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Abstract: Microbial interactions, which regulate the dynamics of eco- and agrosystems, can be
harnessed to enhance antagonism against phytopathogenic fungi in agriculture. This study tests the
hypothesis that plant growth-promoting rhizobacteria (PGPR) can also be potential biological control
agents (BCAs). Antifungal activity assays against potentially phytopathogenic fungi were caried out
using cultures and cell-free filtrates of nine PGPR strains previously isolated from agricultural soils.
Cultures of Bacillus sp. BS36 inhibited the growth of Alternaria sp. AF12 and Fusarium sp. AF68 by 74
and 65%, respectively. Cell-free filtrates of the same strain also inhibited the growth of both fungi by
54 and 14%, respectively. Furthermore, the co-cultivation of Bacillus sp. BS36 with Pseudomonas sp.
BS95 and the target fungi improved their antifungal activity. A subsequent metabolomic analysis
using Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) identified fengycin-
and surfactin-like lipopeptides (LPs) in the Bacillus sp. BS36 cell-free filtrates, which could explain
their antifungal activity. The co-production of multiple families of LPs by Bacillus sp. BS36 is an
interesting feature with potential practical applications. These results highlight the potential of the
PGPR strain Bacillus sp. BS36 to work as a BCA and the need for more integrative approaches to
develop biocontrol tools more accessible and adoptable by farmers.

Keywords: Alternaria sp.; Bacillus; biocontrol; co-culture; Fourier-transform ion cyclotron resonance
mass spectrometry; Fusarium sp.; lipopeptides

1. Introduction

Plant diseases cause major economic losses and pose threats to food and environmen-
tal safety. Phytopathogenic fungi are responsible for 70 to 80% of plant diseases, negatively
affecting crop growth and yield [1]. The current management of plant diseases comprises an
overuse of synthetic fungicides, which has several undesirable effects on the environment,
including on beneficial microorganisms and human health [2,3]. Over recent years, limita-
tions on the use of pesticides in European agriculture have been implemented. For instance,
the EU Farm to Fork strategy aims to reduce the use of synthetic pesticides on crops by 50%
by 2030 [4]. In this context, the use of plant growth-promoting rhizobacteria (PGPR) for
biological control of phytopathogenic fungi is a valuable and sustainable alternative to the
use of synthetic fungicides [5].

The antagonistic action of PGPR often relies on their production of bioactive metabo-
lites. Pseudomonas and Bacillus are commonly used as biological control agents (BCAs)
due to their ability to produce metabolites with different structures and broad-spectrum
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antifungal activity [6]. Pseudomonas species are able to produce a wide array of antifun-
gal metabolites, including 2,4-diacetylphloroglucinol [7,8], cell-wall-degrading enzymes
(CWDEs) [9,10], phenazines [11,12], pyoluteorin [8], pyrrolnitrin [13,14], and volatile or-
ganic compounds (VOCs) [15,16]. Bacillus species also produce important antifungal
compounds, including CWDEs [17,18] and VOCs [19,20]. In addition, both genera are
known for their ability to produce lipopeptides (LPs) [21–25]. LPs are amphiphilic sec-
ondary metabolites with a low molecular weight synthesised by multi-enzyme complexes
known as non-ribosomal peptide synthetases (NRPSs). Pseudomonas and Bacillus species
produce a variety of LPs with different structural characteristics. These differences com-
prise variations in the amino acids of the peptide domain and variations in the length and
composition of the lipid tail [26]. Bacillus is the most studied genus capable of secreting
LPs [27]. Bacillus produces LPs that are commonly classified into three main families:
fengycin [28], iturin [29], and surfactin [30]. Compounds from different families vary in
their structure and therefore in their antimicrobial properties [31]. Fengycin and iturin are
the main LPs with strong antifungal activity against phytopathogens [28,32–34].

In nature, the biosynthesis and accumulation of natural products, such as LPs and other
metabolites, are triggered by interactions between microorganisms, such as competition for
nutrients and space. However, certain biosynthetic pathways responsible for producing
secondary metabolites are silenced in laboratory conditions where axenic cultures are
maintained [35]. Thus, mimicking the natural microbial environment using the mixed
fermentation of different microorganisms (co-cultivation) promotes microbial interactions.
This can increase the accumulation of certain metabolites or activate the expression of silent
biosynthetic gene clusters, leading to the production of new metabolites [36]. Therefore,
microbial co-cultivation has been used to elicit the synthesis of antimicrobial secondary
metabolites in an attempt to increase antifungal activity [36–38].

The aims of this study were to (1) compare a set of PGPR strains for their ability to
supress the growth of potentially phytopathogenic fungi in an attempt to select suitable
candidates for BCAs; (2) establish microbial interactions through co-cultivation as an
approach to increasing the production of existing and new metabolites and enhancing the
antifungal activity of the PGPR; and (3) determine the nature and stability of extracellular
metabolites with antimicrobial activity.

2. Materials and Methods
2.1. PGPR Strains

Nine PGPR strains, previously isolated from agricultural soils and characterised for
their plant growth-promoting potential, were obtained from a culture collection maintained
in the company Bioscale (Santarém, Portugal). The strains had been stored in Nutrient
Broth (NB, Biokar Diagnostics, Allonne, France) supplemented with 20% (w/v) glycerol at
−80 ◦C and were revitalized on Nutrient Agar (NA, Biokar Diagnostics, Allonne, France)
at 28 ◦C for 24 h or until visible growth. The incubation time in NB was optimised to reach
a minimum concentration of 107 CFU mL−1. For the antifungal activity assays, the strains
were sub-cultured on NB at 28 ◦C, 160 rpm, for 24–48 h, depending on the PGPR strain,
with the initial concentration set to 106 CFU mL−1.

2.2. Fungal Strains

Alternaria sp. AF12 and Fusarium sp. AF68 were obtained from a fungal collection
maintained in Bioscale (Santarém, Portugal). Four additional fungal strains, Alternaria sp.
FP3, Botrytis sp. SM-D1, Fusarium sp. SM-D3, and Stemphylium sp. FP5, were recently
isolated from leaves of Pyrus communis L. cv. “Rocha” with brown spots. All fungal strains
had been stored in glycerol 10% (w/v) at −80 ◦C and were grown on Potato Dextrose Agar
(PDA, Biokar Diagnostics, Allonne, France) at 28 ◦C for 5–6 days prior to their use in the
antifungal activity assays. Fungal strains were identified based on conidia morphology
and ITS sequence analysis.
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2.3. Genomic DNA Extraction, PCR, and Phylogenetic Analysis of PGPR Strains

To identify the PGPR strains, the genomic DNA (gDNA) of the bacterial strains was
extracted following a modified and optimised version of the guanidium thiocyanate method
described by Pitcher et al. [39]. The partial 16S rRNA gene was amplified using the forward
primer PA/8F (5′-AGAGTTTGATCCTGGCTCAG-3′) [40,41] and the reverse primers 907R
(5′-CCGTCAATTCMTTTRAGTTT-3′) [42] or 1392R (5′-ACGGGCGGTGTGTRC-3′) [43].
PCR reactions were performed in a Biometra Uno II thermal cycler (Biometra GmbH,
Göttingen, Germany) under the following conditions: initial denaturation at 94 ◦C for
3 min, followed by 35 cycles at 94 ◦C for 1 min, 55 ◦C for 1 min and 72 ◦C for 1 min, and
final extension at 72 ◦C for 3 min. The amplified products were sequenced by Eurofins
Genomics (Ebersberg, Germany) and the newly generated 16S rRNA gene sequences were
blasted against GenBank. Maximum likelihood (ML) trees were constructed using MEGA
X (v. 10.2.6) and the General Time Reversible (GTR) nucleotide substitution model. The
best-scoring ML tree was estimated by conducting a bootstrap analysis of 1000 replicates.

2.4. Antifungal Activity in Dual Culture Assay

The antifungal activity of the PGPR strains was tested using in vitro dual culture
assays in Petri plates (60 mm diameter) containing 10 mL of PDA. A mycelial disc with
a 6 mm diameter from the target fungal strain was inoculated on the centre of the Petri
plate, whereas four aliquots (5 µL) of the fresh bacterial monoculture were inoculated on
the periphery. Control plates were prepared using sterile ultrapure water aliquots. After
incubation at 28 ◦C for 6 days, the radial fungal growth was measured in the control and
treated plates. Mycelial growth inhibition (MGI, in%) was expressed as the radial reduction
in the fungal mycelium observed in the treated plates compared to the corresponding
control plates, and was calculated using the following equation:

MGI (%) =

[
(R1 − R2)

R1

]
∗ 100 (1)

where R1 is the radial growth of the fungal mycelium in the control plates and R2 is the
radial growth of the fungal mycelium in the treated plates. The experiment was carried out
with four replicates for the control and for each bacterium–fungus combination.

2.5. Antifungal Activity of Extracellular Metabolites in Cell-Free Filtrates

Bacterial cells were removed by centrifugation of the fresh bacterial monoculture (after
24–48 h, as described in Section 2.1) three times at 3220× g for 15 min at 4 ◦C. The super-
natant was filtered through a 0.22 µm pore size membrane (Merck Millipore, Darmstadt,
Germany). The resulting cell-free filtrate was added to PDA at a final concentration of 10%
(v/v) (1 mL of bacterial filtrate and 9 mL of PDA). A mycelial disc with a 6 mm diameter
from the target fungal strain was inoculated on the centre of the Petri plate. Control plates
were prepared using PDA with sterile ultrapure water. The plates were incubated at 28 ◦C
for 6 days. The radial fungal growth was measured in the control and treated plates, and
the MGI was determined as described above (see Section 2.4). The experiment was carried
out with four replicates for the control and for each bacterium–fungus combination.

2.6. Bacterial Co-Cultivation including Bacillus sp. BS36

To increase the antifungal activity of the cell-free filtrates, Bacillus sp. BS36 was co-
cultured with additional PGPR strains. A total of eight pairwise interactions were tested.
From fresh bacterial subcultures, each pair was inoculated on NB, with the initial inoculum
of each strain set at 5 × 105 CFU mL−1 (1:1). The cultures were incubated at 28 ◦C and
160 rpm for 48 h. The antifungal activity of the cultures’ filtrates against Alternaria sp. AF12
and Fusarium sp. AF68 was determined as described above (see Section 2.4).
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2.7. Co-Cultivation of Bacillus sp. BS36 and Inactivated Fungal Cells

To increase the antifungal activity of the cell-free filtrates, Bacillus sp. BS36 was
cultivated in the presence of thermally inactivated cells of the target microorganisms,
Alternaria sp. AF12 and Fusarium sp. AF68. Fungal strains were grown on Brain Heart
Infusion (BHI, Biokar Diagnostics, Allonne, France) at 28 ◦C and 160 rpm for 3 days. The
cultures were centrifuged three times at 12,000× g for 20 min at 4 ◦C. Each pellet was
resuspended in an equal volume of NB and autoclaved at 121 ◦C for 30 min. The resulting
suspension was added to NB at a final concentration of 10% (v/v), and Bacillus sp. BS36
was inoculated with an initial concentration set to 106 CFU mL−1. The cultures were
incubated at 28 ◦C and 160 rpm for 48 h. The antifungal activity of the cultures’ filtrates
against Alternaria sp. AF12 and Fusarium sp. AF68 was determined as described above (see
Section 2.4).

2.8. Effects of Proteinase K Treatment and Heating on Antifungal Activity of Bacillus sp. BS36
Cell-Free Filtrates

To evaluate the stability of the antifungal metabolites produced by Bacillus sp. BS36, the
cell-free filtrates were exposed to physicochemical treatments, with 0.1 mg mL−1 proteinase
K (Invitrogen, Carlsbad, CA, USA) at 37 ◦C for 60 min or incubated at 80 ◦C for 30 min,
before being used for antifungal activity assays. The antifungal activity against Alternaria
sp. AF12 and Fusarium sp. AF68 was determined as described above (see Section 2.4).

2.9. Antifungal Activity of Crude Extracts of LPs from Bacillus sp. BS36

The antifungal activity of the LPs present in the Bacillus sp. BS36 cell-free filtrates
was investigated. The LPs were extracted by acid precipitation and solvent extraction.
The filtrates were precipitated by adjusting the pH to 2.0 with concentrated HCl and were
stored overnight at 4 ◦C. The precipitates were collected by centrifugation at 12,000× g
for 30 min at 4 ◦C and extracted with methanol at room temperature and 160 rpm. The
solution was filtered through Whatman filter paper No. 1 (Whatman, London, UK) and
dried with a rotary vacuum evaporator SyncorePlus (Buchim, Flawil, Switzerland) at
56 ◦C, 278 bar, 160 rpm, for 3–4 h. The remaining extract of the LPs was dissolved in 1×
PBS buffer (pH 7.3–7.4) (Invitrogen, Carlsbad, CA, USA) and filtered through a 0.22 µm
pore size membrane (Merck Millipore, Darmstadt, Germany). The antifungal activity
against Alternaria sp. AF12 and Fusarium sp. AF68 was determined as described above (see
Section 2.4).

2.10. FTICR-MS and Data Analysis

The presence of LPs in the cell-free filtrates of Bacillus sp. BS36 was screened following
an untargeted metabolomics approach using Fourier-transform ion cyclotron resonance
mass spectrometry (FTICR-MS). Two samples were prepared by diluting the filtrate 2-fold in
methanol (500 µL of filtrate in 500 µL of methanol). For internal mass spectrum calibration,
human leucine enkephalin was added ([M + H]+ = 556.27657 Da) at a concentration of
0.1 µg mL−1. Formic acid (MS grade, Sigma-Aldrich, St. Louis, MO, USA) was also
added to the samples at a final concentration of 0.1% (v/v). The samples were ionized
by electrospray ionization in positive mode (ESI+) and spectra were acquired between
200 and 1500 m/z. The mass spectra were analysed using the software package Data
Analysis 5.0 and MetaboScape 5.0 (Brüker Daltonics, Bremen, Germany), considering
peaks with a minimum signal-to-noise ratio of 4. The spectra were aligned and compound
identification was performed using the Human Metabolome Database (HMDB, from 27
May 2022) [44] and LOTUS (from 16 September 2022) [45], uploaded to MetaboScape 5.0,
considering the adducts H+, Na+, and K+, and a mass deviation of less than 1 ppm.

2.11. Statistical Analysis

The MGI values are presented as the means of four independent replicates with
standard deviation (SD). The data were analysed statistically by one-way ANOVA, the
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Tukey post hoc test, and the independent samples t-test using the software IBM SPSS
Statistics (v. 29).

3. Results
3.1. PGPR Strains Identification

In this study, we amplified the 16S rRNA gene of the nine PGPR strains and an ML
analysis was generated from 38 aligned sequences (Figure 1). Based on these molecular
data, the PGPR strains were clustered with three different genera, including Bacillus (BS36
and BS84), Priestia (BS1 and BS90), and Pseudomonas (BS2, BS3, BS27, BS94, and BS95), with
moderate or high bootstrap values (Figure 1).
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Figure 1. Maximum likelihood (ML) phylogenetic tree based on partial sequences of 16S rRNA gene.
Bootstrap values >70% are shown at the nodes. Type strains are noted with T superscript (T). The
strains from this study are indicated in bold font. The scale bars represent the expected number of
nucleotide changes per site. Escherichia coli ATCC 11,775 strain was used as outgroup.

3.2. Screening of Antifungal Activity of PGPR Strains

The nine PGPR strains showed a wide range of MGI against both potentially phy-
topathogenic fungi, Alternaria sp. AF12 and Fusarium sp. AF68 (Table 1). The antifungal
activity against Alternaria sp. AF12 varied from 0 to 74.0% (higher for Bacillus sp. BS36),
and against Fusarium sp. AF68, varied from 0 to 65.4% (higher for Bacillus sp. BS36). Bacillus
sp. BS36 (74.0 and 65.4%), Pseudomonas sp. BS95 (38.5 and 61.8%), and Pseudomonas sp.
BS2 (20.2 and 7.8%) were the most efficient strains in the MGI of Alternaria sp. AF12 and
Fusarium sp. AF68, respectively. Pseudomonas sp. BS94 also slightly inhibited the growth of
both fungi. All Pseudomonas (BS2, BS3, BS27, BS94, and BS95) strains were able to inhibit
the growth of Fusarium sp. AF68. The Priestia (BS1 and BS90) strains were the only ones
that did not inhibit the growth of any of the fungal strains (Table 1).
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Table 1. Antifungal activity of PGPR strains against Alternaria sp. AF12 and Fusarium sp. AF68,
expressed by MGI.

PGPR Strains
Mycelial Growth Inhibition (MGI,%) 1

Alternaria sp. AF12 Fusarium sp. AF68

Bacillus sp. BS36 74.0 ± 3.2 65.4 ± 3.0
BS84 3.9 ± 2.7 0.0 ± 0.0

Priestia sp. BS1 0.0 ± 0.0 0.0 ± 0.0
BS90 0.0 ± 0.0 0.0 ± 0.0

Pseudomonas sp. BS2 20.2 ± 1.7 7.8 ± 4.4
BS3 0.0 ± 0.0 7.8 ± 4.4

BS27 0.0 ± 0.0 6.9 ± 1.7
BS94 2.9 ± 1.7 7.8 ± 2.0
BS95 38.5 ± 6.1 61.8 ± 1.7

1 Values represent the mean ± SD (n = 4).

Bacillus sp. BS36 and Pseudomonas sp. BS95 were selected for additional studies of
antifungal activity against four potentially phytopathogenic fungi recently isolated from
Pyrus communis L. cv. “Rocha” brown spots (Figure 2). Bacillus sp. BS36 revealed the
highest MGI of Alternaria sp. FP3 (82.7 ± 4.3%), Botrytis sp. SM-D1 (60.6 ± 1.7%), Fusarium
sp. SM-D3 (69.2 ± 0.0%), and Stemphylium sp. FP5 (76.9 ± 0.0%). Pseudomonas sp. BS95
only inhibited the growth of Alternaria sp. FP3 (38.5 ± 4.7%) and Stemphylium sp. FP5
(29.8 ± 1.7%) (Figure 2).
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Botrytis sp. SM-D1, Fusarium sp. SM-D3, and Stemphylium sp. FP5, in dual culture assay. Bacillus sp.
BS36 and Pseudomonas sp. BS95, respectively: MGI = 82.7 ± 4.3 and 38.5 ± 4.7% for Alternaria sp.
FP3, MGI = 60.6 ± 1.7 and 0.0 ± 0.0% for Botrytis sp. SM-D1, MGI = 69.2 ± 0.0 and 0.0 ± 0.0% for
Fusarium sp. SM-D3, MGI = 79.6 ± 0.0 and 29.8 ± 1.7% for Stemphylium sp. FP5.
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3.3. Antifungal Activity of Extracellular Metabolites in Cell-Free Filtrates

The cell-free filtrates derived from cultures of Bacillus sp. BS36 and Pseudomonas sp.
BS95 were also tested for their antifungal activity against Alternaria sp. AF12 and Fusarium
sp. AF68 (Figure 3). The Bacillus sp. BS36 filtrates inhibited the growth of both fungal strains
(53.9% MGI for Alternaria sp. AF12 and 14.4% MGI for Fusarium sp. AF68). However, the
Pseudomonas sp. BS95 filtrates only inhibited the growth of Alternaria sp. AF12 (5.8%). The
MGI induced by the cell cultures of both PGPR strains was significantly higher (p ≤ 0.05)
than that induced by the corresponding cell-free filtrates. For instance, the MGI of Fusarium
sp. AF68 significantly increased (p ≤ 0.05) from 0 to 61.8% in the presence of Pseudomonas
sp. BS95 cell cultures when compared to the respective cell-free filtrates (Figure 3). The
results showed that Bacillus sp. BS36 was the PGPR strain with the best performance in
suppressing the growth of the tested fungi. Therefore, experiments were carried out to
induce and characterise the antifungal activity of the strain.
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Figure 3. Antifungal activity of cultures and cell-free filtrates of Bacillus sp. BS36 and Pseudomonas sp.
BS95 against Alternaria sp. AF12 (A) and Fusarium sp. AF68 (B), expressed by MGI. Values represent
the mean ± SD (n = 4). Asterisks (*) indicate mean values significantly different (p ≤ 0.05) according
to independent samples t-test ((A): t (3) = 10.99 and p < 0.001 for Bacillus sp. BS36, and t (3.6) = 8.87
and p < 0.001 for Pseudomonas sp. BS95; (B): t (6) = 21.03 and p < 0.001 for Bacillus sp. BS36, and
t (3) = 63.36 and p < 0.001 for Pseudomonas sp. BS95).

3.4. Bacterial Co-Culturing

The liquid co-cultivation of Bacillus sp. BS36, the strain with higher antifungal activity,
with the remaining eight PGPR strains was evaluated through pairwise interactions. The
cell-free filtrates of the co-cultures were tested for their antifungal activity against Alternaria
sp. AF12 and Fusarium sp. AF68. The interspecific co-culture of Bacillus sp. BS36 and
Pseudomonas sp. BS95 was the only one that exhibited improved antifungal activity. The
MGI of Fusarium sp. AF68 induced by the cell-free filtrates of the co-cultures (20.5%) was
significantly higher (p ≤ 0.05) than those induced by the Bacillus sp. BS36 and Pseudomonas
sp. BS95 monocultures’ filtrates (14.4 and 0%, respectively). Yet, the high antifungal activity
against Alternaria sp. AF12 detected for the Bacillus sp. BS36 monocultures’ filtrates (53.9%)
was not verified in the co-culture assay (30.7%) (Table 2).
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Table 2. Antifungal activity of co-culture and monocultures filtrates of Bacillus sp. BS36 and Pseu-
domonas sp. BS95 against Alternaria sp. AF12 and Fusarium sp. AF68, expressed by MGI.

Treatment 1
Mycelial Growth Inhibition (MGI,%) 2

Alternaria sp. AF12 Fusarium sp. AF68

BP 30.8 ± 0.0 b 20.2 ± 1.7 a

B 53.8 ± 0.0 a 14.4 ± 3.2 b

P 5.8 ± 1.9 c 0.0 ± 0.0 c

1 BP indicates co-culture of Bacillus sp. BS36 and Pseudomonas sp. BS95; B indicates monoculture of Bacillus sp.
BS36; P indicates monoculture of Pseudomonas sp. BS95. 2 Values represent the mean ± SD (n = 4). Values represent
the mean ± SD (n = 4). Different letters in the same column indicate mean values significantly different (p ≤ 0.05)
according to Tukey test (ANOVA, F = 1366.98 and p < 0.001 for Alternaria sp. AF12, and F = 74.36 and p < 0.001 for
Fusarium sp. AF68).

3.5. Effect of Target Microorganism on Increasing Antifungal Activity

The MGI of Alternaria sp. AF12 and Fusarium sp. AF68 induced by Bacillus sp. BS36
changed with the addition of heat-inactivated cells of the target microorganisms (Table 3).
The addition of inactivated cells of Alternaria sp. AF12 and Fusarium sp. AF68 significantly
increased (p ≤ 0.05) the growth inhibition of Fusarium sp. AF68. However, only the
addition of inactivated cells of Fusarium sp. AF68 significantly increased (p ≤ 0.05) the
growth inhibition of Alternaria sp. AF12 (Table 3).

Table 3. Effects of the target microorganism on the antifungal activity of Bacillus sp. BS36 filtrates
against Alternaria sp. AF12 and Fusarium sp. AF68, expressed by MGI.

Treatment 1
Mycelial Growth Inhibition (MGI,%) 2

Alternaria sp. AF12 Fusarium sp. AF68

BA 57.7 ± 0.0 b 18.3 ± 1.7 b

BF 63.5 ± 1.9 a 36.5 ± 5.8 a

B 59.6 ± 1.9 b 7.7 ± 3.8 c

1 BA indicates co-culture of Bacillus sp. BS36 and inactivated Alternaria sp. AF12; BF indicates co-culture of Bacillus
sp. BS36 and inactivated Fusarium sp. AF68; B indicates monoculture of Bacillus sp. BS36. 2 Values represent the
mean ± SD (n = 4). Different letters in the same column indicate mean values significantly different (p ≤ 0.05)
according to Tukey test (ANOVA, F = 10.42 and p = 0.005 for Alternaria sp. AF12, and F = 37.74 and p < 0.001 for
Fusarium sp. AF68).

3.6. Characterisation of Antifungal Metabolites Produced by Bacillus sp. BS36

In order to obtain an insight into the chemical nature of the antifungal metabolites, the
Bacillus sp. BS36 cell-free filtrates were tested for their antifungal activity against Alternaria
sp. AF12 and Fusarium sp. AF68 before and after physicochemical treatments. As shown in
Figure 4, proteinase K digestion and heat treatment did not significantly (p > 0.05) affect
the antifungal activity of the Bacillus sp. BS36 filtrates against Fusarium sp. AF68. However,
heating the cell-free filtrates at 80 ◦C for 30 min significantly increased (p ≤ 0.05) the growth
inhibition of Alternaria sp. AF12 compared to the untreated filtrates (from 59.6 to 71.2%).
The antifungal activity against Alternaria sp. AF12 produced by the Bacillus sp. BS36 filtrates
was resistant to enzymatic digestion by proteinase K (Figure 4).

LPs were extracted from the cell-free filtrates of Bacillus sp. BS36 by acid precipitation
and methanol extraction. The antifungal activity of the crude extracts of the LPs was tested
against Alternaria sp. AF12 and Fusarium sp. AF68 and compared with that of the untreated
filtrates. The extracts of the LPs inhibited the growth of both fungal strains (65.4% MGI for
Alternaria sp. AF12, and 7.7% MGI for Fusarium sp. AF68), and there was no significant
difference (p > 0.05) between the untreated and extracted filtrates (Figure 4).
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Figure 4. Effects of proteinase K, heat, and acidification (HCl) and methanol extraction on the
antifungal activity of cell-free filtrates of Bacillus sp. BS36 against Alternaria sp. AF12 (A) and
Fusarium sp. AF68 (B). Values represent the mean ± SD (n = 4). Bars with different letters indicate
mean values significantly different (p ≤ 0.05) according to Tukey test, and “ns” indicate not significant
(p > 0.05) (ANOVA, (A): F = 8.42 and p = 0.003, (B): F = 0.43 and p = 0.735).

3.7. LPs Detection by FTICR-MS

The cell-free filtrates from Bacillus sp. BS36 were analysed with FTICR-MS. The FTICR-
MS analysis revealed that fengycin- and surfactin-like LPs were produced by Bacillus sp.
BS36. A peak with an m/z ratio of 1485.78515 corresponds to the mass of a [M + Na]+

ion of fengycin-C16 (C72H110N12O20) with a molecular weight of 1462.79538 Da. A peak
with an m/z ratio of 1074.64629 corresponds to the mass of a [M + K]+ ion of surfactin-C15
(C53H93N7O13) with a molecular weight of 1035.68259 Da. No significant peaks for other
LPs were detected in the FTICR-MS analysis.

4. Discussion

Our data suggest that PGPR, including some of selected strains of Bacillus and Pseu-
domonas, may also work as BCAs. Antagonism is a significant mechanism for suppressing
pathogen growth through the production of antifungal compounds [46,47]. The use of
antagonistic strains is one of the most important biological control technologies for disease
management due to its environmental and biological safety.

A phylogenetic analysis of 16S rRNA showed the cluster of the PGPR strains under
study with three different genera, namely Bacillus, Priestia, and Pseudomonas. The identifica-
tion of the strains at the species level was not possible and would only be accomplished
with additional analyses using other suitable DNA barcodes [48–50].

It was found that most Bacillus and Pseudomonas strains under study had direct antifun-
gal activity against Alternaria sp. AF12 and/or Fusarium sp. AF68 using dual culture assays.
These results are in line with previous studies reporting the high antifungal efficiency of
several strains of Bacillus and Pseudomonas spp. against relevant phytopathogenic species
of Alternaria and Fusarium [20,25,51–56]. In contrast, none of the Priestia strains showed
antifungal activity against both fungi. Bacillus sp. BS36 and Pseudomonas sp. BS95 were
the most efficient strains in inhibiting the growth of Alternaria sp. AF12 and Fusarium
sp. AF68. Moreover, Bacillus sp. BS36 showed high antifungal activity against Alternaria
sp. FP3, Botrytis sp. SM-D1, Fusarium sp. SM-D3, and Stemphylium sp. FP5, acting as a
broad-spectrum antagonistic strain.

Cell-free filtrates of Bacillus sp. BS36 showed antifungal activity against both Alternaria
sp. AF12 and Fusarium sp. AF68. These results suggest that this strain secreted antifungal
metabolites that directly inhibited the phytopathogenic fungi. Bacillus spp. are known
to produce a wide range of peptide and non-peptide antimicrobial compounds [26,57,58].
However, higher antifungal activity was recorded when cell cultures were used in dual
culture assays, as also shown by Elshafie et al. [59]. As reviewed by Zhang et al. [60],
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microorganisms can influence the environment and induce the production of specific
metabolites by other microorganisms. Thus, the interactions between antagonistic bacteria
and targeted fungi may stimulate the antagonistic bacteria to produce or over-express
certain antifungal compounds.

Considering the importance of microbial interactions in the production of new an-
timicrobial compounds [61,62], Bacillus sp. BS36 was co-cultured with the other PGPR
strains in an attempt to obtain cell-free filtrates enriched with new antifungal metabolites
and, therefore, with increased antifungal activity. The co-culture of Bacillus sp. BS36 and
Pseudomonas sp. BS95 showed improved antifungal activity against Alternaria sp. AF12.
Wu et al. [63] showed that microbial interactions through the co-culturing of biocontrol
microorganisms enhanced antifungal activity against B. cinerea due to the production of
specific compounds. Li et al. [64] demonstrated similar effects against F. graminearum. Thus,
the present results suggest that the interaction between Bacillus sp. BS36 and Pseudomonas
sp. BS95 under co-culture conditions induces the production of specific antifungal com-
pounds able to inhibit the growth of Alternaria sp. AF12. These cell-free filtrates obtained
by bacterial co-culture would have an advantage in the production of BCAs.

Although there is evidence that co-culturing with heat-inactivated cells, cell-free
filtrates, or extracts may not always be sufficient to induce the production of secondary
metabolites [61], Bacillus sp. BS36 was also co-cultured with heat-inactivated cells of the
target microorganisms, Alternaria sp. AF12 and Fusarium sp. AF68, in an attempt to obtain
cell-free filtrates with increased antifungal activity. The co-culture of Bacillus sp. BS36
with heat-inactivated cells of Fusarium sp. AF68 showed improved antifungal activity
against both fungi, while the co-culture of Bacillus sp. BS36 with heat-inactivated cells of
Alternaria sp. AF12 showed improved antifungal activity only against Fusarium sp. AF68.
It can be hypothesised that the secretion of antifungal metabolites by Bacillus sp. BS36 was
induced by a stimulus from the target microorganism, which resulted in cell-free filtrates
with increased antifungal activity.

Microbial interactions play a crucial role in shaping the dynamics of biological com-
munities [65]. This study shows that these interactions can be exploited in vitro to enhance
antagonism against phytopathogenic fungi, which is instrumental in the transition to more
sustainable agriculture. Moreover, the study provides evidence that PGPR may also be
efficient BCAs and that their biological control activity may be mediated through the
production of antimicrobial metabolites. These metabolites’ production can be enhanced
through specific co-culturing conditions. Understanding the intricate microbial interactions
and their potential to enhance antagonism against phytopathogenic fungi requires a holistic
approach that considers the ecological and molecular aspects of these relationships.

The extracellular metabolites of Bacillus sp. BS36 had the same antifungal activity
against Alternaria sp. AF12 and Fusarium sp. AF68, even after proteinase K treatment.
However, antifungal activity against Alternaria sp. AF12 significantly increased after
heating to 80 ◦C as compared to the untreated control filtrate. These findings suggest that
the antifungal activity of cell-free filtrates against Alternaria sp. AF12 may be due, in part, to
heat labile compounds. It can be hypothesised that the high temperature may have caused
the degradation of certain compounds, resulting in the maturation of BCA or formation of
new bioactive compounds with stronger antifungal properties. Alternatively, it may have
affected metabolites that negatively interacted with the antimicrobial metabolites.

Moreover, the untreated cell-free filtrates had the same antifungal activity against
Alternaria sp. AF12 and Fusarium sp. AF68 as the crude extracts of LPs. These results
suggest that the LPs’ secretion was involved in the in vitro inhibition of the growth of both
fungi by Bacillus sp. BS36, as antifungal activity did not decrease in the presence of crude
extracts of the LPs. LPs are secondary metabolites of particular interest due to their unique
structure and bioactivity. LPs can be resistant to hydrolysis by peptidases and proteases
and can withstand relatively high temperatures [66].

According to the FTICR-MS analysis, Bacillus sp. BS36 co-produced two types of LPs,
fengycin and surfactin. The presence of these metabolites in the cell-free filtrates could
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explain their high efficiency in suppressing the growth of the potentially phytopathogenic
fungi. Fengycin and surfactin are produced by several Bacillus strains and have antagonistic
activity against different microorganisms [22,67–70]. Fengycin is known for its high fungi-
toxicity, specifically against filamentous fungi [28,32,71]. Surfactin is not fungitoxic by itself,
but it can contribute to indirect protection processes that involve the induced systemic
resistance of the host plant [72–74]. Previous studies have described the co-production
of fengycin and surfactin by Bacillus strains and their synergistic effects in the control of
plant diseases [72]. The co-production of multiple families of LPs by Bacillus sp. BS36 is
an interesting and potentially useful feature. Further characterisation of these molecules
could be relevant in reducing the use of synthetic pesticides.

5. Conclusions

Our data show that the PGPR Bacillus sp. BS36 was the most effective strain in
suppressing the growth of the two potentially phytopathogenic fungi, Alternaria sp. AF12
and Fusarium sp. AF68. Additionally, this strain exhibited strong antifungal activity against
four other potentially phytopathogenic fungi, namely Alternaria sp. FP3, Botrytis sp. SM-D1,
Fusarium sp. SM-D3, and Stemphylium sp. FP5. Although the cell cultures of Bacillus
sp. BS36 inhibited fungal growth more than its cell-free filtrates, the latter also revealed
high antifungal activity. It was shown that these cell-free filtrates contained fengycin- and
surfactin-like lipopeptides, which may be responsible for its antifungal activity. This study
also highlights the potential of microbial co-culturing to enhance the antifungal activity of
Bacillus sp. BS36, and therefore supports that it should be further explored as a candidate
to develop new BCA products.

To characterise Bacillus sp. BS36 as a potential BCA, it is essential to identify it at the
species level. Therefore, additional molecular analyses using alternative primers/probes
or long-read sequencing should be carried out. Evaluating the potential of PGPR to work
as BCAs under field conditions is crucial to understanding how biotic and abiotic factors
affect their activity and interactions. Moreover, the successful implementation of BCAs
requires sustainable agricultural practices that promote the establishment and persistence
of beneficial microorganisms in the plant ecosystem.
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