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Abstract: Calcareous sand, ubiquitous in the geotechnical makeup of the South China Sea, exhibits
both compressibility and vulnerability to fragmentation when subjected to external loading, spanning
a spectrum from typical to extreme conditions. This investigation aims to quantitatively assess
the compression and particle breakage characteristics of calcareous sand under varied parameters,
including relative density, saturation, applied loads, and loading paths, specifically focusing on sus-
tainable geotechnical methodologies. Through a series of confined compression tests, this evaluation
employed the relative breakage ratio and fractal dimension as key evaluative metrics. The results
indicated that employing this integrated approach offered a more comprehensive understanding
of calcareous sand breakdown mechanisms than relying on a singular particle breakage index. Fur-
thermore, an increase in relative density can induce a transition in particle contact behavior, shifting
from point-to-point interactions to face-to-face contact, thereby reducing inter-particle stress and
minimizing grain breakage, particularly under loads below 200 kPa. Increasing loads exacerbated
particle breakage, with finer particles predominantly initiating this process. During reloading, pore
ratios across various load levels surpass those observed during initial loading, except at 1600 kPa,
where a decline in pore ratio was noted, coinciding with pore water extrusion and the onset of new
particle fracturing. The lubricating effect of water reduces inter-particle friction, enhancing stress
concentration at particle edges and localized particle breakage, thereby increasing the presence of
finer particles without significantly altering the overall structure. Notably, the influence of pore
water pressure is evident during the reloading phase. These findings contribute to a refined theoreti-
cal framework for predicting coastal erosion risks and devising effective environmental protection
strategies for sustainable coastal engineering practices.

Keywords: calcareous sand; particle breakage; relative breakage ratio; fractal dimension; compression
behavior

1. Introduction

Calcareous sand, abundant in the South China Sea and originating from marine organ-
isms like corals and shells, mainly consists of insoluble carbonates, particularly calcium
carbonate [1–3]. Its extensive utilization as a construction filler in island development
encompasses a variety of applications, including foundations [4], roadbeds [5], and airport
runways [6]. The irregular shapes, dense pore structure, inadequate gradation, and low
particle strength collectively contribute to the distinct compression and crushing properties
of this material [7–14].

The distinctive nature of calcareous sand plays a pivotal role in coastal environments.
The fragmentation of these sand particles has a profound impact on coastal erosion and
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overall coastal stability [15,16]. Fragmentation leads to a reduction in grain size, a no-
table increase in sediment mobility, and an exacerbation of vulnerability to erosion. These
consequences pose significant challenges to both shoreline integrity and ecological equi-
librium [17]. Moreover, it amplifies the risk of sediment displacement and coastal erosion,
potentially resulting in adverse outcomes such as shoreline retreat as well as geological
hazards like landslides or collapses [18]. Furthermore, this disruption induces alterations in
sediment dynamics within nearshore areas, with the potential to reshape seabed structures
and geomorphological features [19]. Therefore, understanding the implications of cal-
careous sand particle fragmentation is crucial for effective coastal management, planning,
and sustainable development. A comprehensive understanding of these mechanisms is
essential for devising robust strategies in coastal engineering, environmental preservation,
and disaster mitigation. Precise insights into sand particle fragmentation significantly
contribute to accurate assessments of coastal erosion risks, enhanced disaster prediction,
and the formulation of sustainable coastal engineering solutions [20–22].

Previous studies have extensively investigated the breaking characteristics of calcare-
ous sand [23–26]. For instance, Coop [27] and Atkinson [28] comparatively examined the
mechanical behaviors of calcareous sand with diverse cementation degrees, identifying
particle breakage as a critical factor related to the high compressibility of calcareous sand.
Kong and Fonseca [29] conducted confined compression tests on calcareous sand composed
of shells, analyzed the evolution of particle morphology and coordination number during
the compression process, and discussed the effects of particle morphology and fabric on
interparticle relative motion. Wang et al. [30] concluded that the particle crushing strength
of calcareous sand tends to decrease as the particle shape shifts from bulky to elongated
and to flaky. Suescun-Florez et al. [31] tested the damage to calcareous sand during the
compression phase, identifying that the effect of particle coordination number was greater
than that of internal defects in particle breaking. Wang et al. [32] demonstrated that the
compression modulus of calcareous silt decreased with decreasing compactness or increas-
ing water content. By conducting triaxial shear tests on calcareous sand under different
axial strains, Wang et al. [33] concluded that the particle breakage quantity of calcareous
sand increased at a gradually decreasing rate with increasing axial strain and continued to
increase even after reaching peak deviatoric stress. Moreover, over the past few decades,
researchers have explored the mechanical characteristics and particle breakage evolution
of coral sand using ring shearing tests [34], alongside triaxial tests [35–37] and model
experiments [38,39]. However, changes in experimental methods have not resulted in a
comprehensive understanding of the calcareous sand breakage mechanism.

Currently, the forefront of research on calcareous sand fragmentation predominantly
centers on examining the evolution of single-particle test breaking modes with considera-
tion of probability theory, as well as exploring the correlation between plastic work and
particle breakage, along with the development of a novel estimation formulation for soil
elastic modulus [40,41]. Nevertheless, there is inadequate research on the contact mode
between calcareous sand particles and the evolution of the breakdown process under differ-
ent influencing factors. Notably, existing studies predominantly center on the destruction
of desiccated calcareous sand featuring uniform particle dimensions, mainly emphasizing
relative density [42,43]. However, the South China Sea encompasses not only a substantial
quantity of calcareous sand inclines but also considerable deposits of such sand below sea
level. Hence, the processes governing the disruption of both dry and saturated sand directly
influence the likelihood of coastal erosion. Additionally, given the extensive engineering
infrastructure within the reefs of the South China Sea, it becomes imperative to evaluate
the influence of loads and their associated loading trajectories.

The findings of this research substantially contribute to the formulation of more effec-
tive environmental protection measures, providing a scientific foundation for safeguarding
ecological systems along coastlines. In this study, a series of lateral compression tests on
full-grain-sized calcareous sand in the South China Sea were conducted to investigate the
influence of relative density, loads, dry or wet states, and loading modes on the fragmen-
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tation characteristics and compression properties of calcareous sand. The objective was
to maximize the range of each parameter to obtain all responses to the breaking pattern
of calcareous sand particles under individual factor variations. Moreover, a proposal was
made to analyze the entire evolution pattern of particle crushing by combining the relative
breakage rate with fractal dimensions. By delving into the mechanisms of particle cracking,
this study offers more accurate theoretical guidance, enhancing the precision and reliability
of predicting coastal erosion risks.

2. Materials and Methods
2.1. Test Material

The test material employed in this study consists of calcareous sand sourced from the
Xisha Islands in the South China Sea. The diameter of the calcareous sand particles was less
than 2 mm, covering the complete range of sand diameters. Figure 1 depicts the distribution
curve and presents SEM and camera-generated images of the sand particles following the
Standard for Geotechnical Testing Method (GB/T 50123-2019) [44]. These particles were
primarily composed of fragments of reef limestone, shell, and coral, displaying a noticeable
presence of densely distributed pores on their surfaces.
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Figure 1. Particle size distribution curve, SEM, and camera photo of calcareous sand.

Table 1 presents the physical characteristics and gradation parameters of the calcareous
sand, which were tested based on the Standard for Geotechnical Testing Method (GB/T
50123-2019). The maximum void ratio (emax) was found to be 1.344, while the minimum
void ratio (emin) was determined to be 1.094. The specific gravity (Gs) was measured at
2.81. Additionally, the non-uniform coefficient (Cu) was determined to be 2.04, indicating
a uniform distribution of particles within the sample, as it falls below the threshold of
5.00. The curvature coefficient (Cc) was calculated to be 0.953, suggesting a deficiency of
particles between the d30 and d60 ranges. Due to its failure to meet the criteria of Cu ≥ 5
and 1 ≤ Cc ≤ 3 [45], the sand sample was categorized as poorly graded.

Table 1. The physical and gradation parameters of calcareous sand.

emin emax d10/mm d30/mm d60/mm

1.094 1.344 0.446 0.675 1.072
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2.2. Test Equipment

The test was performed using a WG-type single-lever medium-pressure oedometer
manufactured by Nanjing Ningxi Soil Instrument Co., Ltd., Nanjing, China (Figure 2),
according to the Standard for Geotechnical Testing Method (GB/T 50123-2019). This
equipment consisted of three main components: a sample box, loading frame, and gauge.
The test specimen had a height of 2 cm, an inner diameter of 6.18 cm, and a surface area of
30 cm².
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2.3. Test Scheme

This investigation aimed to analyze the confined-breaking properties of calcareous
sand from the South China Sea under various conditions using α and Br. Figure 3 depicts
the experimental setup devised to examine the breaking characteristics of calcareous sands
concerning different relative densities (Dr), ending vertical stresses (Pe), saturations (Sr),
and loading modes (LM). The confined compression tests were conducted based on the
parameters Dr = 0.6, Pe = 1600 kPa, and Sr = 100%, employing a loading-unloading-
reloading mode (Table 2). Prior to testing, the calcareous sand was washed with deionized
water and air-dried to remove impurities that could potentially affect the experimental
results. Each test group included three samples to ensure reproducibility and allow for
parallel comparisons. The loading modes for vertical stress were designated as L1 and L2 in
Table 2, with L1 and L2 representing the vertical stresses (P) varied in the following paths:
12.5 kPa → 25 kPa → 50 kPa → 100 kPa → 200 kPa → 400 kPa → 800 kPa → 1600 kPa →
800 kPa → 400 kPa → 200 kPa → 100 kPa → 50 kPa → 25 kPa → 12.5 kPa, and 12.5 kPa →
25 kPa → 50 kPa → 100 kPa → 200 kPa → 400 kPa → 800 kPa → 1600 kPa, respectively.
The Dr of the calcareous sands varied as 0.2, 0.4, 0.6, and 0.8, while the Sr of specimens
were set at 0 and 100%, respectively, for a comparative analysis of the lateral mechanical
response between dry sand and saturated sand [5]. Furthermore, the Pe was designated
as 100 kPa, 200 kPa, 400 kPa, 800 kPa, and 1600 kPa to represent the different loading
amplitudes corresponding to practical coastal engineering [46].
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Table 2. Test scheme.

Test No. Dr LM Sr Pe (kPa)

T1 0.6 L2 100% 1600
T2 0.2 L2 100% 1600
T3 0.4 L2 100% 1600
T4 0.8 L2 100% 1600
T5 0.6 L1 100% 1600
T6 0.6 L2 0 1600
T7 0.6 L1 100% 100
T8 0.6 L1 100% 200
T9 0.6 L1 100% 400

T10 0.6 L1 100% 800

3. Results and Discussion
3.1. Compression Responses of Calcareous Sand
3.1.1. The Effect of Relative Density

Figures 4–6 depict the compression response of calcareous sands under different Dr
with 100% of Sr, 1600 kPa of Pe, and following the L2 loading path. Figure 4 illustrates
the correlation between void ratio (e) and lgP at various Dr. As shown in Figure 4a, a
notable reduction in e was observed in calcareous sands during the initial loading phase
across all groups. Additionally, in all groups, the e decreased as vertical stress increased
during both the initial loading stage and the reloading stage. This decline can be attributed
to two primary factors: the compression of interparticle voids due to particle positional
adjustments and the occurrence of particle breakage, as demonstrated in the research
conducted by Wang [47]. This finding holds significant implications for environmental
engineering practice, particularly in the prevention of calcareous sand coastal erosion. By
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understanding these mechanisms, more effective strategies would be devised for protecting
calcareous sand coastlines, thereby reducing the environmental impact of calcareous sand
erosion and sedimentation. During the unloading process, there is no significant rebound
observed in the void ratio (e), indicating that the deformation is predominantly irreversible
plastic deformation occurring during lateral compression of calcareous sand. This finding
aligns with the experimental results obtained by Wang [48]. During the reloading phase,
before reaching a 1600 kPa load, the e of calcareous sands across the four Dr grades
surpassed that observed during the initial loading at equivalent loading levels. This
disparity stems from the absence of new sand breakage during the reloading process
until loads reached 1600 kPa. Following the initial loading stage, the recovered elastic
deformation recurs during subsequent reloading. Subsequently, an increase in deformation
was observed when Pe reached 1600 kPa, which might be attributed to the extrusion of
pore water and the occurrence of new particle breakage.

Across all loading levels, a higher Dr corresponds to a lower initial void ratio (e0),
while this distinction among different groups gradually diminishes as the load increases.
Furthermore, as shown in Figure 4b, at the initial loading stage above 200 kPa, all groups
tend to have similar results, with the slope of the e-lgP curve remaining consistent. This
slope stability originates from the initial reduction in e, which depends on the relative
motion of particles. Therefore, a lower Dr provides greater movable space, resulting in a
higher curve slope when the load is below 200 kPa. As the sample is gradually densified,
limited space is available for particle movement. With increasing load, particle breakage
occurs, leading to a renewed reduction in e and subsequently minimizing the impact of Dr.

At both the unloading and reloading stages, the relationship between e and lgP appears
to exhibit a linear pattern, reminiscent of the reloading compression curve observed in clay,
as depicted in Figure 4c,d.

Figure 5 depicts the correlation between compression stiffness (Es) and P of calcareous
sands under different Dr. During the initial loading stage, when P is below 200 kPa, the
influence of Dr on the Es − P relationship behaves negligible. However, Es exhibits an
increase directly proportional to the rise in Dr as P exceeds 200 kPa. During the second
loading phase, the compression stiffness (Es) of the sands significantly surpasses the mea-
surements observed during the initial loading stage under similar loading conditions,
suggesting potential alterations in the internal particle structure following the initial load-
ing. These alterations could be considered to induce a denser arrangement among the
particles, resulting in higher stiffness during the subsequent loading phase. Moreover, post-
initial loading changes, such as potential increases in internal particle friction or enhanced
particle cohesion, could plausibly contribute to the observed heightened stiffness [48]. This
indicates that preloading significantly contributes to the construction of a robust calcareous
foundation. However, as the vertical stress (P) exceeds 800 kPa, a decline in Es is observed
due to the occurrence of new particle breakage within the calcareous sands. Additionally,
an upward anomaly emerges on the Es − P curve during the reloading phase, attributed to
the absorption of elastic deformation resulting from the unloading stage.

Figure 6 illustrates the correlation between the compression index (Cc) and vertical
stress (P). During the initial loading phase, the Cc of the sand within the Dr = 0.2 group
initially behaves in a decreasing direction, followed by an increase, and then exhibits
a continuously increasing trend. This deviation markedly behaves differently from the
outcomes observed in the remaining test groups, and this discrepancy could be attributed to
the presence of substantial voids within the Dr = 0.2 specimen, resulting in a predominant
point-to-point contact pattern among the granules. Similar results were observed by
Shen et al. [46]. Consequently, a considerable allowance for particle movement could be
considered to exist in the case of Dr = 0.2. With the development of the compaction of
the specimen under continuous loading, the Cc behaved correspondingly in a decreasing
direction. When P exceeds 25 kPa, most of the movable space within the Dr = 0.2 group
has been compressed. Subsequently, the Cc exhibits a consistent increasing trend with the
progressive increase in loading, mirroring the behavior observed in the other test groups. In
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contrast, the Cc of other test groups (Dr = 0.4, 0.6, 0.8) always exhibits an incremental trend
with the increase of P shown in Figure 6a, which can be attributed to the fact that they lack
sufficient spaces to facilitate their particle movements under low stress conditions. This
trend signifies the restricted motion of particles within the denser conditions, instigating
an increase in Cc as stress intensified.
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Figure 4. The e−lgP curves of calcareous sand under different Dr for (a) loading-unloading-reloading;
(b) the first loading; (c) unloading; and (d) reloading.
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Figure 5. The Es − P curve of calcareous sand under different Dr at (a) the first loading and (b) the
second loading.
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Figure 6. The Cc − P curve of calcareous sand under different Dr at (a) the first loading and (b) the
second loading.

During the reloading phase depicted in Figure 6b, the Cc of each group generally
decreases compared to the measurements observed during the initial loading. Notably,
the Cc initially declines and then increases as P ranges from 12.5 kPa to 50 kPa. This
behavior can be attributed to the absorption of either partial or complete elastic deformation
recovered from the unloading stage, as also evidenced in Figure 5b. Subsequently, all groups
exhibit a phase of stability until P reaches 800 kPa. Beyond this point, the expulsion of
water stored in the fine voids of the specimen occurs, followed by new particle breakage as
P reaches 1600 kPa, leading to an increase in Cc, consistent with that displayed in Figure 5b.

3.1.2. Saturation Degree

Figures 7–9 illustrate the compression response of calcareous sand subjected to differ-
ent Sr at Dr = 0.6 and Pe = 1600 kPa, following a repeated loading path of L2. Specifically,
Figure 7 depicts the e − lgP curve for calcareous sand across different Sr. The e within
the Sr = 0 group exceeds that observed in the Sr = 100% group across all loading grades.
Conversely, while the sands within the Sr = 100% group exhibit lesser amplitude compared
to Sr = 0 during the second loading stage, this disparity could be attributed to distinct
behaviors at the initial loading. During the first loading, the water acts as a lubricant for
the sand particles within the Sr = 0 group, inducing larger deformations. Yet, during the
subsequent loading phase, substantial particle breakages occur in the calcareous sand,
resulting in more compact inter-particle contact and finer void spaces. Consequently, nu-
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merous semi−closed small pores are developed, yielding the accumulation of excess pore
water pressure. This phenomenon impedes the decrease in e, accounting for the attenuated
amplitude observed in the Sr = 100% group during the second loading stage.
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Figure 7. The e-lgP curve of calcareous sand under different Sr.
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Figure 8. The Es − P curve of calcareous sand under different Sr at (a) the first loading and (b) the
second loading.
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Figure 8 illustrates the correlation between Es and P across different Sr. Initially,
at the onset of the first loading process, minimal variation existed in Es between the
two groups until P approached 800 kPa. Subsequently, a widening disparity in Es becomes
evident, prominently favoring the Sr = 0 group. This discrepancy could be attributed to
the lubricative effect of water on sand particles as compaction occurs, thereby reducing the
specimen’s modulus.

During the reloading stage, a distinct disparity emerges, indicating a higher Es for
Sr = 100% compared to Sr = 0. This divergence stems from the substantial breakage induced
by the initial loading, resulting in the formation of numerous semi-closed voids. The
presence of these voids hinders the dissipation of water pore pressure, culminating in
its accumulation. As P exceeded 800 kPa, the expulsion of water and subsequent deeper
contraction of the specimen could lead to a decrease in Es, as shown in Figure 8b.

Figure 9 illustrates the compression-load (Cc − P) curve depicting the behavior of
calcareous sand under varying stress ratios (Sr). The change in Cc between the two loading
stages exhibits a significant difference. Initially, during the primary loading phase, both
groups showed an increase in Cc with the escalating load. However, the disparity between
the two groups becomes apparent only after surpassing a threshold pressure (P) exceeding
800 kPa. The group with Sr = 100% demonstrates a higher Cc compared to Sr = 0, which
could be attributed to the lubricating effect of water. Conversely, during the reloading
stage, as P increased from 12.5 kPa to 100 kPa, both groups initially experienced a decrease
in Cc, followed by an increase. This trend is likely attributed to the absorption of partial or
complete elastic deformation recovered post-unloading. Subsequently, for the Sr = 100%
group, Cc behaves steadily in increase with the rising load, whereas, for the Sr = 100%
group, the variation in Cc remains stable as P increased from 100 kPa to 800 kPa due to
the accumulation of water pore pressure. The water within the fine voids of the speci-
men behaves uncompressed until P reaches 1600 kPa, where a subsequent increase in Cc
is observed.

3.2. Particle Breakage Responses of Calcareous Sand
3.2.1. Quantitative Assessment of Particle Breakage

Various indicators that characterize particle crushing have been documented in exist-
ing literature, encompassing parameters derived from individual particle size, gradation
parameters, soil surface area, and gradation evolution [49–52]. However, these parameters
often only capture changes in specified particle size or partial particles during the crush-
ing process, or they merely demonstrate the overall amount of fragmentation after the
experiment, leading to a biased and incomplete representation. Moreover, these indicators
frequently encounter challenges in comprehensively investigating the intricate particle-
breaking process and the comprehensive degree of particle crushing. Consequently, the
relative breakage index (Br) [53] and the fractal dimension (α) [54,55] have been favored for
investigating the particle-breaking behavior of cohesionless soil.

1. Relative breakage index

Hardin’s proposition [53] centered on the potential for particle breakage, which ex-
hibited a close correlation with particle size (d). He introduced the concept of breaking
potential in the overall gradation curve. Hardin suggested that particles smaller than
0.075 mm ceased to undergo further breakage, lacking the potential to generate additional
breakage energy. Conversely, particles larger than 0.075 mm theoretically possessed the ca-
pacity for breakage, thereby engendering breakage potential. Hardin defined the breaking
potential, Bt, as the area enclosed between the initial particle size distribution curve, the
upper limit of silt particle diameter at 0.075 mm, and the particle size distribution curve
post-test. Consequently, Hardin introduced a novel metric to quantify particle breakage,
denoted as the relative breakage rate Br, illustrated in Figure 10 as follows:

Br =
Bt

Bp
(1)
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where the total breakage, Bt, represents the area between the initial particle size distribution
curve and the current distribution curve, denoted as Areadbcd; Bp represents the breakage
potential, that is, the area between the initial particle size distribution curve and the
boundary at d = 0.075 mm, denoted as Areaabca.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 21 
 

particle breakage, denoted as the relative breakage rate Br, illustrated in Figure 10 as fol-
lows: 

p

t
r B

BB   (1)

where the total breakage, Bt, represents the area between the initial particle size distribu-
tion curve and the current distribution curve, denoted as Areadbcd; Bp represents the 
breakage potential, that is, the area between the initial particle size distribution curve and 
the boundary at d = 0.075 mm, denoted as Areaabca. 

 
Figure 10. Definition of particle breakage index. 

While the utilization of Br as an indicator effectively assessed the overall extent of 
particle breakage, it lacked utility in discerning specific breaking modes prevalent during 
the compression process, such as abrasion, crushing, and cracking [56,57]. 
2. Fractal dimension 

The fractal theory had been widely employed to describe the irregularity and 
self-similarity of objects. Researchers utilized the fractal theory to analyze the particle 
size distribution within granular geotechnical materials, postulating that these materials 
conform to this principle [54,55]: 

α3

max
)(













d
ddf  (2)

where f(d) represents the mass fraction of particles < d in size; dmax represents the upper 
limit of particle size; and α represents the fractal dimension. Performing logarithmic 
processing on Equation (3) yields: 











max
lg

)(lg
3α

d
d
df

 
(3)

Based on Equation (3), the variation trend of α displays a negative correlation with 

the alteration of 










max
lg

)(lg

d
d
df

, as depicted in Figure 11. In the lgf(d) − 








max
g

d
d

l coordinate 

system, an increased slope indicates a transition from smaller to larger particles, accom-

0.01 0.1 1
0

50

100

d

c

ba

Current grading curve

Initial grading curve

P
as

si
n

g 
p

er
ce

n
ta

ge
(%

)

d(mm)

 Bt=Areadbcd

+  Bp=Areaabca

d=0.075mm

Figure 10. Definition of particle breakage index.

While the utilization of Br as an indicator effectively assessed the overall extent of
particle breakage, it lacked utility in discerning specific breaking modes prevalent during
the compression process, such as abrasion, crushing, and cracking [56,57].

2. Fractal dimension

The fractal theory had been widely employed to describe the irregularity and self-
similarity of objects. Researchers utilized the fractal theory to analyze the particle size
distribution within granular geotechnical materials, postulating that these materials con-
form to this principle [54,55]:

f (d) =
(

d
dmax

)3−α

(2)

where f (d) represents the mass fraction of particles < d in size; dmax represents the upper
limit of particle size; and α represents the fractal dimension. Performing logarithmic
processing on Equation (3) yields:

α = 3 − lg f (d)

lg
(

d
dmax

) (3)

Based on Equation (3), the variation trend of α displays a negative correlation with the
alteration of lg f (d)

lg( d
dmax )

, as depicted in Figure 11. In the lgf (d) − lg
(

d
dmax

)
coordinate system,

an increased slope indicates a transition from smaller to larger particles, accompanied by a
decrease in α, denoted as ∆α < 0. Conversely, a decreased slope indicates a transition from
larger to smaller particles, coupled with an in increase α, that is, ∆α > 0.

Assessing particle breakage modes under distinct test schemes based on the value of
∆α is feasible. However, relying solely on ∆α may not accurately determine the overall
degree of particle breakage [58,59]. Consequently, a comprehensive evaluation of particle
breakage necessitates the integration of Br and ∆α, believed to offer essential and reliable
potential for precisely assessing the particle breakage behavior of calcareous sand.



Sustainability 2024, 16, 2190 12 of 20

Sustainability 2024, 16, x FOR PEER REVIEW 12 of 21 
 

panied by a decrease in α, denoted as Δα < 0. Conversely, a decreased slope indicates a 
transition from larger to smaller particles, coupled with an in increase α, that is, Δα > 0. 

 
Figure 11. The relationship between Δα and the ratio of coarser particles to finer particles. 

Assessing particle breakage modes under distinct test schemes based on the value of 
Δα is feasible. However, relying solely on Δα may not accurately determine the overall 
degree of particle breakage [58,59]. Consequently, a comprehensive evaluation of particle 
breakage necessitates the integration of Br and Δα, believed to offer essential and reliable 
potential for precisely assessing the particle breakage behavior of calcareous sand. 

3.2.2. The Effect of Relative Density 
Figures 12–14 depict the influence of Dr on the response of calcareous sands to 

breakage under conditions of Pe = 1600 kPa, Sr = 100%, and following L2. In Figure 12, the 
distribution curves of calcareous sands at different Dr are presented, highlighting five 
distinct points. The distribution curve of loose sand (Dr = 0.2) occupies the uppermost 
position, indicating comprehensive particle breakage across all size ranges of calcareous 
sands. This can be a ributed to the prevalent point-to-point contact mode among parti-
cles when Dr = 0.2. In contrast to the point-to-face and face-to-face contact modes, the 
point-to-point contact mode results in a smaller inter-particle contact area, leading to in-
creased contact stress and, consequently, more pronounced fragmentation, which is 
consistent with the experimental results of Shen [46]. Comparatively, medium-dense and 
dense sands exhibit more breakage in looser sands with minor fluctuations, predomi-
nantly influenced by the morphology of the calcareous sands. 

 
0.1 1

0

20

40

60

80

100  Dr=0.2

 Dr=0.4

 Dr=0.6

 Dr=0.8

P
re

ce
nt

ag
e 

pa
ss

in
g(

%
)

d(mm)

Figure 11. The relationship between ∆α and the ratio of coarser particles to finer particles.

3.2.2. The Effect of Relative Density

Figures 12–14 depict the influence of Dr on the response of calcareous sands to break-
age under conditions of Pe = 1600 kPa, Sr = 100%, and following L2. In Figure 12, the
distribution curves of calcareous sands at different Dr are presented, highlighting five
distinct points. The distribution curve of loose sand (Dr = 0.2) occupies the uppermost posi-
tion, indicating comprehensive particle breakage across all size ranges of calcareous sands.
This can be attributed to the prevalent point-to-point contact mode among particles when
Dr = 0.2. In contrast to the point-to-face and face-to-face contact modes, the point-to-point
contact mode results in a smaller inter-particle contact area, leading to increased contact
stress and, consequently, more pronounced fragmentation, which is consistent with the
experimental results of Shen [46]. Comparatively, medium-dense and dense sands exhibit
more breakage in looser sands with minor fluctuations, predominantly influenced by the
morphology of the calcareous sands.
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Figure 12. Particle size distribution curve of calcareous sands under different Dr.

In Figure 13, the percentile diameters (PD) of calcareous sands under various Dr are
depicted, including d10, d30, d50, and d60. It can be observed from the graph that the smaller
the Dr, the more pronounced the fragmentation of calcareous sands. Additionally, the
influence of Dr on the fragmentation of calcareous sands primarily focuses on smaller
particle sizes. As shown in the graph, when Dr = 0.2, d10, d30, and d50 are all the smallest.
However, d60 is the same as Dr = 0.4 at 1 mm. Additionally, for medium-dense sands, the
influence of relative density is less pronounced, as the PD for Dr = 0.4 and Dr = 0.6 are the
same for all parameters except for d60, where Dr = 0.6 exhibits a slightly higher value of
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0.023 compared to Dr = 0.4. For dense sands, specimens with Dr = 0.8 demonstrate the least
overall degree of fragmentation.
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Figure 14. The relationship of Br and ∆α of calcareous sands under different Dr.

Figure 14 presents the correlation between Br and ∆α of calcareous sands at varying Dr.
It is discernible that the overall degrees of breakage gradually diminish with the increases
in Dr. This trend aligns with the reduction in contact stress attributed to the elevated Dr.
This indicates that analyzing the fragmentation of calcareous sands solely based on the
pattern of PD in Figure 13 is highly limited, and PD alone cannot be used to analyze the
overall fragmentation of calcareous sands. Nevertheless, the alteration pattern of ∆α varies
distinctly among the groups. For the group of Dr = 0.2, ∆α surpasses 0.06, indicating the
dominance of crush and crack propagation as the primary modes of particle breakage
within this group. In contrast, additional groups display ∆α within the range of 0.02 to
0.03, indicative of an absence of pronounced discrepancies. This observation underscores
that, except for the group with Dr = 0.2, abrasion emerges as the primary mode of particle
breakage. Despite observed variations in the degree of particle breakage among the Dr = 0.4,
0.6, and 0.8 groups based on Br, abrasion continues to represent the prevailing mechanism
in these groups.

3.2.3. The Effect of Ending Load

Figures 15–17 illustrate the response of calcareous sands to breakage under various
ending loading (Pe) conditions with Dr = 0.6, Sr = 100%, and following L1. As shown
in Figure 15, the particle breakage level exhibits an incremental trend with increasing Pe.
Distinguishedly, for particles over 1 mm in size, the difference in particle breakage is limited



Sustainability 2024, 16, 2190 14 of 20

for Pe less than 400 kPa. This implies that particle breakage predominantly originates from
the intermediate-sized particles (d < 1 mm) with the progressive increase in loading.
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Figure 15. Particle size distribution curve of calcareous sands under different Pe.
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As depicted in Figure 16, when Pe is 100 kPa, only d10 experiences a marginal decrease
of 0.01, while the remaining PD remain unaffected. When Pe reaches 400 kPa, there is a
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notable decrease in d60, from 1.071 mm to 1.046 mm, consistent with the trend portrayed
in Figure 15. This indicates an increase in the particle size susceptible to fragmentation.
Additionally, there is no distinct variation observed in the PD of all characteristic particle
sizes between Pe = 800 kPa and Pe = 1600 kPa. Notably, the fragmentation observed in
fine-grained calcareous sand under these loads, as indicated by the changing pattern of
d10, signifies an amplified mechanical susceptibility of the fine-grained calcareous sand
to externally induced forces. Importantly, when Pe is less than 400 kPa, only fine-grained
calcareous sand experiences fragmentation. Specifically, as Pe increases while remaining
below 400 kPa, both d10 and d30 decrease, while other PD remains unchanged. However,
Figures 15 and 16 fail to comprehensively illustrate the fragmentation patterns of particles
ranging from 1 mm to 2 mm in diameter.

In Figure 17, a notable increase in Br is observed as Pe escalates from 200 kPa to
400 kPa, which is consistent with the patterns observed in the experiments conducted by
Xue [23]. This indicates that significant breakage occurs under the condition of Pe = 400 kPa.
Meanwhile, the corresponding ∆α at this stage is minimal, suggesting minor breakage in
larger-sized particles (particle diameter greater than 1.0 mm). Hence, the breakage observed
in calcareous sand primarily focuses on the fracture of smaller particles and the erosion
of larger particles. When Pe reaches 800 kPa, significant fragmentation occurs in larger-
sized calcareous sand particles, and the corresponding ∆α at this stage also significantly
increases. Figure 17 compensates for the shortcomings of Figures 15 and 16, allowing for
the observation of both the overall degree of sample fragmentation and the fragmentation
patterns of particles within various size ranges.

3.2.4. The Effect of the Loading Path

Figures 18–20 illustrate the breakage response of calcareous sands under monotonic
loading paths and repeated loading paths (denoted as L1 and L2 shown in Table 1), both
maintaining Dr = 0.6, Sr = 100%, and Pe = 1600 kPa.
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Figure 18. Particle size distribution curve of calcareous sands under different LM.

As depicted in Figure 18, the influence of repeated loading on the breakage of cal-
careous sands was minimal. Results obtained under L2 show only slightly higher values
compared to those under L1, with differences considered negligible. The primary breakage
of calcareous sand could be observed during the initial loading stage, leading to the for-
mation of a stable particle contact mode. Consequently, negligible breakage is observed
during subsequent repeated loading under the same loading amplitude, with only minor
abrasion observed.
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Figure 20. The relationship between Br, ∆α of calcareous sands and LM.

As shown in Figure 19, the PDs of d10, d30, d50, and d60 exhibit considerable proximity.
There is minimal evidence of breakage upon the second loading, consistently aligning
with the outcomes observed in Figure 18. Similarly, as depicted in Figure 20, a similar
trend is observed, indicating a minor degree of fragmentation in smaller sands upon the
second loading.

3.2.5. The Effect of Saturation Degree

Figures 21–23 delineate the breakage response of calcareous sands under varying
degrees of saturation (Sr) with a Dr of 0.6, Sr of 100%, and following the L2 loading path.

As depicted in Figure 21, dried calcareous sands exhibit increased susceptibility to
breakage due to the significant influence of interparticle friction. In contrast, saturated
calcareous sands, facilitated by water lubrication, experience a notable reduction in inter-
granular friction. Moreover, a higher proportion of fine grains is observed in the Sr = 100%
group. This is primarily attributed to the lubricating effect of water, which reduces the
friction between particles and alters their relative motions and interactions. Consequently,
the stability of the initial calcium sand particle framework is reduced, and the relative
sliding space between particles increases. Under vertical loading, the increased relative
sliding space may render weak points or vulnerable areas within particles more susceptible
to external forces. These vulnerabilities typically reside at particle edges or within localized
weak zones of the particle structure. Owing to this lubricating effect, particle movements
may induce additional stresses at particle edges or weak points, resulting in abrasion or
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minor fragmentation along particle edges. Hence, the lubricating action of pore water
could intensify the movement at particle edges or weak areas and instigate minor abrasion
or cracking at these specific locations.
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Figure 21. Particle size distribution curve of calcareous sands under different Sr.
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Figure 22 demonstrates a notable distinction in percentile diameters (PD) for each
characteristic particle size between Sr = 0 and Sr = 100%. Furthermore, the PD associated
with Sr = 100% consistently surpasses that of Sr = 0 at equivalent passing percentages. For
Sr = 0, the particle size distribution is characterized by d10 = 0.377, d30 = 0.601, d50 = 0.832,
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and d60 = 0.977. In contrast, for Sr = 100%, the corresponding results are d10 = 0.415,
d30 = 0.644, d50 = 0.87, and d60 = 1.023. Consequently, the extent of specimen breakage in
Sr = 0 is more pronounced than that observed in Sr = 100%. Moreover, combining with
Figure 21, the proportion of debris after the abrasion of specimens with Sr = 100% is found
to be less than 10%. This analysis provides insight into the test results, such as the lower
d10 value for Sr = 0 compared to that for Sr = 100%.

Figure 23 depicts a stark contrast in patterns between Br and ∆α. While the Br for
Sr = 0 remains larger, the ∆α behaves smaller compared to that for Sr = 100%. This indicates
that saturated sands generate a greater total quantity of fine particles post-compression,
despite dried calcareous sands exhibiting higher crushing quantities.

4. Conclusions

This study aimed to quantitatively evaluate the compression and particle fragmenta-
tion of calcareous sand in the South China Sea under varying conditions, including relative
density, saturation, loads, and loading paths. Subsequently, a series of confined compres-
sion tests were conducted on the widely distributed calcareous sand, and the associated
particle-breaking mechanisms of calcareous sands under diverse testing conditions were
investigated using relative breakage ratio and fractal dimension as assessment parameters.
The principal conclusions derived from this study could be summarized as follows:

1. Increasing relative density induces a transition in particle contact patterns from
predominantly point-to-point contact to face-to-face contact, resulting in reduced inter-
particle contact stress and overall fragmentation. The influence of relative density on
sample deformation is particularly pronounced under initial loading conditions below
200 kPa. Variations in sample deformation under different relative densities primarily
stem from differences in the initial available void space within the calcareous sand.

2. Increasing loads intensified particle breakage, particularly with finer particles. No-
ticeable breakage of particles with a diameter close to 1 mm occurred only after loads
surpassed 200 kPa, while cracking of all larger particles was observed after loads
exceeded 400 kPa.

3. Loading paths showed minimal impact on particle crushing. During the second
loading phase, pore ratios under various load levels surpassed those observed during
the initial loading, leading to new fragmentation only at loads reaching 1600 kPa,
accompanied by the expulsion of pore water and dissipation of pore pressure.

4. The lubricating effect of water could reduce the inter-particle friction, thereby dimin-
ishing overall breakage. However, increasing relative sliding could intensify stress
points at particle edges, resulting in localized abrasion. Although this did not affect
the main structure, it led to an increased content of finer particles. The influence of
pore water pressure was primarily manifested when numerous semi-enclosed pores
existed within the specimen during the second loading phase.

5. Currently, our research on calcareous sand breakage is limited to confined compression
tests. However, erosion on calcareous sand coastlines is largely caused by dynamic
loads such as extreme wave loading and seismic activities. Therefore, the next phase
of our research will investigate calcareous sand fragmentation characteristics under
dynamic loading conditions, considering various influencing factors.
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