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Abstract: With environmental degradation and energy shortages, green and low-carbon development
has become an industry trend, especially in regards to cold chain logistics (CCL), where energy
consumption and emissions are substantial. In this context, determining how to scientifically evaluate
the cold chain logistics efficiency (CCLE) under carbon emission constraints is of great significance
for achieving sustainable development. This study uses the three-stage data envelopment analysis
(DEA) and the Malmquist index model to analyze the overall level and regional differences regarding
CCLE in China’s four major urban agglomerations, under carbon constraints, from 2010 to 2020.
Then, the influencing factors of CCLE are identified through Tobit regression. The results reveal that:
(1) the CCLE in the four urban agglomerations is overestimated when carbon constraints are not
considered; (2) the CCLE in the four urban agglomerations shows an upward trend from 2010 to
2020, with an average annual growth rate of 1.25% in regards to total factor productivity. However,
there are significant spatial and temporal variations, with low-scale efficiency being the primary
constraint. (3) Different influencing factors have different directions and exert different effects on
CCLE in different urban agglomerations, and the improvement of economic development levels
positively affects all regions.

Keywords: cold chain logistics efficiency; influencing factors; three-stage DEA; Malmquist index;
Tobit regression; urban agglomerations

1. Introduction

The issue of global warming caused by greenhouse gas emissions, especially carbon
dioxide, is one of the most significant challenges currently facing humanity. Countries
around the world are focusing extensive attention on this problem [1,2]. China has con-
secutively become the world’s largest energy consumer and greenhouse gas emitter, with
its energy-related carbon dioxide emissions reaching about 12.1 billion tonnes in 2022,
accounting for 32.88% of the global share [3]. Faced with significant pressure to reduce
emissions, China’s government has committed to peak carbon emissions by 2030 and
achieve carbon neutrality by 2060 [4], and is currently implementing a range of measures
to reduce emissions across all industries, including cold chain logistics (CCL).

CCL, as a branch of the logistics industry exhibiting high energy consumption and
carbon emissions, plays a crucial role in reducing carbon emissions [5]. In contrast to
traditional logistics, CCL requires significant amounts of petrochemical or electrical energy
to maintain a constant and stable low-temperature environment, which is necessary to
ensure the quality and safety of the products being transported. According to statistics,
China’s post-harvest cold chain for fresh produce consumes CNY 80 billion worth of
electrical energy annually for low-temperature refrigeration. Furthermore, emissions from
transport vehicles, such as refrigerated trucks and containers, as well as refrigerant leakage,
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contribute to the problem of cold chain emissions [6]. However, the potential market
for the development of CCL in China is expanding rapidly due to the acceleration of
urbanization and the diversification of the consumption structure. In 2021, the market scale
was CNY 418 billion, indicating a stable growth trend with a year-on-year increase of 9.2%,
which presents valuable opportunities for the development of China’s CCL, but also poses
significant challenges. The reduction of energy consumption and carbon emissions, while
maintaining the efficiency of operations, is a crucial issue that needs to be addressed as a
matter of urgency in the development of CCL.

Although the future of CCL in China is promising, there are still issues that hinder
its development, such as low efficiency, poor quality, and regional imbalance [7]. The
“14th Five-Year Plan” for the development of cold chain logistics, issued by the State
Council, emphasizes the importance of accelerating operational efficiency improvement
and reducing emissions to achieve high-quality development [8]. Some scholars have
noted that logistics efficiency is a significant indicator for evaluating the quality of logistics
development, and measuring logistics efficiency is the initial step to elevating the level
of logistics development [9]. However, the literature review reveals that existing studies
mostly concentrate on efficiency measurement related to conventional logistics, with fewer
studies focused on CCL. Therefore, determining a method to scientifically and accurately
measure the cold chain logistics efficiency (CCLE) from a low-carbon perspective, identify
the key factors affecting efficiency improvement, and formulate targeted improvement
strategies accordingly has become an important target to promote the efficient, balanced, and
low-carbon development of regional CCL and to help China achieve its dual-carbon goal.

In these contexts, based on the three-stage DEA model, the Malmquist index model,
and the Tobit regression model, we constructed a regional CCLE measurement model and
influence factor analysis model under the carbon constraint and carried out an empirical
analysis of major urban clusters in China. Then, we comprehensively conducted a static
and dynamic combination of spatiotemporal evolution law exploration and difference
analysis, suggesting targeted recommendations based on the results of the analysis of the
influencing factors, which are helpful for the green, low-carbon, efficient, and balanced
development of CCL.

The remainder of the paper is organized as follows. Section 2 is a review of the related
literature. Section 3 introduces the basic theory and methods of this paper. The construction
of the evaluation indicators and the collected data are described in Section 4. Section 5
presents the empirical study and analysis of the results, including static, dynamic, and
driving factors analysis. Section 6 provides the conclusions and management insights.

2. Literature Review

Logistics efficiency is an important indicator of logistics resources input and effective
output, which can reflect the overall development of the industry. The literature review
includes two aspects: the CCLE measurement and promotion strategy.

2.1. Measurement of CCLE

According to existing studies, researchers have employed stochastic frontier analysis
(SFA), data envelopment analysis (DEA), analytic hierarchical analysis (AHP), and other
methods to measure logistics efficiency. The research subjects are mainly traditional logistics
systems, with less research in regards to CCL. Park and Lee [10] measured the logistics
efficiency of 14 Korean logistics suppliers. Based on the corporate perspective, other
scholars used AHP and DEA to estimate the efficiency of reverse logistics operations
for construction companies and third-party logistics companies, respectively [11,12]. In
addition, Liang [13] considered the carbon emissions of the logistics industry and measured
the logistics efficiency of 13 cities in Jiangsu Province from a city perspective. Barilla [14]
measured total factor logistics productivity in Italy from a national perspective.



Sustainability 2024, 16, 1997 3 of 18

Among many methods, the DEA model is widely used in the logistics field because it
does not require the construction of a specific form of the model and can solve the problem
of multiple inputs and outputs. However, with the expansion and deepening of the research
scope, the limitations of the DEA model have gradually emerged, and the method cannot
remove the defects of the external environment and the random error terms.

In response to these defects, many scholars have proposed different optimization
strategies, such as the BCC-DEA model [15,16], the Super-SBM model [17,18], and the DEA
environmental assessment model [19]. The main input indicators include the capital stock
in the logistics industry [13,20], the number of employees in the logistics industry [21],
infrastructure development (road mileage, railway mileage, etc.) [14,22], and key output
indicators such as freight volume and cargo turnover [23]. With the increasingly promi-
nent environmental problems, many scholars have incorporated environmental indicators,
such as energy consumption and carbon emissions, into the efficiency evaluation index
system to adapt to the trend of sustainable development [24,25]. However, research on
the measurement of CCLE under energy and environmental constraints remains to be
supplemented.

2.2. Promotion Strategy of CCLE

At present, the research on CCLE enhancement is mainly focused on optimizing the
CCL network, or proposing optimization strategies from a single aspect such as transporta-
tion, distribution, or warehousing. In terms of network optimization, Wu and Zhu [26]
constructed a CCL network optimization model based on the hub and spoke theory to
improve efficiency. Yu [27] constructed an international CCL network to reduce costs
and increase efficiency. In terms of single link optimization, Li [28] suggested that with
the promotion of intelligent logistics and joint distribution, the introduction of advanced
technologies can effectively improve the distribution efficiency in CCL. Some researchers
have also considered the integrity of the CCL, proposing a two-stage optimization model to
improve CCLE and enhance customer satisfaction [29–31]. In general, there are few studies
regarding improving the overall CCLE of the region, and the existing literature mostly
focuses on qualitative analysis, lacking quantitative research.

2.3. Literature Review and Summary

Through a review and summary of the relevant research, we find that most of the
existing studies on logistics efficiency focus on the traditional logistics industry, with little
attention paid to the rapidly developing CCL in recent years. On the other hand, the
research on CCLE improvement takes a single perspective, focusing on network construc-
tion optimization or single link optimization, and the quantitative and comprehensive
measurement and analysis of CCLE from a holistic level still requires expansion. Further-
more, the evaluation index system for CCLE measurement is constructed in such a way
that the impact of environmental and energy constraints on CCLE is ignored. Empirical
research indicates that there is a lack of research and differential analysis in regards to
urban agglomerations.

Therefore, this study examines CCL from a low-carbon perspective using a three-
stage DEA model, a Malmquist index model, and a Tobit regression model to construct an
efficiency measurement and influencing factor analysis framework. In contrast to previous
research, the contributions of this paper are as follows: (1) empirical analyses on the CCLE
at the urban cluster level are conducted; (2) in constructing the evaluation index system,
the specific characteristics and development trends of CCL are taken into account, with
carbon emissions as an input variable in the analysis framework. This not only enriches
and supplements the existing body of knowledge on CCL evaluation theory, but also serves
as a valuable reference for the advancement of the CCL industry in other regions.
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3. Methodology

Based on data obtaining, this paper combined the three-stage DEA and Malmquist in-
dex model to measure CCLE and applied the Tobit regression model to analyze influencing
factors. The basic theories and methods used are as follows.

3.1. Three-Stage DEA Model

To compensate for the fact that traditional DEA model does not take into account the
effects of environmental factors and random errors, Fried [32] constructed a three-stage
DEA model by incorporating environmental variables, random errors, and management
inefficiency terms into the efficiency analysis framework. Therefore, we used the three-stage
DEA model to measure the CCLE, and the specific steps are as follows.

(1) The first stage is using the traditional DEA model to analyze the initial efficiency.
We selected the input-oriented BCC model. For any decision-making unit, the BCC model,
in dual form, can be expressed as follows:

min
[
θ − ε

(
êTS− + eTS+

)]

s.t.



n
∑

j=1
Xjλj+S− = θX0

n
∑

j=1
Yjλj−S+ = Y0

λj ≥ 0
S+, S− ≥ 0

(1)

where, j = 1, 2 · · · n represents the decision-making units, X and Y are the input and output
vectors, S−, S+ represent the input and output relaxation variables, ε represents the non-
Archimedean infinitesimal, λj is the decision variable, and θ denotes the comprehensive
efficiency value of the decision-making units.

(2) The second stage is to use SFA-like regression to remove environmental factors
and noise. In this stage, the effects of environmental factors and random disturbances
are removed by constructing the following model to make the measurement results more
accurate (Equation (2)).

Sni = f (Zi; βn) + vni + µni
i = 1, 2, 3 · · · I; n = 1, 2, 3 · · · N

(2)

where Sni is the relaxation value of the n − th input of the i − th decision-making unit, Zi
represents the environmental variable, βn represents the environmental variable coefficient,
vni + µni represents the mixed error term, and the former represents random interference,
while the latter represents management inefficiency (v ∼ N(0, σ2

v ), µ ∼ N+(0, σ2
µ)).

XA
ni = Xni +

[
max

(
f
(
Zi; β̂n

))
− f

(
Zi; β̂n

)]
+ [max(vni)− vni]

i = 1, 2, 3 · · · I; n = 1, 2, 3 · · · N
(3)

In the separation of management inefficiency, this paper referred to the research
results of Luo [33] and Chen [34]. Finally, the input variables were adjusted accord-
ing to the formula shown below to adjust all decision-making units to the same exter-
nal environment, where XA

ni is the adjusted input, Xni is the pre-adjusted input, and
max( f (Zi; β̂n)− f (Zi; β̂n)) and max(vni)− vni are adjustments to external environmental
factors and random disturbances, respectively.

(3) The third stage is DEA efficiency analysis using the adjusted input-output variables.
At this stage, the efficiency has eliminated the influence of environmental factors and
random disturbances, better reflecting the actual situation.

3.2. Malmquist Index Model

Unlike single factor productivity, total factor productivity (TFP) is the productivity
of all input factors. It is an important indicator of economic growth efficiency, which is
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commonly measured using the production function method, the transcendental logarithm
method, the Malmquist index model, etc. [35,36]. The Malmquist index model is widely
used by researchers because it can overcome the shortcomings of the DEA model and
can accurately identify the main factors that affect efficiency changes over time through
efficiency decomposition [37]. Therefore, based on the data measured by the three-stage
DEA model, this paper uses the Malmquist index model to measure and decompose TFP.

M(xt+1, yt+1, xt, yt) =
[

Dt(xt+1,yt+1)
Dt(xt ,yt)

× Dt+1(xt+1,yt+1)
Dt+1(xt ,yt)

]1/2

= Dt+1(xt+1,yt+1)
Dt(xt ,yt)

[
Dt(xt+1,yt+1)

Dt+1(xt+1,yt+1)
× Dt(xt ,yt)

Dt+1(xt ,yt)

]1/2

= e f f ch × techch

(4)

Equation (4) is the expression of the Malmquist exponent from time t to time t + 1,
where xt+1 and xt denote the input vectors at time t + 1 and t, respectively, yt+1 and
yt represent the output vectors at time t + 1 and t, respectively, and Dt and Dt+1 are
distance functions. When M(xt+1, yt+1, xt, yt) > 1, it indicates that the TFP in period t + 1
has increased compared with that in period t, i.e., the productivity level has increased;
otherwise, it indicates a decrease. Assuming that the constant returns to scale, total
factor productivity can be decomposed into efficiency change (effch) and technological
change (techch).

When the scale efficiency is variable, the effch can be further divided into pure ef-
ficiency change (pech) and scale efficiency change (sech). The decomposition process of
the Malmquist index is a gradual and in-depth analysis of efficiency changes [38]. The
comprehensive expression is as follows.

M(xt+1, yt+1, xt, yt) = t f pch = e f f ch × techch
= pech × sech × techch

(5)

3.3. Tobit Regression Model

The CCLE measured in this paper is greater than 0, which is a limit-dependent variable.
In this case, this paper adopted the Tobit regression model proposed by James Tobin in
1958 to solve the problem of restricted dependent variables [39–41]. The basic contents of
the model are as follows. Where yit represents the explained variable, xit is the explana-
tory variable, α is the constant term, βt is the regression coefficient, n is the number of
explanatory variables, and εit represents the random error disturbance term.

yit =

 y∗it = α +
n
∑

i=1
βtxit + εit, y∗it > 0

0, else
, t = 1, 2, 3 · · · n, εit ∼ N

(
0, σ2

)
(6)

4. Case Illustration
4.1. Regions

We selected four major urban agglomerations in China as samples to study the mea-
surement of CCLE under carbon constraints, namely Beijing–Tianjin–Hebei (BTH), the
Yangtze River Delta (YRD), Sichuan–Shaanxi–Chongqing (SSC), and the Pearl River Delta
(PRD). Their scope and schematic location in China are shown in Figure 1.
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4.2. Selection of Evaluation Indicators and System Construction

The scientific and reasonable selection of evaluation indicators and the construction
of the system play a decisive role in the accuracy of the research results [42]. Considering
that there are no accurate statistics of CCL related data in the existing statistical standards,
referring to the existing research results and availability of the data, the selection of CCLE
evaluation indicators and system construction used in this paper are shown in Table 1. As
of March 2023, the 2022 China Energy Statistical Yearbook had not been officially published.
Therefore, the most recent year of all statistical yearbooks used in this paper is 2021, with
the most recent data being from 2020. The data, spanning from 2010–2020, were extracted
from the China Statistical Yearbook (2011–2021), the China Logistics Yearbook (2011–2021),
the China Cold Chain Logistics Development Report (2011–2021), and the China Energy
Yearbook (2011–2021). In particular, due to the lack of data on the energy consumption
of CCL, we used the energy consumption of the logistics industry to calculate the carbon
emissions with reference to the methodology of IPCC [43,44], as shown in Equation (7).
Then, the value was multiplied by the ratio of the total amount of CCL to the total amount
of social logistics in each region to indirectly estimate the carbon emissions of CCL.

Qco2 =
n

∑
k=1

Ek × NCVk × CEFk × COFk ×
44
12

(7)

where Qco2 is the total carbon emissions; Ek is the consumption of various forms of energy
in the regional CCL, i.e., coal, gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas,
and natural gas, respectively; NCVk represents the average low calorific value; CEFk is the
carbon emission coefficient; and COFk is the carbon oxidation factor, which defaults to 1.
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Table 1. Selection of the CCLE evaluation index.

Category Selected Variables Variable Name Unit Code

Input variables

Financial input CCLE and social fixed asset investment CNY 100 million X1
Labor input Number of CCL employees people X2

Energy input CCL carbon emissions 10,000 t X3

Technical input
Highway mileage km X4

CCL storage capacity 10,000 t X5
Number of refrigerated/insulated

vehicles vehicle X6

Output variables Economic output The total CCL CNY 100 million Y1
The total demand of CCL 10,000 t Y2

Environmental
variables

Economic development
level GDP CNY 100 million Z1

Government support Degree of government support % Z2

4.3. Data Processing

Based on the system construction and data collection, we preprocessed the data
obtained, including performing the homogeneity test, the reduction in the dimension of
the input variables, and normalization.

(1) Homogeneity test
Using DEA to measure efficiency, the input and output variables should be isotropic

to ensure the scientific validity of the study. We used the Pearson correlation coefficient for
the test. The test results are shown in Table 2. It can be seen that the correlation coefficients
between the input and output indexes are positive, and more than 90% of the correlation
coefficients are greater than 0.6, which is a strong correlation, and all correlation coefficients
pass the two-tailed test. These results meet the preconditions of DEA and are suitable for
this study.

Table 2. Homoscedasticity test results for input and output variables from 2010 to 2020.

2010 2011 2012 2013 2014 2015

Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1
X1 0.627 * 0.643 * 0.678 * 0.660 * 0.754 * 0.706 * 0.644 * 0.851 ** 0.759 * 0.680 * 0.626 *
X2 0.739 * 0.752 * 0.840 ** 0.649 * 0.538 * 0.342 * 0.642 * 0.739 ** 0.641 0.740 * 0.740 **
X3 1.000 ** 0.505 * 0.480 ** 0.603 * 0.703 ** 0.602 * 0.453 ** 0.522 * 1.000 ** 0.903 ** 1.000 **
X4 0.538 * 0.640 * 0.688 * 0.674 * 0.639 * 0.673 * 0.739 ** 0.666 * 0.740 * 0.668 * 0.736 *
X5 0.637 ** 0.614 ** 0.547 * 0.624 * 0.653 ** 0.830 ** 0.549 * 0.349 * 0.739 ** 0.599 * 0.662 *
X6 0.860 ** 0.732 ** 1.000 ** 0.803 * 0.950 ** 0.860 * 0.866 ** 0.768 ** 0.652 ** 0.498 * 0.989 **

2015 2016 2017 2018 2019 2020

Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2
X1 0.648 * 0.616 ** 0.765 ** 0.549 * 0.755 ** 0.652 * 0.775 ** 0.653 * 0.635 * 0.689 * 0.648 *
X2 0.737 * 0.841 * 0.733 * 0.848 * 0.729 * 0.646 ** 0.730 * 0.646 * 0.699 ** 0.746 * 0.737 *
X3 0.603 * 1.000 ** 0.864 * 0.907 ** 0.706 * 0.998 ** 0.866 ** 0.799 ** 0.736 ** 0.542 ** 0.603 *
X4 0.659 * 0.633 * 0.663 * 0.734 * 0.665 * 0.732 * 0.658 * 0.733 ** 0.699 * 0.785 ** 0.659 *
X5 0.489 * 0.549 * 0.640 * 0.752 ** 0.836 ** 0.754 * 0.834 ** 0.732 * 0.832 ** 0.810 * 0.489 *
X6 0.846 * 1.000 ** 0.865 ** 0.795 ** 0.734 * 0.689 * 0.599 * 0.688 ** 0.958 ** 0.837 ** 0.846 *

Note: ** and * indicate that the correlation is significant at a confidence level of 0.01 and 0.05.

(2) Dimension reduction of input variables
Due to the large number of input variables in Table 1, the data do not meet the

requirements of the DEA model for the number of variables, so the principal component
analysis (PCA) method is used for data dimensionality reduction.
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The results of the KMO and Bartlett’s tests are shown in Table 3. The analysis of the
results shows that the KMO value is 0.825, which is greater than 0.8, and the probability of
significance is 0.000, which is less than 0.05, indicating that the data are suitable for PCA.

Table 3. KMO and Bartlett’s test.

Sampling Sufficient Kaiser–Meyer–Olkin Metric 0.802

Bartlett’s test for sphericity
Approximate Cartesian 302.561

degree of freedom 15
significance 0.000

As shown in Table 4, the results reveal that when the three principal components are
extracted, the cumulative variance contribution rate is 82.64%, which is greater than 80%,
which can better reflect the vast majority of information of the six indicators. Therefore, the
three principal components can be substituted into the DEA model as the representatives
of input resources.

Table 4. Eigenvalues and cumulative contributions of PCA.

Ingredients Initial Eigenvalue Extraction of the Sum of Squares of Loads

Total % of Variance Cumulative % Total % of Variance Cumulative %

1 3.604 51.072 51.072 3.064 51.072 51.072
2 1.025 20.075 71.148 1.205 20.075 71.148
3 0.699 11.494 82.641 0.690 11.494 82.641
4 0.573 9.556 92.167
5 0.357 5.953 98.150
6 0.111 1.850 100.000

(3) Normalization processing
Since the new input variables obtained by dimensionality reduction exhibit significant

differences from the other variables in terms of magnitude and value, this paper adopted
the extreme difference method to standardize the variables [45], which are all values in the
range of (0.1, 1). The calculation formula is as follows:

X∗
ij = 0.1 +

Xij − min
j

{
Xij

}
max

j

{
Xij

}
− min

j

{
Xij

} × 0.9 (8)

where X∗
ij denotes the input and output variables after standardization, respectively; Xij

denotes the new input variables obtained by PCA and the original output variables.

5. Results and Analysis

Based on the above theories and methods, in this section we first design static and
dynamic measures of CCLE and analyze the overall and regional differences, respectively,
in the results; we then apply the Tobit regression model to explore the affective factors of
CCLE, laying the theoretical foundation for efficiency improvement strategies.

5.1. Static Measurement of CCLE

Based on a three-stage DEA model, this section solves the comprehensive technical
efficiency (TE), pure technical efficiency (PTE), and scale efficiency (SE), and analyzes them
from different perspectives.

5.1.1. Comprehensive Analysis

Table 5 shows the CCLE measurement results in the case of carbon emission inclu-
sion/exclusion in the input index.
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Table 5. Results of the efficiency measurement, with and without carbon emissions, from 2010 to 2020.

Without Carbon Emissions With Carbon Emissions

TE PTE SE TE PTE SE

2010 0.7134 0.9303 0.6878 0.6338 0.8702 0.7972
2011 0.8484 0.9731 0.9277 0.9052 0.9156 0.9282
2012 0.9425 0.9614 0.9319 0.8998 0.9853 0.9558
2013 0.9518 0.9671 0.9582 0.9287 0.9838 0.9661
2014 0.9389 0.9433 0.9321 0.8853 0.9830 0.9533
2015 0.9420 0.9796 0.9597 0.9367 0.9865 0.9478
2016 0.9557 0.9806 0.9737 0.9279 0.9887 0.9371
2017 0.9450 0.9780 0.9652 0.9198 0.9861 0.9319
2018 0.9283 0.9753 0.9503 0.9147 0.9888 0.9238
2019 0.9301 0.9790 0.9490 0.9115 0.9919 0.9183
2020 0.9374 0.9822 0.9538 0.9107 0.9932 0.9168

Whether carbon emission is included in the input variable or not, the TE of the
study area exhibits a steady upward trend between 2012 and 2020, which shows that
the CCLE has improved in recent years. As shown in Figure 2, when carbon emission is
included in the input index, the TE of CCL decreases, and the efficiency, neglecting carbon
emission, is overestimated. The figure shows that if investment factors, such as capital, labor,
and technology, are exclusively considered, and energy and environmental constraints
are ignored, the calculation results are not accurate. Therefore, when constructing the
evaluation index system, considering carbon emission is more in line with the actual
situation, which also verifies the rationality of the model constructed in this paper.
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Figure 2. TE of CCL, determining whether or not to consider carbon emissions.

In addition, the PTE, when considering carbon emission after 2012, is higher than
that when carbon emission is not considered. This convincingly shows that the CCL
industry is more technologically and managerially advanced when considering energy and
environmental constraints. This is because, under the developing trend of energy savings
and emissions reduction, the government promotes the CCL industry through policy
regulation and other means, while enterprises respond by improving the development and
implementation of advanced technologies and promoting management tools to enhance
the technology level of the CCL, thus increasing the CCLE.

Although the CCLE considering carbon emission show continuous improvement from
2010 to 2020, there are variations in the trends of TE, PTE, and SE, as demonstrated in
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Figure 3. The PTE is the closest to the efficiency frontier, remaining at a high level and
maintaining an upward trend, indicating a high level of technology and management in
the study area as a whole. However, in contrast to the increasing trend in PTE, the trends
for combined TE and SE are much closer, both showing an upward trend from 2010 to 2012
and a downward trend after 2013.
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Figure 3. Average CCLE, considering carbon emission, from 2010 to 2020.

Therefore, for the four urban agglomerations, the common factor restricting the im-
provement of CCLE is the low SE. Although the improvement in PTE could offset part of
the inhibition of SE, the effect is not obvious. The focus of the four urban agglomerations
to improve the level of CCL should be to improve the diseconomies of scale and scale
efficiency by increasing the scale and optimizing resource allocation.

Due to the differences in regional economic development levels and industrial struc-
tures, in order to further analyze the development characteristics and trend of CCL in the
four urban agglomerations, the difference analysis of CCL, considering carbon emission,
will be carried out below.

5.1.2. Regional Difference Analysis Considering Carbon Emission

The results of the analysis in the previous subsection show that the CCLE, considering
carbon emission, is continuously improving from 2010 to 2020, but there are differences
between regions in regards to TE, PTE, and SE; therefore, this subsection carries out a
regional difference analysis. The results of the CCLE, with carbon emission, in different
regions from 2010 to 2020 are shown in Table 6.

As shown in Figure 4, the PRD has always remained at the forefront of efficiency. It
indicates that the development of the CCL industry in the region is relatively green, with
low carbon emissions, and is more mature than that in other regions. This may be because
fresh agricultural products account for more than 90% of the CCL flows, while the PRD
is one of the three major fruit production bases in China, and it is also relatively rich in
aquatic resources. The huge scale of the supply of fresh agricultural products has led to the
construction and improvement of the infrastructure, which has contributed to the CCLE.
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Table 6. Results of the CCLE, with carbon emission, in different regions from 2010 to 2020.

BTH YRD SSC PRD

TE PTE SE TE PTE SE TE PTE SE TE PTE SE

2010 0.6880 0.8100 0.8157 0.7527 0.8610 0.8383 0.6367 0.8353 0.7403 0.7763 0.9743 0.7943
2011 0.6973 0.8703 0.8157 0.8133 0.8960 0.9137 0.8870 0.8960 0.9873 0.9960 1.0000 0.9960
2012 0.8910 0.9480 0.9383 0.9580 1.0000 0.9580 0.9210 0.9933 0.9267 1.0000 1.0000 1.0000
2013 0.8960 0.9470 0.9437 0.9963 1.0000 0.9963 0.9147 0.9883 0.9243 1.0000 1.0000 1.0000
2014 0.8977 0.9600 0.9320 0.9518 1.0000 0.9518 0.9060 0.9720 0.9293 1.0000 1.0000 1.0000
2015 0.9100 0.9720 0.9333 0.9470 1.0000 0.9470 0.8897 0.9740 0.9107 1.0000 1.0000 1.0000
2016 0.9003 0.9727 0.9227 0.9313 1.0000 0.9313 0.8800 0.9820 0.8943 1.0000 1.0000 1.0000
2017 0.8997 0.9770 0.9203 0.8958 0.9835 0.9108 0.8837 0.9840 0.8963 1.0000 1.0000 1.0000
2018 0.8703 0.9663 0.8983 0.9250 1.0000 0.9250 0.8633 0.9890 0.8717 1.0000 1.0000 1.0000
2019 0.8783 0.9763 0.8990 0.9230 1.0000 0.9230 0.8447 0.9913 0.8510 1.0000 1.0000 1.0000
2020 0.8823 0.9802 0.9001 0.9245 1.0000 0.9245 0.8360 0.9924 0.8424 1.0000 1.0000 1.0000
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Figure 4. Average TE of all regions from 2010 to 2020.

From 2011 to 2014, the region with the lowest TE is the BTH, followed by the SSC. The
reason may be that Beijing–Tianjin–Hebei integration released in 2015 proposed to “promote
the coordinated development of logistics industry”, in which the CCL became a key focus
area [46]. The positive policy environment promotes the coordinated development and
scale development of CCL in the BTH, and finally, improves efficiency. The SSC is located
in the less developed Western Region of China. Compared to other regions, the low level of
economic development, the complex geographical environment, and the lack of a perfect
layout and infrastructure construction of the CCL restrict the improvement of TE. There is
a large gap between the SSC and other regions. Therefore, for the SSC, determining how to
narrow the regional gap through reasonable measures is of great significance in improving
its own—as well as the overall—CCLE of the whole country.

From the perspective of PTE, the PRD and the YRD were the highest, reaching the
efficiency frontier in most years, indicating that these two regions had a high level of
logistics technology and management. This region was followed by the SSC, while the
BTH has the lowest PTE. In the future, the focus should be on improving pure technical
efficiency and striving to improve the technical and management levels in the area.

In terms of SE, the PRD remained at the frontier of efficiency, while the YRD was closer
to the average. Taking 2012 as the time point, the SE of the BTH was the lowest in the first
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period, and the SE of the SSC was the lowest, demonstrating a downward trend. Therefore,
for the SSC, in the future, efforts should be made to promote factor agglomeration and
industrial synergy development to improve SE.

5.2. Dynamic Measurement of CCLE

To gain a deeper understanding of the dynamic changes in regional CCLE from a
low-carbon perspective, this subsection utilizes input-output data obtained from the three-
stage DEA analysis and applies the Malmquist index model to obtain the TFP index and its
decomposition for each region under carbon constraints. On the basis of these results, we
conduct an analysis of the overall and variances of the dynamic changes in CCLE.

5.2.1. Global Analysis

Table 7 presents the mean value and decomposition results of the TFP index of CCL in
the study area, under carbon constraints, from 2010 to 2020.

Table 7. TFP index and decomposition results of overall CCL under carbon constraint.

Year effch techch pech sech tfpch

2010–2011 1.072 0.744 1.028 1.068 0.946
2011–2012 0.973 1.033 1.004 0.969 1.005
2012–2013 0.997 1.053 0.998 0.999 1.05
2013–2014 0.996 1.052 0.999 0.997 1.048
2014–2015 0.996 1.041 1.004 0.992 1.037
2015–2016 0.988 1.127 1.003 0.985 1.113
2016–2017 0.988 1.059 0.996 0.992 1.047
2017–2018 0.994 1.102 1.005 0.989 1.095
2018–2019 0.996 1.155 1.003 0.992 1.150
2019–2020 0.990 1.167 1.001 0.994 1.108

mean 0.999 1.0533 1.0041 0.9977 1.0599
Notes: effch means efficiency change; techch means technological change; pech means pure efficiency change; sech
means scale efficiency change; tfpch means the change in total factor productivity.

The results indicate that from 2011 to 2020, the Malmquist index for the study area
remained above 1, suggesting an overall upward trend in the TFP of CCL, when taking
carbon emissions into account. The average annual growth rate was 1.25%, with techch
contributing the most significantly, with an average annual growth rate of 4.20%. This
can be attributed to advancements in technology. Additionally, the strong growth in
demand for CCL was fueled by China’s rapid economic development and the emergence
of new industrial models, such as e-commerce, during this period. At the same time,
the introduction of relevant positive policies, such as Logistics Industry Adjustment and
Revitalization Planning [47] and the Medium and Long Term Plan for the Development of
the Logistics Industry (2014–2020) [48], during the period has prompted a clear trend of
technological innovation and energy savings, along with low-carbon trends, in the CCL
industry. While promoting the overall CCLE, each region also pays great attention to
energy and environmental constraints.

5.2.2. Variance Analysis

Table 8 shows the TFP of the CCL and its decomposition results for each urban ag-
glomeration. When considering regional differences, the highest TFP of CCL under carbon
constraints is found in the PRD, followed by the YRD and BTH, with all of them exceeding
1. On the contrary, the SSC exhibits the lowest TFP, which is less than 1 and significantly
lower than that of other urban agglomerations.
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Table 8. TFP index and decomposition results of CCL in four urban agglomerations, under carbon
constraint.

effch techch pech sech tfpch

The BTH 1.037 1.026 1.024 1.012 1.063
The YRD 1.024 1.064 1.013 1.011 1.089
The SSC 0.981 0.999 0.999 0.982 0.980
The PRD 1.063 1.056 1.000 1.063 1.123

mean 1.019 1.034 1.011 1.008 1.053
Notes: effch means efficiency change; techch means technological change; pech means pure efficiency change; sech
means scale efficiency change; tfpch means the change in total factor productivity.

In addition, the YRD exhibits the highest techch, while the BTH has the highest pech,
and the PRD shows the highest effch and sech. The relatively stable technical efficiency
and scale efficiency across regions are important factors contributing to the high-quality
development of CCL. In contrast, the SSC shows less satisfactory indicators. Combined
with the results in Section 5.1 showing the static measurement of CCLE in each region, it
can be observed that the CCLE in the SSC region increases over the study period, but there
is a 2% decrease in TFP, which can be attributed to the simultaneous decline of TE and SE.
Therefore, for the SSC, it is not only necessary to continue to strengthen the infrastructure
construction and expand the scale of CCL but also to continuously promote technological
innovation and progress in the field of CCL under the background of green and low-carbon
development.

5.3. The Influencing Factors of CCLE

The results of both static and dynamic CCLE measurements indicate that although the
overall level of CCL development in each urban agglomeration has improved, significant
differences still exist. Therefore, improvement strategies should be targeted accordingly.
Building on the aforementioned research, this subsection investigates the influencing
factors of CCLE and analyzes the direction and extent of each factor’s impact, providing a
theoretical foundation for the formulation of improvement strategies.

Among the available research results, scholars have mainly considered the influence
of factors such as the level of economic development, economic structure, and industrial
agglomeration on the CCLE. To ensure the rationality of index selection and data availability,
we developed an index system of influencing factors, as described in Table 9.

Table 9. Index system of CCLE influencing factors.

One-Level Indicators Two-Level Indicators Code Source Indicates

Dependent Variables CCLE Eff Calculation by three-stage DEA
model

The development level
of CCL

Explanatory Variables

Economic development
level EL Regional per capita GDP The level of economic

development

Degree of openness to
the outside world OD The ratio of regional import and

export trade to GDP
The degree of openness

to the outside world

Energy structure ES
The ratio of regional logistics energy

consumption to total energy
consumption

Cleanliness of energy

Government
intervention GD

The ratio of total fixed-asset
investment to GDP in regional

transport, postal, and warehousing
industries

Government support

We selected four influential factors, including the level of economic development
(EL), the degree of openness to the outside world (OD), the energy structure (ES), and
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government intervention (GD), as explanatory variables. To construct a Tobit regression
model, we used CCLE, under carbon constraints, obtained from the three-stage DEA model–
Malmquist index model as the dependent variable. After the Hausman test, the index
system was further determined as a panel Tobit random effect regression model, which is
shown in Equation (9), where β0 is the constant, β1, β2, β3, β4 are the regression parameters
of each index, respectively, and εi is the residual error. The results are shown in Table 10,
indicating that all variables pass the significance test, and the goodness of fit of the data
is good.

TFPi = β0 + β1EL + β2OD + β3ES + β4GD + εi (9)

Table 10. Tobit regression results of influencing factors of CCLE (regression coefficient).

Code BTH YRD SSC PRD

Economic development level EL 0.8094 ** 0.0447 * 0.8449 * 0.0503 **
Degree of openness to the

outside world OD 0.2042 ** 0.5819 ** −0.7421 * 0.9226 *

Energy structure ES 0.2551 ** −0.3667 *** 0.1432 ** −0.7358 ***
Government intervention GD 0.2162 * 0.4702 ** −0.8431 ** 0.0820 ***

_cons −0.6065 1.6050 0.9990 0.2649

Note: ***, **, and *, respectively, represent 0.01, 0.05, and 0.1 significance.

Specifically, the impact coefficients of all indicators of the CCLE in the BTH region
are positive. The coefficient of EL is the highest at 0.8094, which is consistent with the
expectations that economic development can effectively promote the development of the
CCL industry. This is because economic progress is often accompanied by phenomena such
as the upgrading of industrial structures, the introduction of advanced technologies, and
the gathering of capital and outstanding talents, which all play a positive role in promoting
the CCL.

In the YRD, the influence coefficients of EL, OD, and GD are positive, while only the
ES is negative, with an influence coefficient of −0.3667, indicating that the main factor
restricting the development of CCL in the YRD at present is the unreasonable energy
structure. This means that more energy input would lead to a decrease in the CCLE.
This indicates that although the scale and service level of CCL in the YRD are expanding,
the environmental impact of high energy consumption is becoming increasingly severe,
resulting in significant ecological costs. Therefore, it is necessary to prioritize the promotion
of the sustainable development of CCL by adopting a low-carbon approach to energy and
improving the cleanliness of current energy sources.

In the SSC, both OD and GD show a significant negative effect, and the latter has a
greater effect, with the influence coefficients of −0.7421 and −0.8431, respectively. From the
perspective of OD, the SSC is located in the Western Inland Region of China, with a complex
geographical environment and poor transportation accessibility. Therefore, the low degree
of openness to the outside world has affected the development of CCL. In terms of the
GD, national strategies such as China’s Western Region Development Strategy could play
a positive role in the development of this area [49]. However, the logistics infrastructure
construction in the urban agglomeration of SSC is weak, and the government’s support
for the industry is insufficient, while competition exists between regions within the urban
agglomeration. Hence, unreasonable government intervention may, to a certain extent,
instead intensify resource competition and cause phenomena such as unreasonable resource
allocation, which is not conducive to the development of CCL. The SSC should focus on
expanding the degree of openness to the outside world and increasing the intensity and
rationality of government intervention.

The impact of different factors in the PRD is similar to that in the YRD. Specifically, the
EL, OD, and GD have a positive effect, while the ES has a negative impact. This suggests
that the PRD’s energy structure also requires improvement.
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6. Conclusions and Implications
6.1. Conclusions

This study applies the three-stage DEA and Malmquist index model to statically and
dynamically evaluate the CCLE of China’s four primary urban agglomerations (BTH, YRD,
PRD, and SSC) during the period between 2010 and 2020, from a low-carbon perspective.
The Tobit regression model is employed to identify the main factors that contribute to the
enhancement of CCLE. The main conclusions are as follows.

Firstly, during the period of 2010–2020, the CCLE in the study area shows an overall
upward trend under both the carbon constraint and non-carbon constraint scenarios, indi-
cating an improvement in the development level of CCL. However, there are significant
differences in each region under the two different situations, implying that environmen-
tal regulation could affect the development of CCL. Therefore, improving CCLE and
implementing energy conservation and emission reduction should become the primary
development goals in the future.

Secondly, the CCLE of the PRD is always the closest to the efficiency frontier, from a
static perspective, followed by the YRD, indicating that their expansion is in good condition
and that they can continue to maintain the development trend. The main factors limiting
the CCLE in the BTH and SSC are PTE and SE, respectively. From a dynamic point of view,
the TFP of CCL in all regions has increased from 2010 to 2020, with the main driving factor
being the improvement in technological change. However, attention should be paid to the
TFP of the CCL in the SSC, which is less than 1.

Finally, in terms of influencing factors, EL, OD, ES, and GD all have an impact on the
CCLE, but the direction and degree of influence of each factor differ in various regions. EL
has promoted CCLE in all regions, but the impact coefficient of ES is negative for YRD and
PRD. OD and GD also have a negative impact on CCLE in the SSC.

6.2. Implications

Based on the above findings, this study proposes several insights to promote the
low-carbon, efficient, and balanced development of cold chain logistics.

Firstly, there is a need to improve the research and development of key technologies
and advanced equipment in the cold chain logistics sector, aiming to improve the energy-
saving capabilities of cold chain logistics facilities and equipment. Green and low-carbon
production has become the inevitable trend of the development of cold chain logistics [50].
The government should recognize the significance of technological progress and innovation
in enhancing CCLE and actively improve the application of technologies such as big data,
5G, blockchain technology, and artificial intelligence in the field of cold chain logistics. It
should also expedite the replacement of highly polluting refrigerated lorries and encourage
the exploration and development of small and lightweight modern refrigerated lorries and
containers to accelerate the pace of emission reduction and the low-carbon transformation
of cold chain logistics.

Secondly, advanced regions should play a demonstrative and leading role in promoting
and driving the collaborative and large-scale development of cold chain logistics. The
study finds that the CCLE of the four urban agglomerations is significantly different, and
low-scale efficiency is one of the important factors restricting their CCLE. Therefore, it is
essential to fully utilize the high CCLE urban agglomeration’s demonstrative role and steer
the cluster development of cold chain logistics components by adjusting the industrial
scale, consolidating logistics resources, coordinating regional advancement, strengthening
facility linkage and information connectivity, in order to enhance the scale level of cold
chain logistics.

Finally, the government should reasonably formulate guidance policies related to the
development of cold chain logistics. Taking into account the actual development of the
region, the government should actively play a guiding and regulating role, make use of the
situation, identify the focus point of the policy, exert precise efforts, and comprehensively
formulate the strategy or implementation plan for the development of cold chain logistics
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in the region in order to systematically promote the high-quality development of cold chain
logistics in different regions. For example, all urban clusters should mainly concentrate on
improving the level of economic development to promote the expansion of the regional
cold chain logistics market and the improvement of infrastructure facilities, which in turn
will promote the improvement of CCLE. The YRD and PRD also need to concentrate on the
energy structure and promote the adoption of natural cold energy, solar energy, and other
eco-friendly energy sources.

6.3. Limitations

This paper contributes to the enrichment and enhancement of the CCLE evaluation
methodology, offering a theoretical foundation for advancing CCLE improvement and
sustainable development. Nevertheless, it is important to acknowledge certain limitations.
Due to the limited availability of the data, the empirical study only covers the period from
2010 to 2020. Additionally, the selection of evaluation indicators is somewhat narrow due
to the limited availability of information such as statistical yearbooks. In the future, if
there is more comprehensive data support, additional research and analysis should be
carried out using a longer time perspective and a richer indicator system. Secondly, in
the future, the results should be compared with those of other studies to enhance their
reliability and validity. Finally, a quantitative evaluation of measures to promote CCLE can
be considered to provide a basis for relevant government departments to formulate more
effective policies.
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