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Abstract: Extreme disasters have become increasingly common in recent years and pose significant
dangers to the integrated energy system’s secure and dependable energy supply. As a vital part
of an integrated energy system, the energy storage system can help with emergency rescue and
recovery during major disasters. In addition, it can improve energy utilization rates and regulate
fluctuations in renewable energy under normal conditions. In this study, the sizing scheme of multi-
energy storage equipment in the electric–thermal–hydrogen integrated energy system is optimized;
economic optimization in the regular operating scenario and resilience enhancement in extreme
disaster scenarios are also considered. A refined model of multi-energy storage is constructed, and a
two-layer capacity configuration optimization model is proposed. This model is further enhanced by
the integration of a Markov two-state fault transmission model, which simulates equipment defects
and improves system resilience. The optimization process is solved using the tabu chaotic quantum
particle swarm optimization (TCQPSO) algorithm to provide reliable and accurate optimization
results. The results indicate that addressing severe disaster situations in a capacity configuration
fully leverages the reserve energy function of energy storage and enhances system resilience while
maintaining economic efficiency; furthermore, adjusting the load loss penalty coefficients offers a
more targeted approach to the balancing of the system economy and resilience. Thus, new algorithmic
choices and planning strategies for future research on enhancing the resilience of integrated energy
systems under extreme disaster scenarios are provided.

Keywords: extreme disasters; resilience; two-layer optimal configuration model; tabu chaotic quantum
particle swarm optimization

1. Introduction

In the context of the energy internet and dual carbon objectives, integrated energy systems
(IES) have gained significant attention and have undergone rapid development [1–3]. The
integrated energy system makes extensive use of renewable energy, enhances energy
efficiency, and lowers carbon emissions through multi-energy coupling. Among these
systems, the electric–thermal–hydrogen integrated energy system, as an efficient, clean,
and sustainable energy usage technique, has recently become the focus of study in the field
of integrated energy. Energy storage systems serve as a vital link between the supply and
demand of integrated electric, thermal, and hydrogen energy. They can effectively stabilize
the uncertainty of renewable energy, facilitate load peak–valley transfer, and minimize
the need for a backup power supply installation. It is a useful strategy for raising the
percentage of renewable energy used [4,5]. At the same time, energy storage devices can be
used to store and release energy in the event of a major disaster, ensuring a steady supply
of energy.
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The energy storage configuration problem is closely coupled with the operation prob-
lem. Scholars have carried out extensive research on energy storage operations [6–8]. Com-
pared with the traditional energy storage battery, the integrated energy system introduces
a multi-energy storage system, including power storage, heat storage, hydrogen storage,
and composite energy storage. In [9], a multi-energy microgrid scheduling approach, in-
cluding electricity, heat, and gas multi-energy storage, was constructed; the approach took
renewable energy and load unpredictability into account. In [10], the authors provided
an autonomous optimal microgrid operation strategy based on the previously established
electric–thermal–hydrogen energy storage model; the study considers the interacting power
limit between the microgrid, the external power grid, and the heating network. In [11],
which considers the influence of electric energy storage and the system operation costs,
an economic operation model of a microgrid, which included wind power generation
equipment, photovoltaic power generation equipment, waste heat boilers, and batteries,
was established to ensure the economic operation of the system. Considering the seasonal
differences in load and renewable energy output, Ref. [12] established a regional IES, which
included a seasonal thermal energy storage system; the scheduling was optimized, which
solved the seasonal imbalance between heat load supply and demand and improved the
overall efficiency of the system. The above studies mainly consider simplified models
of the equipment; thus, it is necessary to develop a refined model based on the specific
operating conditions of each piece of equipment. At the same time, most of the studies do
not address the life degradation of electrothermal hydrogen equipment, and there are few
investigations on related models of life degradation.

Based on the operational problems, the capacity of the energy storage system must
be configured to further ensure the system’s stability, reliability, and economic operation.
Through acceptable energy storage capacity configuration and operating strategies, the
energy utilization efficiency can be further increased, the energy cost can be decreased,
and significant support can be offered for low-carbon and sustainable development [13,14].
In [15], a study that considered the economy and environmental protection of the system,
a bi-objective mixed integer nonlinear optimum allocation model was constructed that
took into account the economic and environmental goals established by the life cycle
analysis; the overall goal was defined as the weighted total of each individual goal. In [16],
the authors established a deviation adaptation approach based on economics and carbon
emissions; the approach was then applied to the planning and scheduling of gas, wind,
solar, and hydrogen energy in integrated energy systems in order to increase the systems’
economy and environmental protection. In [17], an optimization configuration method
using an integrated energy system was proposed to consider the additional potential
benefits of energy storage. Based on the peak load shifting characteristics of energy storage,
the additional potential benefits of the energy storage model were established by further
considering the changes in the system load and real-time electricity price. The above studies
mainly focused on improving system economy, with little regard for system reliability
and security. Secondly, in terms of solution algorithms, intelligent algorithms such as
the genetic algorithm and the particle swarm optimization algorithm are widely used.
In [18], a partition optimization configuration method combining K-means and a genetic
algorithm was proposed for a regional integrated energy system that was composed of
complex loads in order to configure the capacity of the energy storage equipment in the
integrated energy system. In [19], the authors proposed an integrated energy system
operation optimization method based on energy efficiency analysis and an adaptive genetic
algorithm; using the adaptive genetic algorithm, they solved the problem of operation
optimization. In [20], the energy loss in the transmission process was properly evaluated in
the integrated energy system and incorporated into the objective function of the coordinated
operation model. The study considered the non-convex nonlinear term of energy loss, and
the genetic algorithm with a penalty function was used to solve the model. Most of the
aforementioned studies resolved the capacity allocation problem using simple intelligent
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algorithms; however, by mixing several intelligent algorithms, the accuracy and speed of
the solution can be further increased.

In summary, in the existing optimal configuration of integrated energy multi-energy
storage, most of the studies have not constructed a refined model of the equipment that
takes life degradation into account, and the configuration goal is mainly based on economy,
ignoring the improvement of system resilience. At the same time, the method applied
to solving the mixed integer linearization problem of double-layer capacity optimization
configuration is limited. Therefore, in order to rationalize the configuration capacity of
multi-energy storage by considering the occurrence of extreme disasters in the planning
configuration, with the aim of improving the resilience of the integrated energy system and
effectively reducing the loss of various types of loads when extreme disasters occur, this
study makes further improvements in terms of the refinement of equipment models, the
comprehensiveness of the capacity configuration considerations, and the accuracy of the
model solving methods.

The main contributions of this study are summarized as follows:
(1) This study presents a revised model of an electrolytic cell and a fuel cell and con-

siders climbing, power, temperature, start–stop, and other parameters. Simultaneously, the
life degradation model is developed to consider the aging mechanisms of the battery, elec-
trolytic cell, and fuel cell and to imitate the operational state and operating characteristics
of multi-element energy storage equipment more correctly.

(2) This study constructs a two-layer optimal configuration model of a multi-energy
storage system. The upper layer is the capacity configuration, and the equipment capacity
configuration scheme is given to guide the optimal operation of each piece of equipment in
the lower layer. At the same time, in the configuration layer, extreme disaster scenarios
such as hurricanes are added based on a consideration of the existing normal scenarios;
thus, the configuration results can improve the resilience of the system to a certain extent
while ensuring the economy of the system.

(3) This study resolves the two-layer capacity configuration model using the tabu
chaotic particle swarm optimization algorithm. The chaos algorithm, tabu algorithm, and
particle swarm optimization method are integrated. When compared to the conventional
particle swarm optimization method, the three algorithms’ advantages are fully integrated
to enhance the algorithm’s capacity for both local and global search, as well as to guarantee
the accuracy of the result.

2. Refined Model of Multivariate Energy Storage

The integrated energy system integrates various energy sources (Figure 1). It relies
heavily on a multifaceted energy storage apparatus to connect integrated energy input
with demand. The development of the system’s model significantly influences the subse-
quent optimization of the system’s operations. In the electric–thermal–hydrogen integrated
energy system, refined models of the electric energy storage, thermal energy storage,
hydrogen energy storage, multi-type electrolyzer, and multi-type hydrogen fuel cell are es-
tablished, and the life degradation characteristics of the electric energy storage, electrolyzer,
and hydrogen fuel cell are considered and modeled.

2.1. Electricity Storage
2.1.1. Life Degradation Model

The life of the battery is closely related to the state of charge as well as the charging
and discharging power. The life of the battery can be formulated as the sum of the effective
throughput available to the battery. When the accumulated effective throughput reaches
the rated life of the battery, the battery needs to be replaced. The rated available throughput
of the battery is as follows:

ΓR = LRDRCR (1)
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where ΓR represents the rated throughput of the battery, LR represents the rated cycle life,
DR represents the rated discharge depth, and CR represents the rated capacity under the
rated discharge current.

deff = k0(1 − k1St + k2S2
t )

k0 = exp(u1 − 1 + 1/DR )dR/Du0
R

k1 = u0 + u1/DR
k2 = u0(u0 − 1)/2 + u0u1/DR + u2

1/2D2
R

(2)

Here, deff represents the throughput consumed by using a battery; dR is the rated
throughput consumed by a single discharge; u0 and u1 are the parameters obtained in the
simulation process; and k0, k1, and k2 are constants obtained from the battery parameters.
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2.1.2. Basic Model

When establishing the basic model of the battery, the life degradation must be consid-
ered; it is also necessary to satisfy the basic constraints of the energy storage equipment,
such as the charging and discharging power constraints, efficiency constraints, and battery
capacity constraints. The specific formula is as follows:

Emin ≤ Et ≤ Emax
Et = Et−1 − Pdis,t∆t/ηdis + ηchPch,t
ET = E0
0 ≤ Pch,t ≤ Pmax

ch Bch,t
0 ≤ Pdis,t ≤ Pmax

dis Bdis,t
Bch,t + Bdis,t ≤ 1

(3)

where Et represents the battery power at the moment at time t; Pdis,t and Pch,t represent
the charging and discharging heat power of the battery at time t; ηdis and ηch represent the
charging and discharging efficiency of the battery; Pch

max and Pdis
max represent the maximum

power limit of the charging and discharging of the battery; Emax and Emin represent the
upper and lower limits of the capacity of the heat storage tank; and Bch,t and Bdis,t represent
the charging and discharging sign.
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2.2. Thermal/Hydrogen Storage

As with the basic operation model of electric energy storage, thermal energy storage
and hydrogen energy storage need to meet the following constraints during operation:

Hmin ≤ Ht ≤ Hmax
Ht = Ht−∆t − Qdis

t ∆t/ηdis
heat + ηch

heatQ
ch
t ∆t

HT = H0
0 ≤ Qch

t ≤ Qch
max Ach

t
0 ≤ Qdis

t ≤ Qdis
max Adis

t
Ach

t + Adis
t ≤ 1

(4)



mHST
min ≤ mHST

t ≤ mHST
max

mHST
t+1 = mHST

t − mHST,out
t /ηHST

out + ηHST
in QHST,in

t
mHST

T = mHST
0

0 ≤ mHST,in
t ≤ mHST,in

max BHST,in
t

0 ≤ mHST,out
t ≤ mHST,out

max BHST,out
t

0 ≤ BHST,out
t + BHST,in

t ≤ 1

(5)

2.3. Electro-Hydrogen Coupling Equipment
2.3.1. Life Degradation Model

The continuous operation of the electro-hydrogen coupling equipment leads to the
life degradation of the electro-hydrogen coupling equipment. At present, it is difficult to
directly establish an accurate mathematical model for the life degradation of the electro-
hydrogen coupling equipment. Life degradation is indirectly reflected by measuring the
voltage change through experimentation. This is because when the electro-hydrogen cou-
pling equipment is running, the catalytic layer undergoes irreversible loss, the membrane
resistance becomes larger, and the overpotential of the electro-hydrogen coupling equip-
ment increases. Under the condition that the output hydrogen flow rate is constant, it is
necessary to keep the current constant, and the increase in the operating voltage means that
the working efficiency of the electro-hydrogen coupling equipment decreases. When the
working voltage of the electro-hydrogen coupling device rises to the maximum working
voltage, the electro-hydrogen coupling device needs to be replaced in order to ensure
system efficiency [21]. Research shows that the voltage changes in the electro-hydrogen
coupling device are closely related to its power fluctuations when parameters such as
temperature and pressure are determined.

DEC
1,t = λEC

1 UEC
t

DEC
2,t = λEC

2

∣∣∣PEC
t − PEC

t−1

∣∣∣/PEC
rate

DEC
3,t = λEC

3

(
AEC

on,t + AEC
o f f ,t

)
DEC = ∑T

t=1

(
DEC

1,t ∆t + DEC
2,t /∆t + DEC

3,t

)
LEC

de = DEC/λEC
rate

LEC
rate = ηEC

rate − ηEC
lim/λEC

rate

(6)

Here, λEC/FC
1 , λEC/FC

2 , and λEC/FC
3 are the efficiency degradation coefficients of the

electro-hydrogen coupling equipment during steady operation, fluctuating operation,
and start–stop, respectively. In this study, they are set to 2.75 × 10−7, 2.75 × 10−6, and
5.50 × 10−6, respectively. DEC/FC

1,t , DEC/FC
2,t , and DEC/FC

3,t are the efficiency degradation of
the electro-hydrogen coupling equipment during steady operation, fluctuating operation,
and start–stop, respectively. DEC/FC and LEC/FC

de represent the total efficiency degradation
and equivalent life degradation of the electro-hydrogen coupling equipment when running
a scheduling cycle.
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2.3.2. Start–Stop Model
AFC/EC

on,t−αFC/EC − AFC/EC
off,t = UFC/EC

t − UFC/EC
t−∆t

AFC/EC
on,t ≤ 1 − UFC/EC

t−∆t
AFC/EC

off,t ≤ UFC/EC
t−∆t

(7)

{
∑T

t=1 AFC/EC
on,t ≤ AFC/EC

on,max

∑T
t=1 AFC/EC

off,k,t ≤ AFC/EC
off,max

(8)

The 0–1 variable UEC/FC
t represents the on–off state of the electro-hydrogen coupling

equipment; AEC/FC
on,t and AEC/FC

off,t represent the start-up action and start–stop action of the
electro-hydrogen coupling equipment, respectively; αEC/FC denotes the start-up delay of
the electro-hydrogen coupling equipment; and AEC/FC

on,max and AEC/FC
off,max represent the upper

limit of the number of start-ups and shutdowns of the electro-hydrogen coupling equipment
within a day, respectively.

2.3.3. Heat Transfer Model

TEC/FC
t+△t = TEC/FC

t +
(

QEC/FC
t − QEC/FC

loss,t − QEC/FC
move,t

)
∆t/CEC/FC (9)

QEC/FC
loss,k,t =

(
TEC/FC

k,t − TEC/FC
k,a

)
/REC/FC (10)

TEC/FC
min ≤ TEC/FC

k,t ≤ TEC/FC
max (11)

Here, TEC/FC
a represents the external temperature of the electro-hydrogen coupling

equipment; CEC/FC represents the lumped heat capacity; REC/FC represents the thermal
resistance; QEC/FC

loss,t represents the thermal power lost by the electro-hydrogen coupling

equipment; QEC/FC
move,t represents the thermal power outside the output system; TEC/FC

t is the
temperature; and TEC/FC

max and TEC/FC
min are the upper and lower limits of the temperature of

the electro-hydrogen coupling equipment, respectively.

2.3.4. Output Model

PEC/FC
k,t ≥ (UEC/FC

k,t PEC/FC
min + ∑αEC/FC−△t

τ=0 AEC/FC
on,k,t−τ PEC/FC

boot ) (12)

PEC/FC
k,t ≤ (UEC/FC

k,t PEC/FC
max + ∑αEC/FC−1

τ=0 AEC/FC
on,k,t−τ PEC/FC

boot ) (13)

∣∣∣PEC/FC
k,t − PEC/FC

k,t−1

∣∣∣≤ UEC/FC
k,t ∆PEC/FC

max + (1 − UEC/FC
k,t )PEC/FC

max (14)

Here, PEC/FC
max /PEC/FC

min represent the upper/lower limit of the operating power of
the electro-hydrogen coupling equipment in the on state; PEC/FC

boot represents the power
consumed during the start-up of the electro-hydrogen coupling equipment; ∆PEC/FC

max
represents the maximum climbing power per unit period of the electro-hydrogen coupling
equipment in the boot state; and PEC/FC

max represents the upper limit of its working power.

2.3.5. Power Model

The working efficiency models of the electrolytic cell and hydrogen fuel cell are shown
as follows: {

mM,H2
k,t = ηM

ele,k,tP
M
k,tU

M
k,t∆t/γ

QM
k,t = ηM

heat,k,tP
M
k,t

(15)
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PFC

t =
(

γmFC
H2,t

)
/∆t

PFC
ele,t = ηFC

ele PFC
t UFC

t
QFC = ηFC

heatP
FC
t

(16)

2.4. Sequential Monte Carlo Extraction Equipment Fault Model Based on Markov State Transition
2.4.1. Markov State Transformation Model

Outdoor wind turbines and photovoltaic equipment are more susceptible to dam-
age during extreme catastrophes like hurricanes compared to indoor integrated energy
equipment. This vulnerability ultimately leads to forced outages. Considering that most
of the forced outages of equipment caused by extreme disasters such as hurricanes are
repairable, this study uses the Markov two-state transition model to describe the probability
characteristics of wind turbines and photovoltaic equipment, which can be simulated by
the steady-state ‘operation-failure-operation’ cycle process (Figure 2). Firstly, the failure
rate of the equipment is introduced. At the same time, it takes a certain amount of time to
repair the faulty equipment after the failure occurs (Figure 3). Therefore, the repair rate
of the equipment is introduced. The established equipment failure model based on the
Markov two-state transition is as follows:
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2.4.2. Equipment Fault Extraction Model Based on Sequential Monte Carlo

Using the sequential Monte Carlo fault extraction model [22,23], the average outage
time MTTF is extracted according to the equipment failure rate λ, and the average repair
time MTTR is extracted according to the repair rate µ after the fault occurs. Then, the
relationship can be interpreted as follows:

λ = 1/MTTF (17)

µ = 1/MTTR (18)
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Assuming that the duration of each state of the component obeys an exponential
distribution, the probability density functions of the outage duration a and the repair
duration b can be expressed as follows:

f (a) = µe−µa (19)

f (b) = µe−µb (20)

At the same time, the duration a and the repair duration b can be obtained by inverse
transformation [24], as follows:

a =
1
λ

ln ξ1 (21)

b =
1
µ

ln ξ2 (22)

In the formulae, ξ1 and ξ2 are random numbers with uniform distribution in the
interval [0, 1].

3. Two-Layer Capacity Optimization Configuration Model

The system bi-level optimal configuration model constructed in this study to consider
economy and resilience is interconnected, as shown in Figure 4. Firstly, the upper capacity
configuration layer transfers the initial capacity scheme of each device in the system to
the lower optimal operation layer. The lower optimal operation layer adjusts the system
scheduling according to the equipment capacity provided by the upper layer and feeds back
the optimal value of the total operating cost to the upper layer as the basis for the upper
layer to configure the new capacity scheme of each device. The upper and lower iterative
cycles finally obtain the optimal configuration scheme and the optimal operation results.
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3.1. Capacity Configuration Model

The objective function of the upper-level capacity allocation is to maximize daily net
income, where the daily net income is equal to the daily operating income obtained by the
lower-level optimization operation minus the system investment cost. By designing the
capacity of the various equipment parts (battery, heat storage tank, hydrogen storage tank,
fuel cell, and multi-type electrolytic cell) of the electrothermal hydrogen integrated energy
system, the daily net profit of the system is maximized. The specific objective function
expression is as follows:

minFcon = min(Cin/365− F) (23)

Cin = ∑N
i=1

[
ξiSi ηi(1 + ηi)

ti /
(
(1 + ηi)

ti − 1
)]

(24)
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where Fcon represents the objective function of the upper optimization design; F represents
the objective function of the lower-level optimal operation; Cin represents the system
investment cost; N represents the total number of equipment parts in the integrated energy
system; ηi represents the interest rate, taken as 5%; ξi represents the investment cost per
unit capacity of each equipment part; and Si represents the capacity of each equipment
part in the integrated energy system.

3.2. Capacity Configuration Constraints

Regarding the constraints of the construction scale and construction conditions, the
constraints of the upper capacity configuration model include capacity constraints such
as energy conversion equipment (multi-type electrolyzers and hydrogen fuel cells) and
energy storage equipment (hydrogen storage tanks, heat storage tanks, and batteries). The
expression is as follows:

Smin
i ≤ Si ≤ Smax

i (25)

3.3. Optimal Operating Model

The optimization goal of this study is to improve the economy and toughness of the
electrothermal hydrogen system in each scenario and to consider the life improvement of
the electrolytic cell and the battery. The objective function includes the operating cost and
the equipment life loss cost.

minF = Fli f e + Fop (26)

Flife = ∑K
κ

[
πκ(CEC,κ

life + CFC,κ
life + CEES,κ

life )
]

(27)

Here, Fli f e represents the life loss cost; CEC,κ
life represents the life loss cost of the elec-

trolytic cell; CFC,κ
life represents the life loss cost of the hydrogen fuel cell; and CEES,κ

life represents
the sum of the battery life loss cost and maintenance cost.

Fop = ∑K
κ

[
πκ(Cκ

cur + Cκ
loss + Cκ

buy + Cκ
car + Cκ

sell)
]

(28)

Here, Fop represents the operating cost; K represents the number of scenes; πκ repre-
sents the probability of scene κ; and Cκ

cur, Cκ
loss, Cκ

buy, Cκ
car, and Cκ

sell represent the penalty
cost of wind and light curtailment, the penalty cost of load shedding, the cost of electricity
purchase, the penalty cost of carbon emission, and the profit from selling heat and hydrogen
in the scenario, respectively. The system’s resilience is mainly improved by controlling the
minimum penalty cost of load shedding. The specific expressions are as follows:

Cκ
cur = ∑T

t=1 ccur
re

(
Pcur

pv,κ,t + Pcur
wt,κ,t

)
Cκ

loss = ∑T
t=1

(
closs

ele Ploss
load,κ,t + closs

heatQ
loss
load,κ,t + closs

H2 mloss
H2,κ,t

)
Cκ

buy = ∑T
t=1 (c

buy
t Pbuy

κ,t − csell
t Psell

κ,t )

Cκ
car = ∑T

t=1 (c
carηele−carPbuy

κ,t )

Cκ
sell = ∑T

t=1

(
csell

heatQ
sell
κ,t + csell

H2 msell
H2,κ,t

)
(29)

where cbuy
t and csell

t represent the unit prices of electricity purchase and sale, respectively;
Pbuy

κ,t and Psell
κ,t represent the power of purchasing and selling electricity, respectively; ηele−car

represents the conversion coefficient of electricity–carbon; Ccar denotes the environmental
penalty factor of carbon dioxide emissions; ccurr

re denotes the penalty coefficient of wind
and light abandonment; Pcur

pv,κ,t and Pcur
wt,κ,t represent the power of light curtailment and

wind curtailment, respectively; closs
ele , closs

heat, and closs
H2 represent the penalty coefficients of

the electrothermal hydrogen load, respectively; Ploss
load,κ,t, Qloss

load,κ,t, and mH2,loss
load,κ,t represent the

load loss of electrothermal hydrogen, respectively; csell
heat and csell

H2 represent the unit price of
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selling heat and hydrogen, respectively; and Qsell
κ,t and msell

H2,κ,t represent the sold thermal
power and hydrogen mass, respectively.

3.4. Operational Constraints
3.4.1. Wind Turbine Photovoltaic Output and Load Constraints

Ppv
κ,t = Ppv

t + ξ
pv
κ,t , 0 ≤ Pcur

pv,κ,t ≤ Ppv
κ,t

Pwt
κ,t = Pwt

t + ξwt
κ,t , 0 ≤ Pcur

wt,κ,t ≤ Pwt
κ,t

Pload
κ,t = Pload

t + ξele
κ,t , 0 ≤ Ploss

load,κ,t ≤ Pload
κ,t

Qload
κ,t = Qload

t + ξheat
κ,t , 0 ≤ Qloss

load,κ,t ≤ Qload
κ,t

mload
H2,κ,t = mload

H2,κ,t + ξH2
κ,t , 0 ≤ mH2,loss

load,κ,t ≤ mload
H2,κ,t

(30)

Here, Ppv
κ,t , Pwt

κ,t , Pload
κ,t , Qload

κ,t , and mload
H2,κ,t represent the actual values of the photovoltaic,

wind turbine, and electrothermal hydrogen loads, respectively; Ppv
t , Pwt

t , Pload
t , Qload

t , and
mload

H2,κ,t represent the day-ahead predicted values of the photovoltaic, wind turbine, and
electrothermal hydrogen load, respectively; and ξ

pv
κ,t , ξwt

κ,t , ξele
κ,t , ξheat

κ,t and ξH2
κ,t represent

the prediction errors of the photovoltaic, wind turbine, and electrothermal hydrogen
load, respectively.

3.4.2. Purchase and Sale Power Constraints
0 ≤ Pbuy

κ,t ≤ Pbuy
maxUbuy

κ,t
0 ≤ Psell

κ,t ≤ Psell
maxUsell

κ,t

Ubuy
κ,t + Usell

κ,t ≤ 1
(31)

Here, Ubuy
κ,t and Usell

κ,t respectively represent the state of the purchase and sale of elec-

tricity. Pbuy
max and Psell

max represent the upper limit of the purchase and sale power, respectively.

3.4.3. System Equilibrium Constraints

Electric power balance constraint:{
(Ppv

κ,t − Pcur
pv,κ,t) + (Pwt

κ,t − Pcur
wt,κ,t)− (Pload

κ,t − Ploss
load,κ,t)

= PEC
κ,t − PFC

ele,κ,t − Pbuy
κ,t + Pch

κ,t − Pdis
κ,t + PEB

κ,t
(32)

Thermal power balance constraint:{
QEC

κ,t + QFC
κ,t + QEB

κ,t + Qdis
κ,t − Qch

κ,t
= Qload

κ,t − Qloss
load,κ,t + Qsell

κ,t
(33)

Hydrogen mass balance constraint:{
mEC

H2,κ,t − mFC
H2,κ,t + mHST

H2,out,κ,t − mHST
H2,in,κ,t

= mload
H2,κ,t − mloss

H2,κ,t + msell
H2,κ,t

(34)

4. Solution Method

The upper capacity configuration problem is solved using the tabu chaotic quantum
particle swarm optimization approach. It has excellent computational accuracy, and with
this approach, it is more difficult to fall into the local optimal solution than it is with
the conventional particle swarm optimization approach. The approach involves complex
and lengthy computation times, but these drawbacks can be mitigated with advanced
techniques that balance its benefits. Firstly, the quantum method is mixed with the classical
particle swarm optimization technique, and quantum bit superposition and entanglement
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are used to speed up the search for the best solution. Secondly, to avoid finding the local
optimal solution and to enhance both the local and global search capabilities, the taboo
strategy in the taboo algorithm [25,26] and the quantum state representation and update
process in the quantum particle swarm optimization algorithm [27,28] are combined.

The upper layer model transmits the configured capacity to the lower layer. The lower
layer operation model calculates the output of each time period, uploads the obtained
system operation cost to the upper layer capacity configuration model, and iterates it
circularly. Finally, the capacity configuration scheme and optimal operation results that
meet the economic and resilience requirements are outputs. The optimization process of
the energy storage capacity configuration of the double-layer electrothermal hydrogen
integrated energy system is shown in Figure 5.
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The specific steps that need to be taken to solve the taboo chaotic quantum particle
swarm are as follows:

STEP 1: Input the system’s initial data.
STEP 2: The initial particles selected by the device, which correspond to each device’s
capacity, are generated and sent to the lower-level optimal operating model. Simultaneously,
the lower-level optimum operation generates the wind and light vulnerability index using
the Monte Carlo method and uses the Gurobi solver to solve it. The daily operating cost is
obtained, and its value is returned to the upper layer.
STEP 3: The current particle fitness value, i.e., the system daily investment cost plus the
daily operation cost, is obtained.
STEP 4: The average optimal position of the particles is calculated, the position is updated
by the quantum algorithm, and the number of chaotic optimization iterations j is set to 0.
STEP 5: This step is to determine whether the variance of the group position is less than
the limit value; if not, step 6 is entered. If yes, the chaotic optimization is used to break up
the particles and recalculate the fitness, and j = j + 1, until the position variance is no longer
less than the limit value or the maximum number of iterations of the chaotic optimization
enters step 6.
STEP 6: The new particle fitness is compared with k – 1’s fitness, and the individual and
global optimal positions and attractors are updated.
STEP 7: A judgement is made regarding whether the current particle fitness is inferior to the
individual optimal position; if the current particle fitness is inferior to the individual optimal
position, it is proved that the particle quality is poor, and there is a greater probability of
entrance into the tabu table; then, the attractor is cancelled, and step 9 is entered. If the
current fitness is better than the individual’s optimal position, step 8 is entered.
STEP 8: This step is to determine whether the particle fitness is inferior to the global optimal
position. If the current particle fitness value is inferior to the global optimal position, it is
proved that the particle quality is general, and there is a small probability of entrance into
the tabu table; then, the attractor is cancelled, and step 9 is entered. If it is superior to the
global optimal position, it directly enters step 9.
STEP 9: This step is to determine whether to converge or to reach the maximum number of
iterations. If so, the loop is ended, and the optimal design result is output. If not, step 4 is
returned to, and the loop is started again.

5. Case Study
5.1. Overview of Examples
5.1.1. Parameters and Data

The electrothermal hydrogen/integrated energy system is constructed in this study.
The parameters of the electrolyzer and fuel cell are shown in Table 1; the capacity configu-
ration parameters of each device are shown in Table 2; and the parameters of the energy
storage equipment are shown in Table 3.

Table 1. Operating parameters of EC and FC.

Equipment Variables Electrolyzer Hydrogen Fuel Cell

hydrogen/electricity
production efficiency 0.65 0.45

heat production efficiency 0.3 0.5
lower limit of temperature/◦C 50 25
upper limit of temperature/◦C 80 100
upper/lower limit of output 1/0.05 1/0.05
upper climbing limit 100%/30 min 100%/30 min
maximum number of start-ups 2 2
maximum number of shutdowns 2 2
start-up delay 0 h 0 h
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Table 2. Equipment capacity configuration parameters.

Equipment Investment Cost Upper Limit of Capacity Lower Limit of Capacity Term for Year

AEC 2400 (CNY/kW) 15 (MW) 5 (MW) 10
PEMEC 4000 (CNY/kW) 15 (MW) 5 (MW) 8
SOEC 6400 (CNY/kW) 15 (MW) 5 (MW) 5
PEMFC 4200 (CNY/kW) 5 (MW) 2 (MW) 5
SOFC 6300 (CNY/kW) 5 (MW) 2 (MW) 5
electric storage tank 1071 (CNY/kW) 20 (MW) 2 (MW) 10
heat storage tank 56 (CNY/kW) 30 (MW) 10 (MW) 25
hydrogen storage tank 65 (CNY/kg) 1000 (kg) 100 (kg) 35

Table 3. Energy storage equipment parameters.

Equipment Charge/Discharge Efficiency Energy Storage Range (%) The Upper Limit of
Charging/Discharging Rate (%)

electric storage tank 0.95/0.95 20–90 20
heat storage tank 0.95/0.95 10–90 20
hydrogen storage tank 0.95/0.95 30–80 10

5.1.2. Scene Setting

Based on the annual output data of the wind power generation equipment and the
photovoltaic power generation equipment, we finally selected four typical days for analysis
through the method of scene generation and reduction. When creating the capacity config-
uration of the extreme scenarios, the time period for the extreme scenarios was two days.
The photovoltaic power generation and wind power generation equipment fault periods
simulated by sequential Monte Carlo are shown in Table 4; the extreme weather and other
harsh conditions in the actual situation are considered. There is a certain probability of
occurrence; so, when considering the capacity configuration for the extreme scenarios, the
fault probability is assigned to the total daily investment cost calculated by the two extreme
scenarios to further ensure the accuracy of the configuration results. When the capacity
configuration is not considered in extreme scenarios, all the devices work normally on four
typical days.

Table 4. Equipment working and fault period in extreme scenarios.

Extreme Fault Scenarios Normal Working
Hours of PV Fault Time of PV Normal Working

Hours of WT Fault Time of WT

1 1–7 h, 19–24 h 8–18 h 1–7 h, 22–24 h 8–21 h
2 1–4 h, 24 h 5–23 h 1–4 h, 20–24 h 5–19 h

5.2. Analysis of Example Results
5.2.1. Upper Layer Capacity Configuration Results

Firstly, when only considering the normal scene, the particle swarm optimization
algorithm and the tabu chaotic particle swarm optimization algorithm are used to solve the
upper layer capacity configuration results, respectively. Fitness is the total cost of the daily
investment, and when its value is negative, it shows that the day is in the system profit state.
From the graph comparison, the total cost of the four typical days obtained by the particle
swarm optimization algorithm is much higher than that obtained by the tabu chaotic
quantum particle swarm optimization algorithm. As shown in Figure 6, the tabu chaotic
quantum particle swarm optimization algorithm is superior to the basic particle swarm
optimization algorithm in terms of both global and local search capabilities. Additionally,
it is more difficult to fall into a local optimal solution, which ensures the accuracy of the
solution results.
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Therefore, the tabu chaotic quantum particle swarm is used to solve the upper capacity
configuration results for the different scenarios, as shown in Table 5. The basic settings of
each example are as follows:

Case 1: Without considering the extreme disaster scenes, the four typical days are normal
scenarios, which is a commonly used processing method in the existing research.
Case 2: Considering the extreme scenarios, the penalty coefficients of the electrical, thermal,
and hydrogen load losses are all set to 1000.
Case 3: Considering the extreme scenarios, the penalty coefficients of the electrical, thermal,
and hydrogen load losses are set at 1500-1000-1000.
Case 4: Considering the extreme scenarios, the penalty coefficients of the electrical, thermal,
and hydrogen load losses are set to 1000-1500-1000.
Case 5: Considering the extreme scenarios, the penalty coefficients of the power, heat, and
hydrogen losses are set at 1000-1000-1500.

Table 5. Upper capacity configuration results.

Case AEC
(MW)

PEMEC
(MW)

SOEC
(MW)

PEMFC
(MW)

SOFC
(MW)

HST
(MW)

ESS
(MW)

HSS
(MW)

1 11 10 10 3 5 31 11 12
2 14 10 15 3 5 31 40 32
3 15 10 15 2 4 39 40 25
4 14 11 15 5 5 42 22 30
5 13 10 13 5 5 27 39 37

Through comparative analysis, after adding the extreme scenarios and comparing
them with case 1, the configuration capacity of the energy storage equipment in the system
increases to play the role of a standby power supply during the extreme disaster events.
Secondly, by setting different load loss penalty coefficients, the configuration capacity of
the energy storage can also be adjusted. In cases 3–5, by increasing the load loss penalty
coefficients of the electricity, heat, and hydrogen in turn, the corresponding configuration
capacities of the electric energy storage, thermal energy storage, and hydrogen energy
storage also increase, which verifies the proposal that energy storage can play a role
in reducing load loss when extreme events occur. At the same time, due to the coupling
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between the subsystems of the electric–thermal–hydrogen integrated energy system studied
here, the capacity of the electro-hydrogen coupling equipment is also affected when the
extreme scenarios are considered and by the adjustment of the load loss penalty coefficient.

5.2.2. Optimal Operation Results of the Lower Layer
Load Loss Cost Analysis

Based on the premise that the configuration results of each equipment part in cases 1–5
are known, the load loss cost and operation cost of the lower optimal operation of cases 1–5
are further analyzed, as shown in Figures 7–10.
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Figure 7. Electric load loss penalty cost.
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Figure 8. Thermal load loss penalty cost.
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Figure 9. Hydrogen load loss penalty cost.
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Figure 10. Total load loss penalty cost.

As shown in Figures 7–10, after considering the extreme disaster scenario in the upper
capacity configuration, when facing extreme disaster events, the penalty cost of the power
load loss and the heat load loss is greatly reduced, but the penalty cost of the hydrogen
load loss is increased. When the emphasis is placed on reducing the various load losses, the
penalty cost of the load loss can be further reduced by changing the penalty coefficient of
the load loss; that is, the cost of the power load loss in example 3 is reduced; the cost of the
heat load loss in example 4 is reduced; and the cost of the hydrogen load loss in example 5
is reduced. At the same time, because the fault time of the photovoltaic equipment and the
wind turbine in fault scenario 2 is longer than that in fault scenario 1, it can be determined
that the role of energy storage as a standby power supply is weakened, and the reduction
range of the various load loss penalty costs is reduced; it is impossible to ensure that
the load loss penalty costs of the various loads are reduced at the same time. However,
compared with example 1, the penalty cost of the total loss of the various loads in the
two days of examples 2–5 is still reduced.

Electric–Heat–Hydrogen Coupling Operation Analysis

Based on the premise that the upper layer capacity configuration is known, the optimal
operation results of cases 1 and 2 in the normal scenarios and fault scenarios are further
analyzed. Among them, fault scenario 1 is selected for further analysis. The fault periods
of the photovoltaic equipment and wind turbines are 8–21 h and 8–18 h, respectively.

Through comparative analysis (Figures 11–14), in the fault scenario, whether to con-
sider the extreme scenario configuration in the fault period of photovoltaic fan equipment
reflects the difference. The output of the electric energy storage is greatly increased after
configuration, while it is mainly in the charging state for the rest of the period, so that the
system can meet the demand of the electric load to the greatest extent possible in order
to reduce the loss of electric load. In addition to the role of electric energy storage in the
fault period, the high-temperature solid oxide fuel cell can also provide a certain amount
of electric energy. Secondly, compared with the unconfigured extreme scenario, the output
of the electric boiler in the configured system is reduced, and the electric energy generated
by the system is better stored in the battery. In the normal scenario, after considering the
configuration of the fault scenario, the electric energy storage increases in each period,
and the high-temperature solid oxide electrolytic cell consumes more electric energy. The
output of the remaining equipment is similar to that of the unconfigured fault scenario.

The results of the thermal coupling operation are shown in Figures 15–18: when
the extreme scenario configuration is disregarded, the heat storage tank and the high-
temperature solid oxide fuel cell are primarily utilized to supply heat energy and satisfy
the heat load demand during the fault period. After consideration of the extreme scenario
configuration, it relies more on the high-temperature solid oxide electrolytic cell and the
high-temperature solid oxide fuel cell to provide heat energy. One advantage is that both
devices generate heat more efficiently while in operation. However, in contrast to the
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heat storage tank, both devices are capable of fully converting alternative energy sources,
thereby enhancing the overall efficiency of the energy conversion. In the normal scene,
after considering the extreme scene configuration, the output of the proton exchange
membrane electrolyzer decreases, the heat storage tank increases, and the output of the
other equipment is similar.
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Figure 11. Electrical coupling operation results from fault scenarios without considering the configu-
ration of extreme scenarios.
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Figure 12. Electrical coupling operation results from fault scenarios considering the configuration of
extreme scenarios.
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Figure 13. Electrical coupling operation results from normal scenarios without considering the
configuration of extreme scenarios.
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Figure 14. Electrical coupling operation results from normal scenarios considering the configuration
of extreme scenarios.
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Figure 15. Thermal coupling operation results from fault scenarios without considering extreme
scenario configuration.
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Figure 16. Thermal coupling operation results from fault scenarios considering extreme scenario
configuration.

According to the hydrogen coupling operation results (Figures 19–22), in the fault
scenario, the hydrogen energy storage output is greatly increased after considering the
fault scenario configuration. The hydrogen storage capacity in the non-fault period of
the photovoltaic equipment and the wind turbine and the hydrogen release amount in
the fault period are increased to meet the needs of high-temperature solid oxide fuel
cells. Compared with the normal scenario, the system does not sell hydrogen, and the
hydrogen energy is mainly provided by the high-temperature solid oxide electrolytic cell
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and the hydrogen storage tank, which mainly supply the high-temperature solid oxide
fuel cell. In the normal scenario, the proton exchange membrane fuel cell, the proton
exchange membrane electrolytic cell, and the alkaline electrolytic cell also participate in
the conversion of hydrogen energy, and most of the hydrogen energy generated is sold.
The decision concerning whether to consider the configuration of the fault scenario in the
normal scenario has little effect on the running state of each device.
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Figure 17. Thermal coupling operation results from normal scenarios without considering extreme
scenario configuration.
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Figure 18. Thermal coupling operation results from normal scenarios considering extreme scenario
configuration.

Sustainability 2024, 16, x FOR PEER REVIEW 22 of 26 
 

membrane electrolytic cell, and the alkaline electrolytic cell also participate in the conver-
sion of hydrogen energy, and most of the hydrogen energy generated is sold. The decision 
concerning whether to consider the configuration of the fault scenario in the normal sce-
nario has little effect on the running state of each device. 

 
Figure 19. Hydrogen coupling operation results from fault scenarios without considering extreme 
scenario configuration. 

 
Figure 20. Hydrogen coupling operation results from fault scenarios considering extreme scenario 
configuration. 

 
Figure 21. Hydrogen coupling operation results from normal scenarios without considering ex-
treme scenario configuration. 

2 4 6 8 10 12 14 16 18 20 22 24
-80

-60

-40

-20

0

20

40

60

80

100
 Hydrogen Selling  HSS  SOFC
 PEMFC  SOEC  PEMEC
 AEC  Hydrogen Load

hour(h)

R
es

ul
ts

 o
f h

yd
ro

ge
n 

co
up

lin
g 

op
er

at
io

n 
(k

W
)

0 2 4 6 8 10 12 14 16 18 20 22 24

-40

-20

0

20

40

60  Hydrogen Selling  HSS  SOFC
 PEMFC  SOEC  PEMEC
 AEC  Hydrogen Load

hour(h)

R
es

ul
ts

 o
f h

yd
ro

ge
n 

co
up

lin
g 

op
er

at
io

n 
(k

W
)

0 2 4 6 8 10 12 14 16 18 20 22 24
-80

-60

-40

-20

0

20

40

60

80

100

120  Hydrogen Selling  HSS  SOFC
 PEMFC  SOEC  PEMEC
 AEC  Hydrogen Load

hour(h)

R
es

ul
ts

 o
f h

yd
ro

ge
n 

co
up

lin
g 

op
er

at
io

n 
(k

W
)

Figure 19. Hydrogen coupling operation results from fault scenarios without considering extreme
scenario configuration.
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Figure 20. Hydrogen coupling operation results from fault scenarios considering extreme scenario
configuration.
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Figure 21. Hydrogen coupling operation results from normal scenarios without considering extreme
scenario configuration.
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Figure 22. Hydrogen coupling operation results from normal scenarios considering extreme scenario
configuration.

Energy Storage Operation Analysis

According to the above analysis, whether the fault scenario configuration is considered
or not has a great influence on the capacity configuration results of energy storage equip-
ment. Further analysis of the operating status of the electric energy storage, thermal energy
storage, and hydrogen energy storage in the two cases in the fault scenario was conducted.

From Figures 23–25, it can be seen that after considering the configuration of the
fault scenario, the charge and discharge of the electric energy storage increase, but the
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re-discharge heat of the thermal energy storage decreases, and the full hydrogen of the
hydrogen storage is not very different from that of the unconfigured fault scenario; after
the fault scenario configuration, the power storage capacity of the electric energy storage
increases at each moment, the heat storage capacity of the thermal energy storage decreases
at each moment, and the hydrogen storage capacity of the hydrogen energy storage de-
creases at each moment, which further verifies the above analysis results regarding the
electric, thermal, and hydrogen coupling operation.
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Figure 23. Working state of electric energy storage.
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Figure 24. Working state of thermal energy storage.
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6. Conclusions

In this study, which considered extreme fault scenarios, an optimal configuration
method of energy storage for an electrothermal hydrogen integrated energy system was
proposed, and the tabu chaotic quantum particle swarm optimization algorithm was used
to solve the problem. Through the analysis of the examples, the following conclusions can
be drawn:

When the tabu chaotic quantum particle swarm optimization algorithm is used to
solve the two-layer capacity optimization problem, it has better global convergence and
local convergence than the traditional particle swarm optimization algorithm and can
ensure the reliability and accuracy of the results.

With the consideration of the extreme fault scenarios in the configuration layer, the
configuration capacity of the various energy storage devices increases, and the energy
storage output increases during the operation of the fault scenario, which further meets
the load demand, reduces the load loss, and improves the resilience of the system while
ensuring economy.

When the fault time of the wind power and photovoltaic power generation equipment
is long, the reserve energy of the energy storage is not enough to supply the entire load
demand during the fault period; the load loss of the system is large, and the system
resilience needs to be further improved. At the same time, when focusing on reducing a
certain type of load, the energy storage capacity configuration can be adjusted by changing
the load loss penalty coefficient.

We recommend the design of energy storage systems with extreme disaster scenarios
in mind to enhance resilience, optimize capacity through the adjustment of load loss
penalties, and employ the tabu chaotic quantum particle swarm optimization algorithm for
robust solutions. This study also underscores the necessity of including life degradation
models in the system design. Future research should validate these findings through pilot
projects, refine the optimization algorithms, and assess the impact of policies on resilient
energy systems.
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