the greater the extreme wind suction
of the measuring point. The wind distribution of pressure on the surfaces of independent
roof panels of flat buildings with modest geometric proportions was investigated by
Stathopoulos [18] et al. The test results showed that the panel inclination with the critical
wind direction angle of 135◦, at which the panels on the back experienced higher suction
compared to those in the front, had an impact on the net values of the pressure coefficients
corresponding to different configurations.
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A large-scale PV system model installed on a residential structure was tested in a wind-
wall research facility by Naeiji [19] et al., who concluded that the gap height and building
height had little influence on the roof PV support structure, and the wind load value
changed by only 5%. The most critical factor influencing the peak pressure coefficients that
were produced was the panel inclination angle, and the wind load value changed by 43%.
The greater the panel inclination angle, the greater the wind load of the roof PV support
structure. Qiao [20] et al. employed computational fluid dynamics (CFD) to examine the
PV support array’s wind field and suggested regional division methods for varying dip
angles and wind load shape coefficients. Kopp [21] et al. performed a wind tunnel study
on roof-mounted solar arrays with two panel inclination angles. Two main mechanisms for
the aerodynamic loads were obtained: (1) the panels’ turbulence; (2) pressure equalization.
The array created turbulence at high inclination angles, which raised the net wind loads.
Meanwhile, pressure equalization predominated for small inclination degrees.

At Florida International University’s Wall of Wind Facility, Naeiji [22] et al. conducted
extensive experimental wind testing to examine the effects of geometric parameters on
PV systems. The panel inclination angle was the most significant factor influencing wind-
induced pressures. The crucial spots with the highest wind pressures were then identified.
Jiang [23] et al. examined how the PV array’s installation angle and other elements affected
the wind load. The body shape and bending moment coefficients of each PV panel rose
with the wind direction angle of 30◦ or 180◦ when the PV array was installed at a 45◦

angle. Consequently, the PV array installation angle should not be 45◦. Yemenici [24] et al.
investigated how the inclination angle affected ground solar panel flow structures, finding
that the wind directions and panel inclination angles had a significant impact. The impact
of various panel inclination angles on the wind loads of PV supports is summarized in
Table 1.

The investigations stated above established that the inclination angle significantly
impacted the wind loads of PV supports. It was discovered that the wind load was the
most crucial factor when designing PV supports. Future research should concentrate on
the sensible arrangement of the PV panel’s inclination angles and the improved wind
resistance of the PV support system’s design. This gives a theoretical foundation for the
wind-resistant design of PV panel supports.



Sustainability 2024, 16, 2551 5 of 25

Table 1. Impact of various panel inclination angles on wind loads of PV supports.

Author Angle of Inclination Conclusion Reference

Ma et al. 10◦, 30◦ The wind load increases as the inclination
angle increases. [14]

Li et al. 20◦, 30◦ As the roof angle increases, so does the wind
load. [16,17]

Stathopoulos et al. 20◦, 30◦, 40◦, 45◦ The panel inclination angle only has an effect
in key wind directions. [18]

Naeiji et al. 20◦, 30◦, 40◦
The factor that most significantly influences
the peak pressure coefficient is the angle of

panel inclination.
[19]

Qiao et al. 10◦, 60◦ With varying inclination angles, the wind
load’s form coefficient changes. [20]

Kopp et al. 2◦, 20◦
The array created turbulence at high

inclination angles, which raised the net wind
load. Meanwhile, pressure equalization

predominated for small inclination degrees.

[21]

Jiang et al. 20◦, 25◦, 30◦, 35◦, 45◦
The installation angle affects the shape

coefficient and bending moment coefficient of
each PV array.

[23]

Yemenici et al. 25◦, 45◦ The wind direction and panel inclination have
a significant influence on the flow structure. [24]

2.2. Wind Direction Angle

The wind direction angle, represented by α and having a value range of 0◦ to 180◦, is
the angle formed between the wind direction and the PV panel’s long-axis direction on the
horizontal plane (Figure 6). The wind direction angle significantly influences the wind load
on PV supports. For example, distinct wind loads are produced on PV supports at varying
wind direction angles. For flexible PV supports, the wind load is highly sensitive when the
wind direction angle is 150◦. In contrast, the wind load affects fixed PV panel supports and
arrays differently.
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Du [25] et al. used the ANSYS 2022R2 finite element software to study the structural
wind pressure of a flexible PV support with an increase in the wind azimuth, which refers
to the position where the highest absolute value of the wind pressure coefficient gradually
moves. Meanwhile, several scholars have analyzed the relationship between the wind
angle and fixed PV supports. Using CFD, Huang [26] et al. separately compared the wind
load at different azimuthal angles in fixed PV panels and trackers. They discovered that,
because of the tracker panels’ massive left–right clearance and modest length-to-height
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ratios at 45◦ and 135◦ wind diversion angles, their wind loads were more significant than
those of the fixed panels. Li [27] et al. conducted a numerical wind tunnel simulation
for the Hami Chengzi PV system. At wind angles of 90◦ and 180◦, the variation laws of
the wind load were similar along the downwind direction; in other words, the windward
area had an overall positive pressure, whereas the downwind area had an overall negative
pressure. The first two rows of the windward zone had significant variations in the body
type coefficient. A rigid model (Figure 7) with a tilt-adjustable PV panel was tested in a
wind tunnel by Yin [28] et al. to determine the wind loads on the structure at various wind
inclinations and directions. The most sizeable local wind pressure was produced at the
windward angle with 45◦ and 135◦ wind direction angles, according to the results.
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Regarding PV arrays, Xu [29] et al. used CFD numerical modeling to assess the wind
loads on PV panels at various angles and locations. The wind load variation law was then
determined at wind direction angles of 0◦ and 180◦. A thorough study of the wind loads
on the array of the surrounding wind field was conducted by Jubayer [30] et al. The third
row had the lowest wind loads for wind direction angles of 0◦ and 180. Shademan [31,32]
et al. used three-dimensional Reynolds-averaged Navier–Stokes and CFD simulations to
examine the impact of the wind direction angle on PV arrays. The initial findings provided
a theoretical foundation for the following wind-resistant design since they demonstrated
that the wind load of the structure reached its most significant value at wind direction
angles of 0◦ and 180◦. Table 2 summarizes the impact of the wind direction angle on the
wind loads of PV panel supports.

Table 2. Impact of wind direction angle on wind loads of PV panel supports.

Author Wind Direction Angle Conclusion Reference

Du et al. 0◦, 180◦ The wind pressure on a flexible PV panel support
increases as the wind azimuth increases. [25]

Huang et al. 45◦, 135◦
The wind load of tracker panels was higher than that of
fixed panels owing to the large left–right clearance and
the small length-to-height ratio at 45◦ and 135◦ wind

direction angles.

[26]

Yin et al. 0◦, 45◦, 135◦, 180◦ The wind direction angle and dip angle significantly
influence the wind load of a PV support. [28]

Xu et al. 0◦, 180◦ When the wind angle was 0◦ and 180◦, the second row of
the PV panel array had the smallest size coefficient. [29]

Jubayer et al. 0◦, 180◦ For 0◦ and 180◦ winds, row 3 had the smallest wind load. [30]

Shademan et al. 0◦, 180◦ The structure’s wind load achieved its maximum value at
0◦ and 180◦ wind direction angles. [31]
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The works mentioned above determined that different wind angles cause the position
of the maximum wind load to vary, resulting in different positions for possible damage.
Therefore, the design at the position of the maximum wind load should be strengthened to
increase the wind resistance, safety, and reliability of PV panel supports.

2.3. Body Type Coefficient

The definition of the body type coefficient is as follows:

Cpi =
Pi − Ps

Pt − Ps
=

Pi − Ps

0.5ρU2
r

(1)

Cpi : the average wind pressure coefficient of measuring point i at different wind angles;
Pt : the total pressure at the height of the reference point;
Ps : the static pressure at the reference point height;
Pi : the pressure at point i at different wind direction angles;
Ur : the average wind speed at the height of the reference point.

µsi = Cpi

(
10
Zi

)2ϕ

(2)

µsi: the body type coefficient at measuring point i;
Zi : the height at point i;
ϕ: the ground roughness index.
The body type coefficient is a significant component influencing the wind load of

a PV support. In general, the larger the size factor, the greater the wind load of the PV
support. Huang [33] et al. used Fluent to numerically calculate and analyze the surface
wind pressure distribution characteristics of PV panel arrays and proposed the body type
coefficient for a PV panel group with a wind-resistant design. After researching a single
row of PV supports in a wind tunnel, Niu [34] et al. discovered the distribution law of
the body type coefficient when the front and rear PV panels interfered. Wang [35] et al.
analyzed the wind load distribution of PV panels on a flat roof array by using the wind
tunnel test method and concluded that the closer the overall body type coefficient of the
PV panels is to the edge of the roof, the greater the wind load that they will bear.

At the same time, some factors will also affect the body type coefficient of the wind
load of a PV support and the size of the wind load. Huang [36] et al. studied the wind
load distribution on solar PV panels using the wind tunnel test of a rigid model. The
experimental results showed that, because of the existence of upstream PV panels, the
shape coefficients of the downstream PV panels will decrease to a certain degree. Through
a numerical wind tunnel, Huang [37] et al. simulated the body type coefficient of a
simplified solar tracker PV panel model. Their research demonstrated that the body
type coefficient increased with the gradual increase in the PV panel’s elevation angle
under each wind direction. In contrast, Wang [38] et al. conducted a wind tunnel test
with simultaneous pressure measurement in a uniform turbulent field and used Fluent
to numerically simulate and calculate the body type coefficient distribution of the group
support under a specific wind direction. The computational findings demonstrated that
the test data were compatible with the numerical calculation results and the change rules
were consistent when compared to the corresponding results of the wind tunnel test. This
gives theoretical justification for the design of wind-resistant PV supports.

The study mentioned above established the significant impact of the body type co-
efficient on the PV supports’ wind load. Therefore, the body type coefficient should be
controlled reasonably to increase the wind resistance of the PV panel support system.

2.4. Geometric Scale

The geometric scale is a significant issue influencing the wind loads of PV supports. In
particular, the wind loads of PV supports with different geometric scales differ. Aly [39–41]
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et al. investigated the causes of the variations in peak wind load using a CFD simulation.
The findings demonstrated that the geometric size was the primary cause of the various
peak wind loads. Using scale models in a boundary-layer wind tunnel, Kopp [42] et al.
investigated the wind loads on low-profile roof-mounted solar arrays. The pressure coef-
ficient showed a linear increase with an increasing inclination angle for tilt degrees less
than 10◦. To investigate the impact of the geometric scale on the wind-induced pressure of
rooftop solar panels, Alrawashdeh [43] et al. created, produced, and tested three models
in the atmospheric-boundary-layer wind tunnel of Concordia University (Figure 8) with
geometric ratios of 1:50, 1:100, and 1:200, respectively. The findings demonstrated the sig-
nificance of the geometric test scale for solar panel models, particularly when considering
the design wind load.
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The works mentioned above establish the importance of the geometric scale in the PV
panel supports’ wind load. In particular, different geometric scales result in differences in
the peak wind load of the PV panel support. In future works, the geometric scale of PV
panels should be reasonably designed to strengthen their wind resistance.

2.5. Shielding Effect

The shielding effect results in different wind loads at different locations of PV supports.
For a numerical simulation and analysis, Fang [44] et al. used ANSYS 19.0 software on
PV arrays with a wind angle ranging from 0◦ to 180◦. The simulation result showed that
the PV array barrier between the plates impacted the wind load, which led to varying
wind loads on the PV panels at various locations. Bitsuamlak [45] et al. examined four test
situations to ascertain the impact of wind on independent ground-mounted solar panels.
The investigation showed that the wind loads on the neighboring solar panels organized in
tandem were significantly decreased by the prominent shielding effect generated by the
upwind solar panels. Radu [46] et al. investigated the steady-state wind load characteristics
affecting two rectangular flat panel solar collectors of varying sizes through experiments
in boundary-layer wind tunnels. Because of the building’s and the first row of collectors’
sheltering qualities, the wind loads on the solar collectors significantly decreased. The
variations in the PV body type coefficients with the inclination angle and panel number
were investigated by Lou [47] et al. Upstream PV panels were found to exhibit a notable
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shielding effect on downstream PV panels, which remained stable with the number of
upstream PV panels.

The shielding effect is inevitable for PV panel arrays. The investigations above demon-
strate how the shielding effect affects the wind stress on PV panel supports. To serve as
a guide for the design of PV panel supports with wind resistance, future research should
reduce the impact of the shielding effect on the wind loads of the supports.

2.6. Template Gap

One crucial aspect influencing the wind load of a PV support is the template gap.
However, different academics have differing views regarding the influence of the template
gap on the wind loads of PV supports; some believe the impact to be quite significant,
while others do not.

In a numerical simulation investigation of PV arrays, Ruan [48] et al. concluded that
the installation gap of the panels can alter the distribution of wind stress on the upper and
lower surfaces of the panels overall. The pressure field on the upper and bottom surfaces
of PV panels was investigated by Abiola-Ogedengbe [49] et al. in a wind tunnel. The
findings indicated that the template gap would affect the components’ surface pressure
field. Stenabaugh [50] et al. studied the influence of geometric shapes on the wind loads
acting on PV arrays and found that the more significant the gap between panels, the smaller
the gap between the panels and roof surfaces and the smaller the net wind loads generated.
Yemenici [51] et al. found that the panel gap had a more significant influence on the wind
loads of intermediate panels after conducting aerodynamic load measurements on ground-
based solar panel arrays. Shademan [52] et al. examined the effects of ground clearance on
the average wind load and fluctuating wind loads of solar panels by utilizing the detached
eddy simulation method, and the results showed that an increase in clearance would cause
an increased average wind load and unstable wind load. Warsido [53] et al. investigated
the effects of various spacing parameters on the wind loads of the ground and roof solar
arrays in a boundary-layer wind tunnel. They discovered that the wind load coefficient
rose as the panel line spacing increased, while the wind load of the roof array decreased
as the building edge perimeter spacing increased. Cao [54] et al. carried out several wind
tunnel tests to assess the wind stresses on flat roof PV panels. The results showed that the
distance between the arrays increased the opposing panel force.

However, according to Wood [55] et al.’s wind tunnel tests, adjusting the panel spacing
had a minimal impact on the pressure recorded for solar panel arrays. Geurts [56] et al.
conducted wind tunnel experiments (Figure 9) to ascertain the net uplift stress on these
systems. In the wind tunnel, they studied the impact of the space between the panel and
the roof. According to the results, the effects of the space between the PV system and the
roof surface were minor. He [57] et al. conducted numerical simulation calculations on the
wind loads of PV panels and drew the following conclusion: in a panel array, the panel gap
has little influence on the wind load.

Although a few scholars posit that the template gap has little influence on the wind
loads of PV support structures, most scholars still believe that the smaller the template gap
and the larger the ground clearance, the greater the wind load generated. Therefore, the
influence of the template gap cannot be ignored, and the specific impact of the template gap
on the wind load of the PV support structure needs to be further tested and studied. It is
also necessary to reasonably increase the template gap and reduce the ground clearance in
order to reduce the wind load of the PV support structure, enhance the wind resistance of
the PV support structure, and improve the safety and reliability of the PV support structure.
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2.7. Other Factors

It is not only the panel inclination angle, wind direction angle, body type coefficient,
geometric scale, shielding effect, and template gap that affect the wind load of the PV
support; some other parameters also affect it. Erwin [58] et al. conducted wind tunnel
tests on rooftop PV panels to develop a data set of aerodynamic loading effects for rooftop
PV systems. The results showed that reasonable agreement was obtained between the
WoW and wind tunnel results regarding the lateral and uplift load coefficients for the most
critical panel inclination angle of -45◦ for the flat roof and the 5:12 gable roof. Based on
an experimental study, Pfahl [59] et al. concluded that the wind load components varied
partly with the panel’s aspect ratio. As a result, when organizing the parts of solar trackers,
the aspect ratio needs to be considered. Consequently, the effect of the building side was
investigated by Wang [60] et al., who conducted wind tunnel studies to study the effects of
a constant building height. The results demonstrated a growing trend in the net pressure
coefficients for the most significant negative peak area across all wind directions and panels
when the inside ratio increased. Ma [61] et al. utilized inflexible models to conduct pressure
wind tunnel experiments to investigate the impact of the bottom-flow obstruction ratio
on the wind load on the surface of the PV panels. The findings indicated that a bottom-
flow blockage significantly enhanced the maximum wind suction on the PV panel, hence
decreasing the maximum wind pressure and wind-induced bending moment on the PV
panel. Chai [62] et al. conducted several wind tunnel tests (Figure 10) and assessed a stiff
panel’s pressure to determine the wind pressure coefficients on the PV panel. A wind load
model that considered the wind-induced moment was presented based on the nonuniform
distribution of wind pressure. This proposed model and its distribution coefficients can be
used in designing flexibly supported PV panels.
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In order to methodically examine the wind loads on solar panels installed on tall
building rooftops, Dai [63] et al. carried out several pressure tests. They concluded that
lower-height structures typically produce more pronounced variations in the wind pressure
on solar panels. Zhang [64] et al. analyzed the wind load characteristics of near-ground PV
arrays shielded by walls, whereby the wall height was found to have a notable impact on
the wind load. Browne [65] et al. investigated the impact of parapets on the wind loading
of a rooftop solar array with a 10◦ inclination angle using a scale model wind tunnel test.
For many arrays, the parapet effect raised the peak wind load at standard parapet heights.
Banks [66] et al. investigated the uplift wind loads on the roofs of wide, rectangular, low-
rise, flat-roofed buildings using tilted flat PV panels in an atmospheric boundary-layer
wind tunnel. The findings showed a significant difference in wind load between the corner
vortices and the cases without them. Pratt [67] et al. conducted a study on the wind
patterns surrounding solar arrays that were installed on roofs. Significant vertical gusts
caused southern wind peak uplifts at larger inclination degrees, while northern wind peaks
were attributed to gusts in the streamwise direction. Wang [68] et al. examined the specific
features of wind loads on solar arrays installed on flat roofs with deflectors, as well as
those on gable roofs. When comparing gable roofs to flat roofs, the study found that the
solar arrays on flat roofs saw more extensive and more rapidly decreasing negative peak
net pressures, particularly as the tributary area increased. Aly [69] et al. systematically
investigated the wind loads on solar panels installed on various roof zones. This was done
in a boundary-layer wind tunnel, considering varied wind directions (Figure 11). The
cladding loads on the individual panels either exceeded or fell short of those on the same
area of an uncovered roof. To prevent excessive net minimum pressures from affecting the
PV panels, it is advisable to steer clear of the sensitive zones of the roof.

When designing PV support systems, the wind load is the primary load to consider for
PV power generation. The amount of the PV wind load is influenced by various elements,
such as the panel inclination angle, wind direction angle, body type coefficient, geometric
scale, shielding effect, and template gap. Therefore, in future works, the reasonable control
of the influence of each factor on the PV wind load is necessary to strengthen the wind-
resistant design of PV power generation systems.
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3. Wind-Induced Vibration of the PV Support
3.1. Wind-Induced Vibration

For PV panels, due to the absorption of solar energy, the temperature may be too high;
this is only one of the reasons for the increase in the temperature of PV panels [70], which
also reduces the power generation efficiency of PV panels. A wind load accelerates the
cooling of PV panels, thereby reducing the cell’s temperature and increasing the power
generation efficiency for PV power generation. However, the PV panel generates wind-
induced vibration due to the wind load, which can damage the system (Figure 12). To solve
this problem, a new method has been used to analyze the reliability of solar PV systems.
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Ma [71] et al. conducted a wind tunnel test to assess the vibration of elastic models
and explored how different parameters affected the wind-induced vibration of tracking
solar PV panels. He [72] et al. conducted multiple wind tunnel experiments to examine the
vibration properties of PV panels supported by suspension cables. The primary findings
can be summarized as follows: cable-supported PV panels are susceptible to significant
vibrations when exposed to crosswinds; leeward PV panels experience less vibration
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than windward panels, primarily due to the shielding effect. Using CFD simulations,
Jubayer [73] et al. looked into the wind loads surrounding a series of solar panels on the
ground. A thorough examination of the impact of wind on a solar panel array installed
on the ground was achieved by considering both direct and oblique wind directions. In
order to investigate the changes in the wind-induced vibration of PV panels, considering
the wind speed, Li [74] et al. tested elastic-suspension segmental models with varying
PV panel inclinations in wind tunnels. The flexible PV segmental models’ flutter critical
wind speed values at different inclinations were also found. Wang [75] et al. used an
arrangement involving two diagonal tie bars and one vertical rigid bar to analyze the
modal and maximum displacement curve under wind–pressure time history excitation and
investigated the control effect of different vibration control methods on multirow flexible
supports. The results showed that the vertical rigid rod arrangement could effectively
coordinate the displacement of the upper chord, middle–upper chord, middle–lower chord,
and lower chord at different survey points across the middle and simultaneously reduce the
inconsistencies concerning the displacement of the strings of multiple rows of flexible PV
supports. Zhao [76] et al. analyzed the displacement state of a structure using two analysis
methods with and without consideration of the spatial correlation of the pulsating wind, in
order to investigate the suspension cables of a long-span support system accurately. The
displacement states of the upper and lower chords of the structure were investigated. For
structures exhibiting a large span and long space, the spatial correlation of the pulsating
wind may not be considered, adversely affecting the analysis results. Consequently, an
envelope design for a large-span stent system was recommended. A response history
analysis was employed by Schellenberg [77] et al. to examine how solar panels affect
wind (Figure 13). According to the response history study, code-design-level winds under
uplift can be withstood by a flexible solar array support system with a sufficient ballast
weight or attachments, especially at the edges and corners of the array, and suitable
structural connections.
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Yuan [78] et al. used a dynamic analysis method to simulate the dynamic response of
a PV steel panel support under strong winds. A new calculation method for the design of
PV steel structures and a basis for the study of their dynamic performance and structural
optimization was provided. Xu [79,80] et al. used the finite element program ABAQUS to
investigate the wind-induced vibration coefficient of a fish-belly PV cable truss structural
support. The numerical analysis results of the dynamic wind load obtained a large discrete-
type displacement–wind–vibration coefficient, suggesting the practicality of using stress–
wind–vibration coefficients. In an experiment, Gong [81] et al. examined a rigid heliostat
model subjected to three-dimensional wind loads in a wind tunnel. The findings of the
measurements made by Peterka et al. were compared with the maximum wind force
coefficients that were obtained and the corresponding wind directions. Based on the results
of the analysis, a desirable stow location was recommended to withstand wind loads.
Tamura [82] et al. described the wind-induced vibration of a solar wing system obtained in
wind tunnel experiments and investigated its aeroelastic instability using a scaled model.
In order to investigate the flow characteristics surrounding solar arrays installed on a flat
roof building (Figure 14) for two typical wind directions and elucidate the relationships
between the flow field and wind pressure distributions on solar panels, Wang [83,84] et al.
conducted extensive eddy simulations. It was concluded that the PV panel was more prone
to vibration when its back was facing the wind. Liu [85] et al. studied a typical solar panel
structure while considering an equivalent static wind load. A reference for the design of
solar energy structures was thus provided by comparing the displacement and stress of the
structure under various working conditions and determining the impact of the wind load
on the structure.

Future research should lessen the effect of the wind load on the wind-induced vibration
of PV power generation systems, consequently increasing the efficiency of PV power
generation systems, to address the detrimental effect of wind loads on panel PV supports.
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3.2. Example Analysis

According to the comparison of the advantages and disadvantages of fixed PV sup-
ports, flexible PV supports, and floating PV supports in Figure 1, the scope of application
of fixed PV supports and floating PV supports is relatively limited; a fixed PV support is
only suitable for flat terrain, and a floating PV support is only suitable for flat or sea level
water, while the flexible PV support has a broader range of application. It is applicable
in harsh terrain but is affected by the wind load; a flexible PV support makes it easy to
produce wind-induced vibration. Thus, an analysis is conducted on a flexible PV support’s
wind-induced vibration.

3.2.1. Numerical Model

Firstly, a refined model of the flexible PV support was established (Figure 15). The
model comprises a horizontal load-bearing structure, beam structure, cable structure, tripod
structure, and PV panel. Because of the three horizontal load-bearing structures, three
models, such as a horizontal load-bearing structure of the cable, an inclined steel column
horizontal load-bearing structure, and a horizontal force-bearing structure with eight
inclined steel columns, are generated. In this paper, the span of the flexible PV support
is 8 m, and the height is 2.6 m. In the horizontal load-bearing structure, the base size is
500 mm × 500 mm × 500 mm and the column structure’s size is 200 mm × 200 mm × 2400 mm;
the beam structure’s size is 2000 mm × 200 mm × 200 mm; the cable structure’s length is
8 m; the tripod’s size is 1420 mm × 820 mm × 200 mm; and the PV panel structure’s size is
1640 mm × 992 mm × 48 mm.
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3.2.2. Material Parameters

In this simulation experiment, concrete material is used as the foundation. The
columns and beams in the horizontal load-bearing structure are all made of structural
steel. The tripod structure adopts aluminum alloy material; the PV panels are made of PV
materials; each material is an isotropic elastic material; and all components are assigned
corresponding material properties (each material’s properties are shown in Table 3).

Table 3. Material characteristics.

Material Name Density (kg/m3) Young’s Modulus (Pa) Poisson’s Ratio

Concrete 2300 3 × 1010 0.18

Structural steel 7850 2 × 1011 0.3

Aluminum alloy 2770 7.1 × 1010 0.33

PV material 2600 1.1 × 1011 0.225

3.2.3. Simulation Results

This paper uses the ANSYS finite element analysis software to load wind loads on
the three horizontal load-bearing structural models. The wind load direction is horizontal,
and the wind load value is constantly increased to extract the ultimate wind loads of the
three horizontal load-bearing structural models. The final simulation results are shown in
Figure 16.

The maximum displacement of the three horizontal load-bearing structural models
when they reach the ultimate bearing capacity is around 12.4 mm, as seen by comparing
the above three simulation results. Therefore, to ensure safety, the displacement should
be limited to 12.4 mm. At this time, the ultimate wind loads of the three models were
extracted and compared (Figure 17).
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Three types of ultimate wind loads are obtained through the concrete analysis of the
three types of flexible PV support structure. Through the comparative analysis of these
three wind loads, it is concluded that the ultimate wind load of the horizontal load-bearing
structure of the cable is the smallest, the ultimate wind load of the horizontal force-bearing
structure with eight inclined steel columns is the largest, and the ultimate wind load of the
inclined steel column horizontal load-bearing structure is similar to that of the horizontal
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force-bearing structure with eight inclined steel columns. Therefore, the horizontal force-
bearing structure with eight inclined steel columns and the inclined steel column horizontal
load-bearing structure are more reliable. However, compared with the inclined steel column
horizontal load-bearing structure, the horizontal force-bearing structure with eight inclined
steel columns is more complicated, and the cost is higher, so the inclined steel column
horizontal load-bearing structure is safer, more reliable, and economical, and the loading
characteristics of the inclined steel column horizontal load bearing structure need to be
further studied. In summary, the inclined steel column horizontal load-bearing structure is
the best choice to reduce the wind vibration of the flexible PV support.

3.2.4. Discussion

The wind load is a vital load affecting PV supports, and the harm caused by wind-
induced vibration due to wind loads is enormous. Aiming at the wind-induced vibration of
flexible PV supports, a PV building integration technology [86,87] was proposed to reduce
the harm caused by wind vibration. PV building integration (Figure 18) is a technology that
integrates solar power generation products into buildings. Because of this characteristic, it
offers a measure to avoid wind-induced vibration during PV power generation. However,
at the same time, its application range is also relatively narrow, only some buildings are
suitable for PV building integration, and it will also produce a series of problems, such as
temperature problems [88].
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There is also a unified active roof wind design method [89] that defines the fixtures of
these products and suggests rules for the design of substructures against wind loads, but,
so far, this technology has yet to be developed.

4. Calculation of Wind Load of PV Panel Support

The wind load is the most significant load when designing a PV support; thus, its value
and calculation should be investigated. Different countries have their own specifications
and, consequently, equations for the wind loads of PV supports. Zou [90] et al. compared
the main parameters of the wind load in relevant local and international regulations
used for the wind load calculation of the fixed supports of PV structures. The findings
demonstrated that different regulations’ restrictions on the wind load on PV installations
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fluctuate significantly, leading to various wind load values. Two recognized techniques
for the determination of wind loads on structures—such as solar panels—were introduced
by Banks [91] in the United States. Meanwhile, Zhao [92] et al. conducted a comparative
analysis of the most widely used Chinese, American, European, and Japanese codes for
PV wind load calculation methods. In particular, the similarities and differences in the
wind load calculation factors and their correction coefficients for each code were compared
and investigated. The Chinese, American, European, and Japanese codes were noted to
consider the ground roughness category, topographic conditions, wind pressure height
variations, and wind vibration coefficients, but there were differences in the correction
coefficients used for different countries. Thus, He [93] et al. proposed a new wind load
distribution model for PV arrays (Figure 19) based on the comparison between the Japanese
and Chinese codes and combined this with the results of wind tunnel experiments for a
more accurate evaluation of the wind load on a PV array and for the determination of the
actuator axial force of tracking systems.
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Wind tunnel studies were conducted by Kopp [94] et al. to determine the design
wind load for rooftop solar arrays. Meanwhile, based on a compilation of wind tunnel
experiments carried out by RWDI using rigid pressure models, Browne [95] et al. presented
a succinct method to determine the design wind loads for multi-row ground-mounted
solar arrays, including both static and dynamic wind load coefficients compatible with
ASCE 7. Yang [96] et al. established a wind load calculation model for tracking supports
based on the national standard analysis of the heterogeneous loads of PV panel supports.
This method offers clear direction for the PV tracking support’s optimization. Further,
the developed MATLAB 2021b calculation tool can conveniently and efficiently calculate
the PV wind load. Three wind load models, namely the uniform distribution, trapezoidal
distribution, and eccentric moment models, were developed by Ma [97] et al. in terms of
the structural features of a solar panel. Gao [98] et al. used computational calculations
and wind tunnel testing to investigate the wind field properties of a PV panel support
unit. The outcomes demonstrated that the PV panel’s wind load influence variables were
parameterized. Additionally, formulas for wind loads were derived together with examples,
providing a guide for the design of wind-resistant PV structures. Zhang [99] et al. used
Labview and a pull-pressure sensor to analyze the pulling and pressing on PV panels.
Subsequently, the results were compared with those of previous numerical analysis and
verification experiments, providing the basis for the strength design of PV panels and their
tipping moment calculation. The wind load of floating PV arrays (Figure 20) was simulated
by Chen [100] et al. by CFD. The variation rule of the wind load under different directions
was obtained to verify the accuracy of the design specifications. According to the results,
the first row of upwind PV arrays was primarily affected by the wind load. Consequently,
improvement measures were established based on the results. Thus, this study is essential
for the design and optimization of PV panel arrays and the correct selection of the wind
load in the anti-wind design of solar panels. Han [101] et al. utilized a rigid model wind
tunnel test of the wind load distribution of a single set of ground-mounted PV panels.



Sustainability 2024, 16, 2551 20 of 25

Subsequently, recommended values were obtained for the test operation of a single set of
PV panels, a PV panel array, and a rooftop PV panel with different parapet heights. The
detailed calculation formula for the wind load is shown in Table 4.
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Table 4. The calculation formula for the wind load.

Author Formula Characteristic Reference

Zou et al. W = wk Aw, wk = βzµsµzw0
The dynamic effect of the wind

must be considered. [90]

Zhao et al. p = qhGCN
Short time interval and long

recurrence period. [92]

He et al. W = (wk1+wk2)
2 Aw

Close to the actual situation,
conducive to the realization of PV
structures with complex designs.

[93]

Browne et al. Ptotal = Pnet ± P̃net

√(
gB_p

)2
+ (gR_P)

2
(

DAF2
P − 1

) It is assumed that the wind
deflection is slight and therefore

the structure is inflexible.
[95]

Yang et al. Wk = 1
3 wk1 +

2
3 wk2

Computational models are more
realistic. [96]

Gao et al. P = cpmeanµz φp φβ φαw0 A
It provides a reference for the

wind-resistant design of solar PV
structures.

[98]

Zhang et al. W = 0.856V2 The fitting values are consistent
with the empirical values. [99]

5. Conclusions

(1) For PV support structures, the most critical load is the wind load; the existing research
only focuses on the panel inclination angle, wind direction angle, body type coefficient,
geometric scale, shielding effect, template gap, and other single factors that impact the
wind loads of PV support structures. Future work should consider the comprehensive
impact of the above factors for the wind-resistant design of PV support structures.

(2) The wind-induced vibration caused by wind loads is one of the main reasons for
the failure of PV supports, so the research focus is not only to improve the power
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generation efficiency of PV systems but also to reduce the wind-induced vibration of
PV support structures.

(3) The wind load is an essential load in the PV support structure, so determining the
wind load is critical. The existing wind load calculation formulas for PV support
structures have their limitations. In the future, the wind load calculation formulas
of PV support structures should be further improved based on their predecessors to
better achieve the wind-resistant design of PV support structures.
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Abbreviations

Notation Description
W the design wind load
ωk the standard value of the wind load
ω0 the basic wind pressure
µs the body type coefficient of the wind load
µz the wind pressure height coefficient
βz the wind vibration coefficient
AW the wind area
p the design wind pressure
G the gust coefficient
CN the body type coefficient of the wind load
qh the velocity of the wind pressure at a given altitude
Ptotal the total wind pressure
Pnet the mean wind pressure
P̃net the standard deviation of the wind pressure
gB_p the resonant peak factor
gR_p the resonant peak factor
DAFp the dynamic amplification factors associated with the normal force
Wk the design wind load
cpmean the average wind pressure coefficient
µz the height coefficient
φp the position coefficient
φβ the wind direction angle factor
φα the dip coefficient
A the wind area
V the wind speed
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70. Górecki, K.; Dąbrowski, J.; Krac, E. SPICE-Aided Modeling of Daily and Seasonal Changes in Properties of the Actual Photovoltaic
Installation. Energies 2021, 14, 6247. [CrossRef]

71. Ma, C. Study on Wind Load Characteristics and Wind-Induced Response of Solar Photovoltaic Panels; Shijiazhuang Tiedao University:
Shijiazhuang, China, 2021.

72. He, X.; Ding, H.; Jing, H.; Zhang, F.; Wu, X.; Wen, X. Wind-induced Vibration and its Suppression of Photovoltaic Modules
Supported by Suspension Cables. J. Wind Eng. Ind. Aerodyn. 2020, 206, 104275. [CrossRef]

73. Jubayer, C.M.; Hangan, H. A Numerical Approach to the Investigation of Wind Loading on an Array of Ground Mounted Solar
Photovoltaic (PV) Panels. J. Wind Eng. Ind. Aerodyn. 2016, 153, 60–70. [CrossRef]

74. Li, S.; Ma, J.; Liu, J.; Chen, Z. Experimental Study for Flutter Performance of Flexible Photovoltaic System by Segmental Model
Test. China Civ. Eng. J. 2023, 36, 1–8. [CrossRef]

75. Wang, Z.; Zhao, F.; Ji, C.; Peng, X.; Lu, H. Analysis of Vibration Control of Multi-row Large-span Flexible Photovoltaic Supports.
Eng. J. Wuhan Univ. 2020, 53, 29–34.

76. Wang, Z.; Zhao, F.; Ji, C.; Peng, X.; Lu, H. Wind-induced Vibration Analysis of Multi-row and Multi-span Flexible Photovoltaic
Support. Eng. J. Wuhan Univ. 2021, 54, 75–79.

77. Schellenberg, A.; Maffei, J.; Telleen, K.; Ward, R. Structural Analysis and Application of Wind Loads to Solar Arrays. J. Wind Eng.
Ind. Aerodyn. 2013, 123, 261–272. [CrossRef]

78. Yuan, T.; Liu, S.; Wang, S. FEM Analysis of Photovoltaic Steel Structure Support in the Gale Based on Force Time-history Analysis
Method. In Proceedings of the 12th China CAE Annual Conference 2016, Chengdu, China, 31 August 2016; pp. 184–188.

79. Xu, Z.; Hou, G.; Zhang, Z.; Wang, W.; Fan, H.; Shi, J. Numerical Analysis of Wind Vibration Coefficient of Fish Bellied Photovoltaic
Cable Truss. Sol. Energy 2019, 46–49+18. [CrossRef]

80. Xu, Z. Numerical Analysis of Wind-induced Response of Fish Bellied Photovoltaic Cable Truss. In Proceedings of the 2020
Industrial Architecture Academic Exchange Conference; Building Research Institute of China Metallurgical Co., Ltd.: Shangai,
China, 2020; Volume 2, pp. 363–365+257. [CrossRef]

81. Gong, B.; Li, Z.; Wang, Y. Wind-induced Dynamic Response of Heliostat. Renew. Energy 2012, 38, 206–213. [CrossRef]
82. Tamura, Y.; Kim, Y.C.; Yoshida, A.; Itoh, T. Wind-induced Vibration Experiment on Solar Wing. MATEC Web Conf. EDP Sci. 2015,

24, 4006. [CrossRef]
83. Wang, J.; Phuc, P.V.; Yang, Q.; Tamura, Y. LES Study of Wind Pressure and Flow Characteristics of Flat-roof-mounted Solar Arrays.

J. Wind Eng. Ind. Aerodyn. 2020, 198, 104096. [CrossRef]
84. Wang, J.; Yang, Q.; Phuc, P.V.; Tamura, Y. Characteristics of Conical Vortices and their Effects on Wind Pressures on Flat-roof-

mounted Solar Arrays by LES. J. Wind Eng. Ind. Aerodyn. 2020, 200, 104146. [CrossRef]
85. Liu, C.; Bai, B.; Li, L. Response Analysis of Equivalent Static Wind Load of Solar Panel Support System. Shanxi Archit. 2017, 43,

45–47. [CrossRef]
86. Liu, B.; Duan, S.; Cai, T. Photovoltaic DC-building-module Based BIPV System: Concept and Design Considerations. IEEE Trans.

Power Electron. 2010, 26, 1418–1429. [CrossRef]
87. Chen, L.; Zheng, X.; Yang, J.; Yoon, J. Impact of BIPV Windows on Building Energy Consumption in Street Canyons: Model

Development and Validation. Energy Build. 2021, 249, 111207. [CrossRef]
88. Azhar, M.H.A.; Alhammadi, S.; Jang, S.; Kim, J.; Kim, J.; Kim, W.K. Long-Term Field Observation of the Power Generation and

System Temperature of a Roof-Integrated Photovoltaic System in South Korea. Sustainability 2023, 15, 9493. [CrossRef]
89. Eu, F.E. Wind Loads on Solar Energy Roofs. Heron 2007, 52, 201–222.
90. Zou, Y.; Li, Q.; Yin, M.; He, X.; Yan, L.; Liu, Y. Comparison of Wind Load Standard Values of Tracking Photovoltaic (PV) Structure

with Wind Tunnel Test Values. J. Cent. South Univ. 2022, 53, 1331–1340. [CrossRef]
91. Banks, D. How to Calculate Wind Loads on Roof Mounted Solar Panels in the US. 2007. Available online: https://www.cppwind.

com/wp-content/uploads/2014/03/HowToCalculateWindLoads.pdf (accessed on 21 November 2013).

https://doi.org/10.13465/j.cnki.jvs.2021.12.038
https://doi.org/10.1016/j.solener.2021.12.005
https://doi.org/10.1016/j.jweia.2013.08.013
https://doi.org/10.1016/j.jweia.2013.08.015
https://doi.org/10.1016/j.jweia.2013.09.001
https://doi.org/10.14006/j.jzjgxb.2018.10.003
https://doi.org/10.1061/(ASCE)AE.1943-5568.0000132
https://doi.org/10.3390/en14196247
https://doi.org/10.1016/j.jweia.2020.104275
https://doi.org/10.1016/j.jweia.2016.03.009
https://doi.org/10.15951/j.tmgcxb.22111107
https://doi.org/10.1016/j.jweia.2013.06.011
https://doi.org/10.3969/j.issn.1003-0417.2019.02.010
https://doi.org/10.26914/c.cnkihy.2020.024214
https://doi.org/10.1016/j.renene.2011.07.025
https://doi.org/10.1051/matecconf/20152404006
https://doi.org/10.1016/j.jweia.2020.104096
https://doi.org/10.1016/j.jweia.2020.104146
https://doi.org/10.13719/j.cnki.cn14-1279/tu.2017.27.022
https://doi.org/10.1109/TPEL.2010.2085087
https://doi.org/10.1016/j.enbuild.2021.111207
https://doi.org/10.3390/su15129493
https://doi.org/10.11817/j.issn.1672-7207.2022.04.018
https://www.cppwind.com/wp-content/uploads/2014/03/HowToCalculateWindLoads.pdf
https://www.cppwind.com/wp-content/uploads/2014/03/HowToCalculateWindLoads.pdf


Sustainability 2024, 16, 2551 25 of 25

92. Zhao, Y.; Wang, L.; Dou, H. Comparative Analysis of Sino-foreign Codes on Wind Load Calculation Methods for Photovoltaic
Panels. J. Water Resour. Archit. Eng. 2022, 20, 182–187. [CrossRef]

93. He, G.; Jiang, H.; Shan, J.; Zhou, A. Research of Wind Load Model in Photovoltaic Array. Electr. Power Des. 2012, 33, 5–8.
[CrossRef]

94. Kopp, G.A.; Banks, D. Use of the Wind Tunnel Test Method for Obtaining Design Wind Loads on Roof-mounted Solar Arrays. J.
Struct. Eng. 2013, 139, 284–287. [CrossRef]

95. Browne, M.T.L.; Taylor, Z.J.; Li, S.; Gamble, S. A Wind Load Design Method for Ground-mounted Multi-row Solar Arrays Based
on a Compilation of Wind Tunnel Experiments. J. Wind Eng. Ind. Aerodyn. 2020, 205, 104294. [CrossRef]

96. Yang, L.; Yu, H.; Lin, L. Study on Wind Load Calculation Method of Photovoltaic Power Array. J. Energy Environ. 2021, 70–72.
[CrossRef]

97. Ma, W.; Sun, G.; Liu, X.; Xing, K.; Liu, Q. Tests for Wind Load Distribution Model of Solar Panels. J. Vib. Shock 2017, 36, 8–13.
[CrossRef]

98. Gao, L.; Dou, Z.; Bai, H.; Li, J. Analysis of Influence Factors for Wind Lode of PV Module. Acta Energiae Solaris Sin. 2016, 37,
1931–1937.

99. Zhang, Q.; Liu, Z.; Qi, X.; Jia, L. Solar Photovoltaic Panels Wind Load Testing and Analysis. Energy Technol. 2010, 31, 93–95.
100. Chen, Y.; Wang, J. Design Optimization and Numerical Analysis of Wind Load for Large Water Surface Photovoltaic Power

Station. J. Guangdong Univ. Petrochem. Technol. 2021, 31, 33–35+39.
101. Han, X. Study on Wind Load Value of Solar Photovoltaic Array; Shijiazhuang Tiedao University: Shijiazhuang, China, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3969/j.issn.1672-1144.2022.06.027
https://doi.org/10.3969/j.issn.1000-7229.2012.10.002
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000654
https://doi.org/10.1016/j.jweia.2020.104294
https://doi.org/10.3969/j.issn.1672-9064.2021.01.024
https://doi.org/10.13465/j.cnki.jvs.2017.07.002

	Introduction 
	Influencing Factors of Wind Load of PV Panel Support 
	Panel Inclination Angle 
	Wind Direction Angle 
	Body Type Coefficient 
	Geometric Scale 
	Shielding Effect 
	Template Gap 
	Other Factors 

	Wind-Induced Vibration of the PV Support 
	Wind-Induced Vibration 
	Example Analysis 
	Numerical Model 
	Material Parameters 
	Simulation Results 
	Discussion 


	Calculation of Wind Load of PV Panel Support 
	Conclusions 
	References

