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Abstract: With the world shifting towards renewable and sustainable resources, polyhydroxyalka-
noates (PHAs) have attracted significant interest as an alternative to synthetic plastics. While pos-
sessing promising properties suitable for various applications, the production of PHAs has not yet
reached a global commercial scale. The main reason is the high cost of production, which represents a
major limitation. Sugarcane bagasse (SCB) is an abundant lignocellulosic waste around the world. Its
use to produce PHA enhances the feasibility of producing PHAs at commercial scale. However, SCB
requires pretreatment and hydrolysis steps to release the sugars prior to the microbial fermentation.
The cost associated with these steps poses additional challenges for large-scale production. Another
challenge is the release of inhibitors during the pretreatment process which can result in a low PHA
yield. The development of a low cost, co-culture strategy for the bioconversion of SCB into PHAs,
can represent a pivotal step towards the large-scale production of bioplastics. This review highlights
the advancements made in recent years on the microbial production of PHA using SCB as potential
feedstock, with a proposed biological strategy and circular economy model.

Keywords: agricultural waste; bioplastics; circular economy; co-culture; lignocellulosic biomass;
polyhydroxyalkanoate; sustainability

1. Introduction

Due to their various mechanical properties, plastics are ubiquitously used in daily
life and industry. The global production of plastics reached 390.7 million tonnes (Mt) in
2021, including fossil-based (350 Mt), recycled (32.5 Mt) and bio-based plastics (5.9 Mt),
with an estimation to reach 760 Mt by 2050 [1]. In general, at the end of life, plastic waste
is managed by landfilling and incineration [2,3]. It has been reported that around 80% of
plastic waste is sent to landfilling, while 12% is incinerated [4]. However, both disposal
methods lead to the release of toxic by-products, threatening ecosystems. Fossil-based
plastics consist of 90.2% of the total yield of plastics [1]. This type of plastic is known for its
low biodegradability and thus its complete degradation may take years to centuries [5]. Due
to plastic’s low biodegradability, together with poor waste management, plastic pollution
has become one of the most significant environmental threats impacting both terrestrial
and aquatic environments. It is estimated that around 30 million tonnes of plastic waste
have leaked into oceans and seas, and a further 109 million tonnes have flowed into rivers,
causing potential toxicological and physical risks to the aquatic ecosystem [6,7]. Therefore,
as an alternative to fossil fuel-derived plastics, bioplastics would help to tackle the plastic
pollution problem.

Recently, bioplastics have attracted attention as the world shifts towards sustainable
and renewable resources. Compared to fossil-based plastics, bioplastics are characterised
by their biodegradability and sustainability which make them a potential environmentally
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friendly alternative to petroleum-derived plastics [8]. It has been reported that bioplas-
tics can be completely biodegraded to biomass, carbon dioxide (CO2) and water within
2 months under standard conditions [9], which would in the long term significantly reduce
future plastic pollution and its severe impact on the environment.

Polyhydroxyalkanoates (PHAs) are a family of biodegradable polymers synthesised by
a broad range of microorganisms, i.e., bacteria and archaea, as an energy storage compound
in the form of lipid granules [10]. These biopolymers have similar mechanical characteristics
to petroleum-derived plastics in terms of flexibility, elasticity, versality, etc., which make
them one of the most investigated classes of bioplastics [11].

Despite the increasing market interest in PHAs and the significant number of studies,
the production of PHAs is still limited to pilot scale. According to European bioplastics
database [12], bioplastics production represented less than 1% of the total plastic production
in 2022. One of the main restrictions for the large-scale production of PHAs is the high
cost of production, which is approximately six times higher than the cost of petroleum-
derived plastics [13]. The carbon source used as a feedstock is the main reason for the high
production cost, accounting for around 50% of the total production cost [14,15]. Therefore,
it is necessary to find cheap and efficient alternative substrates to increase the economic
feasibility and sustainability of PHA production. Recently, researchers have started to
explore the use of different low-cost substrates such as whey [16,17], glycerol [18,19],
molasses [20,21], oils [22,23] and wastewater [24] for the biosynthesis of PHAs.

The use of renewable, cheap, and abundantly available feedstocks, such as agricul-
tural waste, is also an option. Agricultural wastes are residues produced in the process
of agricultural production and include crop residues, leaf litter, bagasse, sawdust, and
peels [25]. This type of waste consists one of the largest categories of waste produced
worldwide, with an estimated 998 Mt generated annually [26]. The lignocellulosic residues
can be considered as promising feedstocks for PHA production due to their abundant
availability, low cost, and lack of competition with human and food supply [27]. Cellulose
and hemicellulose are the main compounds of lignocellulosic residues and their hydrolysis
releases fermentable sugars [28]. These sugars can be turned into PHAs via biological
processes by PHA-producing microorganisms. Several studies have investigated the use
of agricultural waste such as food residues, bagasse, straws, corn cob and spent coffee
grounds for PHA production [29–33].

One of the most abundant agricultural lignocellulosic wastes in tropical and sub-
tropical regions is sugarcane bagasse (SCB). PHAs can be efficiently produced through
integration into a sugarcane mill [34]. Besides being a cheap feedstock for PHA production,
SCB can also be incinerated to generate the energy required for the production process.
Hence, PHA production from SCB is an economically viable option due to the accessibility
of a low-cost carbon source and energy. While several reviews discuss the use of different
wastes to produce bioplastics, none have fully examined the use of SCB for the biosynthesis
of PHA. This review highlights the recent advancements in research on the microbial
production of PHA using SCB as potential feedstock. This includes a discussion of the
pretreatment strategies, enzymatic hydrolysis, and accumulation of PHA by different
microorganisms using this agricultural waste. In addition, the challenges associated with
the use of SCB in PHA biosynthesis, which impacts its feasibility at a large scale, are
discussed. To overcome these challenges, a biological strategy, co-culture, is suggested and
discussed. Finally, an example of a circular economy model is proposed.

2. Structure and Composition of Polyhydroxyalkanoate

PHAs are biodegradable and biocompatible thermoplastics, soluble in chlorinated sol-
vents, insoluble in water and resistant to hydrolytic attack and UV [35]. These biopolymers
are polymerised polyoxoesters of polyesters of hydroxyalkanoates synthesised intracellu-
larly by a wide range of microorganisms in the form of granules, with diameters ranging
between 0.2 and 0.5 µm (Figure 1) [10,36,37]. The physical and chemical properties of PHAs,
such as melting point, crystallinity, hydrophobicity, etc., differ significantly depending
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on the composition of the monomers [38]. PHAs also have a wide range of mechanical
characteristics which vary from hard to elastic thermoplastics according to the type of
feedstock, microbial host and fermentation strategy [38–40].
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Figure 1. General structure of polyhydroxyalkanoates accumulated in bacteria in the form of granules.
Polyhydroxyalkanoates are classified as short chain length (scl-PHAs), medium chain length (mcl-
PHAs) and long chain length (lcl-PHAs). The table insert shows different PHA derivatives.

The classification of PHAs depends on the number of carbon atoms present in their
hydroxyacid chain, consisting of three classes including short chain length (scl-PHAs) with
3–5 carbon atoms, medium chain length (mcl-PHAs) with 6–14 carbon atoms and long chain
length (lcl-PHAs) with more than 14 carbon atoms in each monomer unit [10,41,42]. Due to
differences in structure, the physical and mechanical properties of scl-PHAs differ from mcl-
PHAs. For example, scl-PHAs have a significantly higher melting point than mcl-PHAs,
which have a greater elasticity than scl-PHAs [43]. More than 150 monomers of PHAs have
been reported to date with different structures including saturated, unsaturated, straight,
branched and aromatic with poly(3-hydroxybutyrate) (PHB) being the most synthesised
monomer [43]. Depending on the type of monomers and composition, PHAs can be
classified as homopolyesters with only one monomer type or heteropolyesters with two or
more monomer types [44].

3. Microbial Production of Polyhydroxyalkanoates and Different Pathways

PHAs are synthesised by different microorganisms, including bacteria and archaea
such as Bacillus, Pseudomonas, Acinetobacter, Legionella, Agrobacterium, Halobacteriaceae, to
sustain energy balance in the cell [45]. There are two groups of microbes involved in PHA
production [46]. The first group includes growth-associated microorganisms, such as recom-
binant Escherichia coli, which accumulate PHAs during their exponential phase. The second
group consists of non-growth-associated microbes, such as Pseudomonas oleovorans, which
synthesise PHAs under stress due to an excess in carbon, limitation of oxygen, nitrogen or
phosphorus, and extreme conditions. Classical strain improvement and metabolic engineer-
ing have also been broadly applied to generate PHA-producing engineered microorganisms
in order to improve PHA production [13].

Among the different PHA-producing bacteria, Burkholderia cepacia and Cupriavidus
necator, previously known as Ralstonia eutropha and Wautersia eutropha [47], are known for
their ability to accumulate up to 75% and 90% (% of CDM) of their cellular mass as PHA
and for using different substrates as carbon sources [48,49]. Several Bacillus species such
as Priestia megaterium (previously known as B. megaterium [50]) have also been used to
produce PHA due to their high growth rate, absence of lipopolysaccharide cell membrane
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which facilitates the extraction process, and the ability to produce enzymes that hydrolyse
complex substrates for simpler carbon sources [51].

The microbial synthesis of PHA involves three different pathways, which depend
on the general metabolism of the microbial host (Figure 2). Scl-PHAs are synthesised by
bacteria such as Cupriavidus necator through the glycolysis of sugars via pathway I. This
pathway involves three key enzymes including 3-ketothiolase, acetoacetyl-CoA reductase
and PHA synthase encoded by three genes, phaA, phaB and phaC, grouped together on the
phaCAB operon, respectively. Following the glycolysis of glucose, 3-ketothiolase converts
two molecules of acetyl-CoA into one molecule of acetoacetyl-CoA. Acetoacetyl-CoA is
then converted into 3-hydroxybutyryl-CoA by acetoacetyl-CoA reductase. Finally, an ester-
bond is formed between 3-hydroxybutyryl-CoA molecules to produce a polymer such as
PHB [52]. Mcl-PHAs are synthesised via pathway II and III, such as in Pseudomonas sp.
through different types of precursors and enzymes. Pathway II involves the production
of PHAs from the breakdown of lipids and fatty acids by the β-oxidation cycle [53]. In
this pathway, different hydroxyacid monomers are synthesised by the activity of acyl-CoA
oxidase, (R)-specific enoyl-CoA hydratase, and 3-ketoacyl-CoA reductase. Polyhydrox-
yalkanoate synthase then joins the monomer molecules to produce PHA polymers [46,54].
Pseudomonas aeruginosa is an example of bacteria that use pathway II to produce mcl-
PHAs [55]. Pathway III emphasises the production of PHAs from simple carbon sources
such as methanol and carbon dioxide (CO2) [56]. The phaG gene encodes for an acyl-ACP-
CoA transacylase enzyme which is responsible for the transformation of intermediates
generated in the fatty acid biosynthesis pathway to COA form [57].
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Figure 2. Metabolic pathways including precursors and enzymes involved in the microbial synthesis of
PHAs from sugars through glycolysis (pathway I), fatty acids through β-oxidation (pathway II) and
simple carbon sources through the de novo synthesis of fatty acids (pathway III). The major enzymes
involved in the production process are PhaA: 3-ketothiolase; PhaB: acetoacetyl-CoA reductase; PhaC:
PHA synthase; PhaG: (R)-3-hydroxyacyl-ACP-CoA transferase; PhaJ: (R)-specific enoyl-CoA hydratase;
FabD: Malonyl CoA-acyl carrier protein (ACP) transacylase; and FabG: 3-ketoacyl-ACP reductase.

4. Sugarcane Bagasse: An Abundant Substrate for Polyhydroxyalkanoate Production

Sugarcane, Saccharum officinarum, is a major crop in tropical and subtropical regions,
with its juice being the main feedstock to produce sugars in sugar mills. With around 1870
Mt produced annually, sugarcane contributes more than 70% of the global sugar demand
and is one of the largest feedstocks for biofuels production globally [58].
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Numerous waste products are generated during the processing steps of sugarcane
including sugarcane straws as harvest residues, bagasse after sugar extraction, molasses,
etc. Compared to the world’s other major crops such as wheat, rice and corn, sugarcane
produces the highest crop residues yield per unit area and the highest lignocellulosic con-
tent, some three to four times higher than other major crops [59]. Sugarcane bagasse (SCB)
is obtained after a series of milling steps to extract sugars from sugarcane. Theoretically,
for every tonne of sugarcane, 0.3 tonnes of bagasse is generated. This residual waste is
considered one of the largest agricultural wastes globally, with an annual production of
513 Mt [60]. A significant fraction of SCB is usually disposed of in an uncontrolled way
as waste piles in open lands, resulting in serious environmental problems including the
release of unpleasant odours arising from the decomposition of waste, greenhouse gas
emissions, land contamination and occasionally self-igniting fires [61]. When not landfilled
or disposed of, SCB is inefficiently incinerated for the generation of electricity in sugar
mills, which results in a loss of around 65% of its energy content, in addition to the emis-
sion of a significant amount of carbon dioxide [62]. In contrast, bagasse can be converted
into valuable products due to its high polysaccharide content, which consists of around
60–80% of its wet mass [63]. For example, monosaccharides, resulting from the hydrolysis
of polysaccharides in bagasse, can be fermented by microbes into biofuels, biopolymers
such as PHAs [64]. Moreover, due to its fibrous nature, SCB can potentially be used in the
production of sound adsorbers and thermal insulation [65]. The use of SCB to produce
PHAs offers several advantages as it is considered a sustainable source for PHA production
that does not compete with food production, which addresses the concern associated with
the use of food crops to produce biopolymers [41]. Moreover, the use of such agricultural
residues represents a form of waste valorisation, by converting SCB into a valuable bio-
plastic, thus reducing its negative impact on the environment. In addition, using SCB as
a feedstock reduces the dependency on fossil fuels used to produce conventional plastics
which consume around 20% of global oil and gas [66]. Overall, the production of PHA
using SCB as a carbon source aligns with the concepts of circular economy, sustainability
and a transition towards greener products.

5. The Structure and Composition of Sugarcane Bagasse

The structure and composition of SCB have been extensively studied [64,67]. Bagasse
is a fibrous waste consisting of about 40–45% fibres, 45–50% water and 2–5% dissolved
sugars [68]. The fibres are mostly composed of cellulose (40–50%), hemicellulose (25–35%)
and lignin (20–30%) [69]. Cellulose and hemicellulose are embedded in the lignin matrix
which helps to improve the rigidity of the bagasse [63]. Cellulose consists of -D-glucose
bonded by β-1,4-glycosidic bonds. Due to its high molecular weight and crystallinity,
cellulose is not digested by humans and does not dissolve in water [70]. Hemicellulose is an
amorphous polysaccharide and is composed mainly of xylose, with other sugars including
galactose, mannose, arabinose and rhamnose [69]. Both cellulose and hemicellulose are
valuable compounds in bagasse as they represent sustainable sources of fermentable
sugars after hydrolysis. However, lignin is a phenolic macromolecule that is resistant to
enzymatic degradation [71]. Therefore, the lignin percentage and distribution in SCB are
considered major parameters in determining the resistance of bagasse to hydrolysis and
thus sugars release [72].

6. The Production Process of Polyhydroxyalkanoates from Sugarcane Bagasse

Transforming complex polysaccharides into fermentable sugars is one of the major
challenges in the use of SCB as a feedstock to produce PHAs and requires two essential
steps: pretreatment and hydrolysis. After hydrolysis, monomeric sugars are fermented by
PHA-accumulating bacteria. The pretreatment of SCB is required for the removal of lignin,
decrystallisation of glucose and partial depolymerisation of hemicellulose to increase the
porosity of bagasse and facilitate the access of enzymes during the hydrolysis step [73].
Consequently, both polysaccharides, cellulose and hemicellulose, can be hydrolysed to
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monosaccharides, making SCB a potential raw material for the biosynthesis of PHA. Gener-
ally, a biorefinery aims to sustainably convert biomass, in an optimal matter, to produce
high-value products. To accomplish this, an SCB-based biorefinery should combine several
biotransformation processes to utilise each lignocellulosic component of bagasse, resulting
in an adequate yield and valorisation of cellulose, hemicellulose, and lignin. It has been
reported that with appropriate pretreatment and an efficient enzymatic hydrolysis, 90% of
the total reducing sugar yield from a lignocellulosic biomass can be utilised [74]. A general
scheme presenting the production of PHA from SCB is shown in Figure 3.
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6.1. Pretreatment of Sugarcane Bagasse

The pretreatment of SCB allows the removal of lignin and the breakdown of the
lignocellulosic structure [75]. Pretreatment strategies have been applied to lignocellu-
losic materials, including SCB, to reduce their recalcitrance and improve the release of
fermentable sugars following enzymatic degradation. The pretreatment of lignocellulose
may be conducted using chemical, physical or biological processes. Pretreatment is con-
sidered effective if it accomplishes the following: (1) enhances the release of fermentable
sugars; (2) preserves the structure of carbohydrates; (3) limits the formation of by-products,
i.e., inhibitors; and (4) is economically feasible [76]. Many pretreatment methods have
been performed on SCB with the most common methods being dilute acid hydrolysis,
alkaline pretreatment, steam explosion, organosolv pretreatment, liquid hot water and
biological pretreatment. Table 1 shows some examples of different pretreatments for SCB
and their outcomes.

Table 1. Advantages and disadvantages of pretreatments with examples of sugarcane bagasse
pretreatments from the literature.

Pretreatment Experimental
Conditions

Experimental
Outcomes Advantages Disadvantages Reference

Dilute acid
hydrolysis

1% H2SO4, 120 ◦C
for 40 min.

Removal of 55% of
holocellulose, 32.9% of

lignin and
83% sugar yield.

Efficient removal of
lignin.

High solubility of
hemicellulose.

Efficient sugar recovery.
Low-cost application.

Specialised
equipment
required.

Corrosive process.
Formation of

inhibitors.

[77]

1% H2SO4, 1%
CH3COOH, 190 ◦C

for 10 min.

Removal of 90.9% of
hemicellulose and
76% sugar yield.

[78]
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Table 1. Cont.

Pretreatment Experimental
Conditions

Experimental
Outcomes Advantages Disadvantages Reference

Alkaline
pretreatment

3% NaOH, 50 ◦C
for 240 min.

Removal of 78.6% of
lignin and

39% sugar yield.
Efficient removal of

lignin.
Decrease in cellulose

crystallinity.
Low formation of

inhibitors.

Partial
solubilisation of
hemicellulose.

Enzymes needed
for sugar recovery.
High water usage

for washing.

[79]

0.5 M Na2CO3,
140 ◦C for 80 min.

Removal of 83% of
lignin,

18.6% cellulose yield and
21.4% xylose yield.

[80]

Steam
explosion

0.01 mol L−1

C6H8O7, 180 ◦C,
863 kPa for

5 min.

Removal of 41% of
hemicellulose and 14.3%

of lignin.

Eco-friendly process.
No specialised

equipment required.

High temperatures
required.

Formation of
inhibitors.

[81]

Organosolv
pretreatment

0.5% H2SO4 and
95% glycerol, 121
◦C for 10 min.

Hydrolysis of 42% of
cellulose.

Major removal of lignin
and hemicellulose.

Use of volatile
solvents.

High cost due to
solvent use.

[82]

Liquid hot
water

Water with C2H6O,
160 ◦C for 60 min.

Removal of 16.9% of
lignin.

Short reaction time.
No chemicals required.

Improved
saccharification

efficiency.

High temperature
required.

Formation of
inhibitors.

[83]

Biological
pretreatment

500 mg
Ceriporiopsis

subvermispora per
kg of SCB, 27 ◦C

for 60 days.

Removal of 47% of xylan
and 48% of lignin.

Eco-friendly and
sustainable process.

No required chemicals.
Low energy

consumption.

Long reaction time.
Low hydrolysis

efficiency.
[84]

C6H8O7: Citric acid; C2H6O: Ethanol.

Pre-hydrolysis with dilute acid has been demonstrated to be an effective method for
lignocellulosic biomass such as SCB [85]. Sulfuric acid is the most widely used acid to treat
bagasse; however, other acids such as hydrochloric, phosphoric, and nitric acid can also be
employed [86]. Many studies on dilute acid pretreatment using sulfuric acid have shown
the effectiveness of this acid on sugarcane bagasse. For example, Zhao et al. [87] reported
that pretreating SCB with 2% sulfuric acid for 2 h at 121 ◦C allowed the solubilisation of 85%
of the hemicellulose and the elimination of 16% of the lignin content. Due to its low cost and
convenient application, dilute acid pretreatment is the most used pretreatment for bagasse
to produce PHA [88–93]. However, the disadvantage of this method is the formation of
different types of inhibitors, such as phenolic compounds from lignin degradation, and
furfural, hydroxymethylfurfural (HMF) and acetic acid from hemicellulose and cellulose
degradation [94]. These inhibitors have negative effects on the microbial fermentation [95].

Alkaline pretreatment is another chemical pretreatment strategy used for SCB. This
pretreatment is considered a cost-effective process with less inhibitors produced [96].
Several bases can also be used, such as sodium hydroxide (NaOH) [97,98], potassium
hydroxide (KOH) [99], calcium hydroxide (Ca(OH)2) [100], ammonia (NH3) [101] and a
combination of NaOH and hydrogen peroxide (H2O2) [102]. Yu, Tan, Sun, Nishimura,
Takei, Tang and Kida [98] reported that treating SCB with NaOH (1%) for 10 min at 120 ◦C
removed 67.5% of lignin. Similarly, Zhang et al. [103] reported that using NaOH with H2O2
in the pretreatment of SCB resulted in a significant breakdown of lignin, hence improving
the enzymatic digestibility of the bagasse. The main disadvantage of this pretreatment
is that the use of sugars released from hemicellulose is more difficult than in the case of
dilute acid pretreatment. This is because most of the hemicellulose content remains in the
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residual bagasse even after alkaline pretreatment, hence the need to add hemicellulolytic
enzymes such as xylanase in the following hydrolysis step [104].

It has also been demonstrated that organosolv pretreatment is effective to pretreat
bagasse in many studies. Schmatz and Brienzo [105] were able to remove 45.3% of lignin
and 72.5% of hemicellulose from SCB after pretreatment with 50% ethanol at 121 ◦C.
Similarly, Zhang et al. [106] reported the effective removal of 75.5% lignin after pretreating
bagasse with 60% ethanol and 5% NaOH at 180 ◦C. This pretreatment employs an organic
solvent with high concentrations ranging from 30 to 70% at temperatures of 100–200 ◦C in
the presence or absence of a catalyst [107]. One drawback of organosolv pretreatment is the
high cost compared to other leading pretreatments [108].

As a physical pretreatment, steam explosion is an eco-friendly technology which al-
lows the fractionation and recovery of the three main components of SCB in high yield [109].
For instance, Silveira et al. [110] pretreated SCB by steam explosion using a 65 L reactor.
The pretreatment resulted in 85% hemicellulose solubilisation, proving the efficiency of
this technique. Pitarelo et al. [111] also used steam explosion in the presence of H3PO4
with a concentration of 19 mg g−1 to pretreat SCB. Pretreatment at 180 ◦C for 5 min was
reported to be optimal, with a total sugar yield of 75% after hydrolysis. In addition to
steam explosion, liquid hot water is a green technology that can be considered a potential
pretreatment method to pretreat SCB. Zhang, You, Lei, Li and Jiang [83] reported that the
acetyl-assisted hot water pretreatment of SCB with water for 70 min at 160 ◦C resulted in
9.8 g L−1 of xylose. Moreover, it has been reported that autohydrolysis can alter the surface
morphology of SCB and improve the saccharification efficiency [112].

Biological pretreatment is an environmentally friendly method based on employing
suitable cellulolytic and hemicellulolytic enzymes or microorganisms to degrade lignocel-
lulosic biomass [113]. This pretreatment requires less energy and generates fewer inhibitors
compared to chemical and physical pretreatments [114]. However, the long biodegra-
dation period limits the further development and use of this pretreatment method by
industries [84]. Microorganisms, including fungi and bacteria, isolated from different
environments such as soil and lignocellulosic waste can be used for biologically pretreat-
ing SCB. To date, few studies evaluating the biological pretreatment of SCB have been
reported [84]. However, some studies have shown that the use of fungi enhances the di-
gestibility of polysaccharides, while very few microorganisms are able to fully decompose
lignin in SCB [115–117]. Microbial consortium pretreatment has been used on lignocellu-
losic biomass to increase biogas production [118,119]. However, its use to pretreat SCB to
increase PHA production has not been fully investigated. This pretreatment method does
not require the sterilisation of biomass in the case of using pure culture [85]. Generally,
the use of biological pretreatments to treat lignocellulosic biomass is not as effective as
chemical pretreatments due to its long degradation time and high selectivity of microbes.
Further studies are needed to overcome these issues and enable the use of this green
pretreatment efficiently.

6.2. Hydrolysis of Polysaccharides in Treated Sugarcane Bagasse

Following pretreatment, SCB undergoes hydrolysis to transform cellulose and hemi-
cellulose into monomeric sugars to produce PHA. This step facilitates the availability
and solubility of the carbon source to be used by bacteria. Generally, acid treatment and
enzymatic hydrolysis are the major methods employed. However, enzymatic hydrolysis
is favoured over acid hydrolysis as it is environmentally friendly, releases less inhibitors,
does not require corrosion resistant equipment, and most importantly, leads to an almost
complete hydrolysis of cellulose content in SCB, resulting in a high PHA yield [120,121]. Cel-
lulase is responsible for the hydrolysis of cellulose by cleaving the β-(1–4)-D-glucose. There
are three types of cellulases involved in hydrolysis; endoglucanases, exocellobiohydrolases
and β-glucosidase [122]. These cellulases break down the cellulose into monosaccharides,
mainly glucose molecules. In contrast, many enzymes are required for the hydrolysis of
hemicellulose, such as xylanases, arabinofuranosidase and glucuronidase [121]. Due to its
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branched structure, hemicellulose is readily hydrolysed to mainly xylose, galactose, and
arabinose [123]. Several bacterial and fungal microorganisms can hydrolyse polysaccha-
rides from lignocellulosic biomass into fermentable sugars. Bacteria belonging to the genera
Streptomyces, Bacillus and Clostridium have been reported as cellulolytic bacteria [124]. In ad-
dition, fungi such as Trichoderma, Penicillium and Aspergillus exhibit a wide range of cellulase
enzymes which play a key role in the hydrolysis of lignocellulosic biomass [125]. Although
research on hydrolysis by microorganisms has been conducted and some progress has been
reported, the use of bacteria and fungi is rarely carried out due to the long incubation time
required to achieve hydrolysis [126]. Usually, commercial enzymes are applied to achieve
an efficient hydrolysis rate.

7. The Status of the Production of Polyhydroxyalkanoates from Bagasse

Studies on PHA production using SCB hydrolysates have focused on optimising both
culture conditions and experimental parameters to achieve high yields. Batch culture
approaches has been the most applied system reported. While a wide range of biopolymers
are produced by bacteria, PHB is the main polymer produced from SCB (Table 2). Several
factors affect the yield of PHA from SCB including the microorganism used, the mode of
culture (pure, co-, or mixed culture), and experimental parameters such as incubation time,
pH, inoculum density, temperature, carbon to nitrogen ratio (C/N) and oxygen concentra-
tion [127]. The optimisation of experimental parameters depends on the microorganism
and the mode of culture used to produce PHA. Currently only a few microorganisms have
been investigated for their potential to produce PHA from SCB (Table 2). Bacillus spp. was
used to produce PHB from pre-treated SCB and achieved a polymer content of 56% [30].
In another study, Burkholderia sp. was able to utilise SCB hydrolysate and produced PHB
with 49% polymer content [128]. However, a PHB content of 61.5% was achieved when
Lysinibacillus sp. utilised SCB hydrolysate with 2% corn steep liquor [129]. Madhumathi
et al. [130] reported that, compared to other agrowastes such as molasses, rice bran, wheat
bran and whey waste, SCB showed the maximum PHA yield with a concentration of
6.4 g L−1 and an accumulation of about 70% by Bacillus safensis. This can be explained
by the high cellulose content in SCB that was converted into glucose, readily utilised by
Bacillus safensis.

The efficiency of enzymatic hydrolysis depends on several parameters including the
structure of pretreated SCB, enzyme loading and the hydrolysis period [122]. According
to several economic analyses, the steps of releasing sugars from lignocellulosic biomass,
including pretreatment and hydrolysis (the production and purification of enzymes), con-
tributes to around 45% of the total cost, with the cost of cellulase enzyme being between
$0.2 to $0.4 per litre of the final product [120]. The high cost associated with pretreat-
ment and the use of enzymes currently hinders the use of SCB at a large scale for PHA
production. Therefore, reducing these significant costs is a key concern for making SCB
utilisation a commercially viable process. Catabolite repression is also considered one of
the factors responsible for the low yield of PHA, where the presence of one carbon source
controls the use of others in the culture medium; that is, bacteria selectively assimilate
only one carbon source among many other sources present in the medium, resulting in
low productivity [131]. As previously stated, glucose and xylose are the main sugars
released following the hydrolysis of SCB. As bacteria generally prefer the C6 sugar, glu-
cose, this causes an accumulation of the C5 sugar, xylose, and other sugars, which results
in an inefficient bioconversion of SCB into PHA. An important exception has been re-
ported recently by Kourilova et al. [132] who demonstrated that the thermophilic strain of
Schlegelella thermodepolymerans (now Caldimonas thermodepolymerans [133]) prefers xylose
over other sugars including glucose, arabinose fructose, galactose, mannose, and lactose
and accumulates a considerable amount of PHA using xylose-rich resources. Moreover,
the release of inhibitors during the pretreatment of SCB can significantly affect the growth
of PHA-producing bacteria [134]. Therefore, further research is required in terms of the
optimisation and improvement of PHA synthesis from SCB. Additionally, there is a need to
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investigate more microbial strains for their ability to use more than one carbon source from
the SCB hydrolysate mixture.

Table 2. Studies in the literature using sugarcane bagasse (SCB) hydrolysates as feedstock to produce
polyhydroxyalkanoates (PHA).

Microorganism Mode of
Culture Type of PHA

Dry Cell
Weight
(g L−1)

PHA
Accumulation

(% CDW)

PHA Titre
(g L−1) Reference

Lysinibacillus sp. RGS Batch PHB 8.7 61.5 5.3 [129]

Klebsiella pneumoniae G1 Batch PHB 22.5 40 9 [135]

Bacillus safensis EBT1 Batch PHB 9.2 69.5 6.4 [130]

Burkholderia sp. F24 Batch PHB
PHB-co-HV 9.8 49 4.72 [128]

Halogeometricum
borinquense strain E3 Batch PHB-co-HV 4.2 45.7 1.9 [136]

Burkholderia sacchari
IPT101 Batch PHB 4.4 62 2.7 [137]

Burkholderia cepacia
IPT048 Batch PHB 4.4 53 2.3 [137]

Bacillus sp. Batch PHB 9 55.6 5 [30]

Ralstonia eutropha Batch PHB 6 65 3.9 [138]

Burkholderia glumae
MA13 Batch PHB 0.61 14.9 9 [139]

Bacillus thuringiensis IAM
12077 Batch PHB 10.6 39.6 4.2 [140]

Bacillus megaterium
PNCM 1890 Batch PHB 4.9 40.8 2 [141]

Bacillus sp. Batch PHB 9 55.6 5 [30]

PHB: poly(3-hydroxybutyrate); PHB-co-HV: poly(3-hydroxybutyrate-co-3-hydroxyvalerate).

8. Co-Culture: A Strategy to Address Polyhydroxyalkanoate Production Challenges

The microbial production of bioplastics using SCB supports the concept of a circular
economy. Nevertheless, this review has highlighted some challenges which hinder the
feasibility of producing bioplastics from this feedstock at an industrial scale. To address
these challenges, co-culture can be applied to enhance PHA production. Co-cultures are
biological systems where two or more different microorganisms naturally or artificially
grow together within a medium [142]. This biological system has the potential to mitigate
some challenges associated with the production of PHA from SCB, as it leads to the tolerance
of bacteria against inhibitors released during pretreatment, the promotion of enzymatic
hydrolysis and the bioconversion of several sugars into PHA within the culture medium.

Recently, there has been increasing interest in the use of synthetic co-cultures for PHA
production [49,143]. However, the use of co-cultures is currently reliant on the use of
expensive soluble sugars extracted from different plant biomass [144–146], while the use of
lignocellulosic feedstocks including SCB remains a significant challenge. Currently there are
only few studies that have used co-cultures to produce PHA from lignocellulosic biomass.
As an example, Saratale, Cho, Kadam, Ghodake, Kumar, Bharagava, Varjani, Nair, Kim,
Shin and Saratale [134] developed a microbial co-culture system of Lysinibacillus sp. RGS
and Ralstonia eutropha ATCC 17699 to enhance PHA production using acid pretreated SCB.
The co-culture strategy showed higher assimilation of SCB hydrolysates and stimulated
bacterial growth compared to individual strains. This study demonstrated that the use of
co-culture could result in an effective utilisation of SCB, due to a synergetic effect of the
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bacterial strains used in the experiment. Another study investigated the use of two bacterial
strains: the cellulolytic bacteria Streptomyces sp. SirexAA-E and the PHA-producing bacteria
Priestia megaterium NBRC 15308, where neither strain could produce PHA from Miscanthus
grass alone. However, co-culturing both strains allowed the production of PHA without
any addition of hydrolysis enzymes [147]. Co-culture can also be employed to overcome the
catabolite repression of some sugars. In a study conducted by Lee et al. [148], to avoid the
inhibiting effect of glucose, Bacillus sp. SM01, a xylose-utilising bacterium was co-cultured
with Cupriavidus necator NCIMB 11599, which is known for its inability to assimilate xylose.
The study showed an increase in PHA production of 40% compared to monoculture.

Compared to other microbial systems, microbial co-culture is more robust than a
monoculture system, while it is less complex than mixed culture systems. Therefore, the co-
culture approach is a potential alternative for the efficient bioconversion of lignocellulosic
feedstocks into valuable biopolymers [49]. Studies on synthetic co-cultures have primarily
focused on the use of a broader range of simple substrates, the neutralisation of toxic
by-products and the synthesis of mcl-PHAs [49,144,149–151]. However, research on the use
of synthetic co-culture systems to produce PHA from complex substrates such as SCB is still
at an early stage and needs more investigation in terms of exploring microbial interactions
and bioprocess optimisation. In addition to investigating microbial interactions, exploration
of the robustness of the co-culture systems and the effect of prolonged co-evolution during
their application in the PHA production process is needed. Future studies must address
these topics to have better understanding of the applicability of co-culture systems to
produce PHA from lignocellulosic biomass such as SCB.

9. Circular Economy Model for Polyhydroxyalkanoate Production

Sugarcane is produced in tropical and subtropical areas in Australia with 95% grown in
Queensland and about 5% in northern New South Wales [152]. Based on data provided by
the Australian Sugar Milling Council, 30,090 kT of sugarcane was produced and crushed in
2021 (Figure 4) [153]. The milling and processing of sugarcane generated around 10,000 kT
of bagasse [154]. Currently, sugarcane bagasse is used as a carbon-neutral fuel source to
generate electricity [155]. The use of bagasse as a fuel source is desirable as it can generate
more than one million MWh per year, of which 56% is used to power operations and 44%
is exported to the grid, capable of powering up to 135,000 households (Figure 4) [156].
However, not all bagasse generated can be used as a fuel source; this is due to the high
capital cost involved in establishing co-generation facilities. The current combined capacity
of the 28 power stations utilising bagasse as a fuel source is 539 megawatts, with an
estimated capital cost of around $1.5 billion [157].

It was reported by the National Waste Report that 10,300 kT of bagasse, in the form of
available bagasse, was produced in Australia in 2021 [154,157]. While the fate of bagasse
was not recorded, bagasse is generally transported off-site and disposed of in landfills,
resulting in greenhouse gas (GHG) emissions [155,158]. This can incur high operational
expenses as the estimated cost of landfills in Australia is between $42 to $101 per tonne
of waste [159]. In addition, the disposal of bagasse into landfills will generate around
2.1 tonnes of CO2-equivalent per tonne of waste [160]. In this current linear economy
model, valuable resources arising from bagasse are lost and their disposal into landfills is
not environmentally friendly (Figure 4).

The diversion of this valuable resource away from landfills and into PHA production
can create a closed-loop, circular economy model for bagasse in Australia and tropical and
subtropical regions of the world. Bagasse can undergo biological processes to produce
PHAs, which can be turned into environmentally friendly bioplastics. The desirable
features of PHAs, such as mechanical properties, biocompatibility, biodegradability and
non-toxicity, make them suitable for diverse applications across various sectors including
but not limited to industrial, environmental, and biomedical sectors. The application of
PHAs in industries involves their use for packaging. For example, a copolymer (poly(3-
hydroxybutyrate-co-3-hydroxyvalerate)), marketed as BIOPOL® was produced by Imperial
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Chemical Industry Biological (ICI), London, UK, and used for the packaging of shampoo
bottles and razors as well as disposable cups [161]. Another PHA, poly(3-hydroxybutyrate-
co-3-hydroxyhexanoate)(PHBH), is industrially produced under the name of Nodax™
by Danimer Scientific, Bainbridge, GA, USA, and is applied in packaging carpet and
compostable bags [38]. Due to its high filler loading ability, PHA can also be used with
various natural fibre materials to develop biopolymer composites. For example, studies
reported the use of PHB or PHBV with the reinforcement of SCB to produce PHA-based
composites [162,163]. The biomedical application of PHA includes its use as a drug carrier,
for implants, in tissue engineering, etc. [164]. In terms of environmental application, PHAs
can be used as antimicrobial agents to control the outbreak of certain diseases. It has been
reported that the use of PHB in aquacultures controls Vibrio infection in shrimp due to its
antiadhesive property [165].
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The biowaste arising from bioplastic applications, as well as from the consumption
of bioplastic-derived products, can be composted. Compostable biopolymers are being
developed and demonstrate a high degradation rate [166]. In the last ten years, researchers
have explored the role of composting in the biodegradation of bioplastics [167–169]. This
fertiliser can then be reapplied to sugarcane plantations, closing the waste loop of bagasse.
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10. Conclusions

Plastic pollution has increased significantly in recent decades, posing health and envi-
ronmental risks. Biodegradable plastics are a sustainable alternative to petroleum-derived
plastics. One of these bioplastics is PHA, a biopolymer produced by microbes which
shows promising chemical and physical properties, biocompatibility, and biodegradability.
Despite the increasing market interest in PHAs, their production is not practical due to
high production costs. A lack of a suitable carbon source is one of the major constraints for
large-scale production. Therefore, finding a cheap carbon source to be used as a feedstock
is a potential solution. While the concept of using agricultural waste to produce PHA is
not new, innovative and new strategies are needed to reduce the cost associated with the
production of PHA and improve the feasibility of producing these biopolymers at large
scale. Currently, the selection of an efficient pretreatment of SCB with a high sugar recovery
level and less inhibitors is considered a key factor to maximise the PHA yield. Moreover,
the selection of the most suitable strains and culture strategies as well as the optimisation
of the experimental conditions are crucial to achieve scale-up of PHA production. The
development of an eco-friendly strategy employing the co-culture of PHA-producing mi-
croorganisms, which simplifies the steps in the conversion of SCB into bioplastics, and
reduces the cost of production, would be a significant breakthrough for the PHA industry.
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