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Abstract: To improve the simulation accuracy and efficiency of microscopic urban traffic, a unified
modeling method considering the behavioral characteristics of vehicle drivers is proposed by con-
sidering the lane-changing vehicles on the inlet lanes of signalized intersections and their approach
following vehicles on the target lanes as research objects. Based on the driver’s multidirectional,
multi-vehicle anticipation ability and introducing lateral vehicle influence coefficients, the full velocity
difference car-following model was extended to microscopic traffic models that consider the driver’s
capacity for multi-directional, multi-vehicle anticipation. The extended model can describe longitudi-
nal movements of lane changing and car followers using lateral vehicle influential parameters. The
influences of traffic control signals and the type of lane change on drivers’ decisions were integrated
into the model by reformulating the optimal velocity function of the basic car following the model.
Similar modeling methods and components were applied to formulate four groups of experimental
models and one group of test models. Vehicle trajectory data and manual observations were collected
on urban arteries to calibrate and evaluate the research models, experimental models, and test models.
The results show that the car-following behavior is more sensitive to the variation in the status of
the lateral moving vehicle and change of lane-changing type compared to lane-changing behavior
during the lane-changing process. In addition, when lane changing gradually encroaches on the
target lane, the vehicle observes the driving conditions and adjusts its driving behaviors differently.
This research helps to analyze travel characteristics and influence mechanisms of vehicles on urban
roads, which is a guide for the future development of sustainable transportation and self-driving
vehicles and promoting the efficient operation of urban transportation systems.

Keywords: driving behavior; unified modeling; car-following model; lane-changing model; sustain-
able transportation system

1. Introduction

Vehicle lane-changing behavior is one of the triggers of macro traffic flow phenomena
such as traffic oscillation, capacity drop, and traffic breakdown [1]. The degree of the im-
pact of lane-changing vehicles on neighboring vehicles is directly related to the formation,
duration, and dissipation speed of traffic bottlenecks [2]. When simulating lane-changing
scenarios with high traffic density, many microscopic traffic flow simulation software out-
puts abnormal vehicle trajectories, which are usually manifested as lane-changing vehicles
“jumping” from the original lane to the target lane, resulting in frequent acceleration and
deceleration of the vehicles following behind the two lanes, which triggers abnormal fluctu-
ations in lane traffic flow [3]. This type of problem leads to a decrease in the accuracy of
microscopic traffic flow simulation, affecting the reliability of the conclusions of traffic safety
evaluation, traffic signal timing, and other aspects of the study based on microscopic traffic
flow simulation. The main reason for the above simulation deviation is that the existing
microscopic traffic flow model reduces the time continuity of the driving behavior and the
driver’s ability to respond to changes in the driving environment in a high-density traffic
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flow environment. From the perspective of model architecture, this defect is mainly mani-
fested with a high degree of separation between the following model and the lane-changing
model, as well as insufficient consideration of external factors affecting driver behavior.

Existing studies often decompose continuous vehicle driving actions into two types of
sub-behaviors, following and lane changing, and construct relatively independent modeling
systems for them [4–11]. The behavioral assumption of this modeling approach is that since
the time a driver spends performing a lane change during continuous driving is shorter
than the time they spend in a following state, it is assumed that the following behavior is
driven by the decision to follow continuously within a certain spatial and temporal range,
whereas the lane-changing behavior is derived from the driver’s behavioral decision and
the time spent on this decision is very short or even negligible. However, in the actual
non-free-flow driving scenario, the lane-changing vehicle will continuously adjust its speed
and relative position with other vehicles in the pre-lane-changing, mid-lane-changing and
post-lane-changing periods to reduce the risk of collision with the neighboring vehicles
while creating a suitable space for driving. However, in the actual non-free-flow driving
scenario, the lane-changing vehicle will continue to adjust its speed and relative position
with other vehicles in the pre-lane-changing, mid-lane-changing and post-lane-changing
periods to reduce the risk of collision with the neighboring vehicles while creating a suitable
space for driving; in this process, the drivers of the neighboring vehicles who follow the
lane-changing vehicle can surmise the other party’s intention by observing the movements
of the lane-changing vehicle, and continue to adjust the vehicle manipulation behaviors in
conjunction with their own driving purpose, so as to weaken the impacts of the changes
in the lane-changing vehicle’s position on their own. Although only a few studies [12–14]
have constructed microscopic traffic flow models to describe the continuous driving actions
of lane-changing vehicles, the existing microscopic traffic flow modeling systems of various
types do not form a consistent rule on how to switch between the two states of vehicle
following and lane changing, which leads to the difficulty of many following models to
reflect the continuous impact of lane-changing vehicles on the neighboring and following
drivers and the proactive adjustment ability of the following drivers.

In addition, the existing studies have mainly focused on lane-changing behaviors in
continuous traffic flow environments, such as urban expressways, and relatively limited
research has been conducted on the driving behaviors of individual lane-changing partici-
pants in intermittent flow environments, such as urban main roads. Some scholars [1,4]
have pointed out that the decision making and behavioral mechanisms of drivers in con-
tinuous traffic flow are not fundamentally different from those in intermittent traffic flow,
only that the driving environment in the latter is usually more complex, and more factors
may affect driver behavior. Therefore, when modeling and analyzing driving behavior
in urban road scenarios, it is necessary to choose a basic model that can be considered
to be highly scalable for research. Several classical models, such as the optimal velocity
(OV) model and the Gipps model, are often extended into microscopic traffic flow models
for various driving scenarios [15–19]. Since these models have different assumptions and
dynamic characteristics, how to incorporate the influence of external factors on driver
behavior into the model by using a reasonable method, in conjunction with the application
scenarios, has always been one of the main concerns of micro traffic flow research scholars
over the years [20]. Due to the high separation of the existing microscopic traffic flow
model system between the following model and the lane-changing model, most models
only simulate the behavioral mechanism of a single driver, and the model variables are
measured from the driver’s perspective, so the calibrated model parameters reflect the
behavioral characteristics of a single driver. In addition, the influence of multi-vehicle
interaction is more obvious in urban road lane-changing scenarios, and it is necessary
to fully understand the influence mechanism of human–vehicle–road multidimensional
elements on different drivers and its relationship with macro traffic flow phenomena.

Taking the behaviors of multiple drivers participating in the same lane-changing
process on the inlet lane of a signal-controlled intersection of an urban road as the research
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object, a lane-changing model and a following model with a unified model structure, and
without relying on specific following-lane-changing state-switching rules, are established.
The effects of intersection signal control as well as lane-changing types are properly in-
corporated into the model; then, the control and experimental models are constructed
in a targeted manner; finally, the various models are calibrated using vehicle trajectory
data and manual observations. The effects of intersection signal control as well as lane
changing types are appropriately incorporated into the model, the control and experimental
models are constructed in a targeted manner, and the vehicle trajectory data and manual
observation data are used to calibrate the various types of models. By comparing the
performance of various types of models to verify the reasonableness of the basic research
models selected in this paper, we understand the influence of external factors on driving
behavior during lane changing and their respective driving behavior adjustment methods.

In this study, we improved the accuracy and efficiency of microscopic traffic flow
simulations by modeling driving behavior in a unified manner. An in-depth understanding
of how following and lane-changing drivers respond to external stimuli and the effects
of different research models on model performance was presented. Compared with the
existing studies, we investigated the impact of the driving behaviors of different vehicles in
the surrounding lanes on the characteristics of drivers in this lane by considering the impact
of traffic signal control and the impact of lane changing of vehicles in the adjacent lanes
through four sets of experimental models and test models. The results showed that the
vehicle-following behavior is significantly affected by lateral vehicles, and this study has
positive significance for further parsing vehicle-following behavior in real-world scenarios.

Through the comparative study of drivers’ longitudinal and lateral influences, the
traffic characteristics of urban traffic flow are explored, and the influence mechanism is
provided to help improve the operational efficiency of urban traffic flow, which in turn
contributes to the realization of green urban transportation and sustainable development.
This study on drivers’ influencing factors is an effective way to reveal the operating
characteristics of urban traffic flow and is also a basic method for the rational construction
of urban traffic models.

2. Driver Behavior Analysis
2.1. Driving Scene Interaction Relationships

Figure 1 shows the relationship between space positions and distances during vehicle
driving and lane changing, in which the interactions among the lane-changing vehicle
(LCV), the potential following vehicle (PFV) in the target lane, and the potential leading
vehicle (PLV) are more significant. Therefore, the three driver behaviors are selected as
the object of study. Since the LCV and PFV are always traveling behind the PLV, it is
assumed that the PLV driver is not affected by both, but the actions of the PLV will affect
the LCV and PFV driver’s decisions. As the lane-changing initiator, the LCV driver needs
to decide the position and timing of lateral insertion based on the traveling conditions
of the PLV and PFV. The adjustment maneuver of the PFV driver in response to the LCV
insertion directly affects the motion state of the following vehicle, and the magnitude of its
adjustment determines the degree of disturbance to the traffic flow in the target lane by the
lane-changing vehicle. Similar to the PFV driver, the LCV driver during the lane changing is
affected by the changes in the traveling states of the remaining two vehicles that are parallel
and perpendicular to the lane direction. Microscopic traffic flow modeling in various
driving scenarios is usually carried out based on the classical following model. Since the
basic model already can simulate the longitudinal driving characteristics of vehicles, one of
the main concerns of this study is how to introduce the effects of sideways-moving vehicles
on drivers into the model.
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2.2. The Effect of Sideways-Moving Vehicles on Driving Behavior
2.2.1. Following Model Considering the Effect of Sideways Vehicles

It has been found that roadway geometric factors, such as insufficient lane lateral
clearance or excessive lane width, affect the longitudinal driving stability of following
vehicles [21]. In recent years, some scholars have begun to model and analyze the behaviors
of following drivers in response to the cross-traffic vehicles in front of them. Gunay [22]
simulated the following driver by modifying the Gipps model to avoid the deceleration
of the vehicle in front by using the gap in this lane or using adjacent lanes to bypass
the front vehicle’s avoidance-driving behavior and analyzed the effects of lane width on
following speed and the degree of offset between the two vehicles on following distance.
Jin et al. [23,24] incorporated the effect of lateral spacing between the front and rear vehicles
into the expanded healing model by refining the GM and OV models. He et al. [25]
investigated the following behavior under the combined effect of vehicle lateral spacing
and driver-overtaking intention. In contrast, Li et al. [26] considered the effect of bilateral
spacing between the front and rear vehicles on the following driver. The above studies
mainly incorporate the lateral angle between the front and rear vehicles as a variable in the
following model to simulate the influence of sideways moving vehicles, then use numerical
simulation to analyze the influence of the change of angle on the stability of the follower
model and the macroscopic traffic flow, and fewer studies carried out empirical analyses
based on actual data.

2.2.2. Lane-Changing Model Considering the Effect of Sideways Vehicles

Most of the lane-changing models contain variables reflecting changes in the state of
vehicles traveling laterally in the target lane; however, existing studies mainly focus on the
lane-changing decision mechanisms of LCV drivers in the target lane under the influence
of PFV and PLV as well as their lane-changing preparatory actions in the original lane.
Only a few studies have constructed microscopic traffic flow models that can completely
depict lane-changing preparation and insert the target lane until the completion of the lane
changing and other sequential actions. As early representatives of research in this direction,
Moridpour et al. [12] simulated the longitudinal acceleration and deceleration behaviors of
a lane-changing vehicle during the whole process of traveling from the original lane to the
target lane by extending the GM model: ci(t + τi) = µ0vi(t + τi)

µ1 [vi+1(t)−vi(t)]
µ2

[xi−1(t)−xi(t)]
µ3

di(t + τi) = µ0vi(t + τi)
µ1 [vi+2(t)−vi(t)]

µ2

[xi−1(t)−xi(t)]
µ3

(1)

where vi(t), vi+2(t), vi−1(t), and vi−1(t) are the vehicle speeds of vehicle i, i + 1, i + 2,
and i − 1 in Figure 1 at the time t, respectively; xi−1(t) and xi(t) are the positions of the
vehicle i − 1 and i at the time t, respectively; ci(t + τi) and di(t + τi) are the longitudinal
acceleration and deceleration of the lane-changing vehicle i at the time t + τi, respectively;
τi is the reaction time of the driver of the vehicle i; and µ0, µ1, µ2, and µ3 are the coefficients
to be calibrated. However, this model still has some defects, for example, the change of
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vehicle spacing when the speed difference is zero does not affect ci(t + τi) and di(t + τi),
and the effect of the vehicle i − 1 on the driver of the vehicle i is not considered. Based on
the longitudinal speed and steering angle of the lane-changing vehicle i, its lateral speed is
determined. The time-varying lateral influence coefficients are introduced to simulate the
effects of the vehicle i + 2 and i − 2 on the longitudinal acceleration of the vehicle i, using
the OV model as a basis:

vi(t + τi) = θi(t)vi−1(t + τi) + [1 − θi(t)]vi−2(t + τi) (2)

where vi−1(t + τi) and vi−2(t + τi) are the speed adjustment values calculated by the lane-
changing driver at moment t + τi using the OV model based on the movements of vehicles
i − 1 and i − 2 at moment t, respectively; θi(t) is used to characterize the influence weights
of vehicles i − 1 and i − 2 on the lane-changing driver. The lane-changing scenarios are
categorized into cooperative lane changing and forced lane changing. In the collaborative
lane-changing scenario, the model structure of Equation (2) is followed to modify the Gipps
model to describe the longitudinal driving action of lane-changing vehicles i. The forced
lane changing scenario further extends Equation (2) as:

vi(t + τi) = θi(t)vi−1(t + τi) + [1 − θi(t)]{φi(t)vi−2(t + τi) + [1 − φi(t)]vi+2(t + τi)} (3)

where: vi+2(t + τi) is the adjusted speed of the lane-changing driver at the moment t + τi
according to the action of the vehicle t. The lateral influence coefficient characterizes the
influence weights of the vehicle i − 2 and the lane-changing driver.

Changes in inter-vehicle angle and the degree of lateral vehicle intrusion were used to
simulate the impact of lateral vehicle driving state changes on driver behavior, respectively.
It is more difficult for drivers to accurately measure angle changes than distance changes
under real driving conditions.

2.3. Driver Multidirectional Multi-Vehicle Anticipation Capability
2.3.1. Characterization

Existing lane-changing models all take into account the effect of the multi-vehicle
travel states in the original and target lanes on lane-changing drivers. Empirical studies
have found that following drivers have the “multi-vehicle anticipation ability” to predict
the future driving conditions of the vehicle in front of them in their lane [15]. Still, recent
studies have shown that this ability is not limited to the single-lane category [27]. This
driving skill, which is possessed by both the following driver and the lane-changing driver,
can be referred to as “multidirectional multi-vehicle anticipation capability”. Specifically,
in the vehicle–vehicle interaction scenario shown in Figure 1, this ability is characterized
by the following features in PFV drivers and LCV drivers:

1. Frequency

In collaborative lane-changing scenarios, PFV will actively decelerate before the LCV
enters the target lane to create a larger insertion gap for the LCV [3]. However active
slowing is not the only way for PFV drivers to deal with the effects of LCV, and driving
behavior can be influenced by the traffic environment in which they operate. For example,
when PFV and LCV are in stop-and-go startup traffic, both drivers expect that neighboring
vehicles will need to accelerate away from the intersection in the short term, in which case
the PFV driver observes a lower probability of active deceleration when the LCV moves
sideways and is more likely to maintain a uniform or even accelerated speed. Therefore, it
is reasonable to assume that the multidirectional multi-vehicle anticipation capability of
PFV drivers comes into play in all lane-changing scenarios.

2. Gradual and Shared

PFV drivers need to observe PLV and LCV continuously for a while before they
can judge their driving intentions and gradually form stable expectations about their
future driving conditions. In addition, since the risk of collision between the LCV or
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PFV and neighboring vehicles exists simultaneously, drivers of both vehicles need to
continuously observe the driving conditions of other vehicles and adjust their driving
behavior accordingly. Therefore, it is reasonable to assume that the multidirectional multi-
vehicle anticipatory capabilities of the drivers of both vehicles develop gradually and
function simultaneously during the lane-changing process.

2.3.2. Interactive Relationship

The traveling relationship among PLV, LCV, and PFV in Figure 1 is summarized in
Figure 2: PFV and LCV form a pair of lane-changing groups, PFV and PLV constitute
a couple of longitudinal following groups, as well as LCV and PLV as a pair of lateral
following groups. The influence of neighboring vehicles on a PFV or LCV driver can be
decomposed into two directions, perpendicular and parallel to the lane. Since LCV can
complete lane changing by crossing only one lane, it is assumed that LCV drivers have better
control over the degree of vehicle lateral drift, and that PFV drivers can accurately observe
the degree of LCV lateral drift. Lane-changing scenarios can be subdivided into three
categories: overrunning lane changing, yielding lane changing, and general lane changing,
as shown in Figure 3a–c. To ensure that the multidirectional multi-vehicle anticipation
abilities of LCV and PFV drivers functioned simultaneously during the study period, the
starting and ending moments of the lane-changing process in the three types of scenarios
(t = 1) were defined as the moments when the front bumpers of the PFV and LCV were
flush, the rear bumpers of the PLV and LCV were flush, and the LCV turn signals turned on
or the front end started to shift sideways, respectively. The end moment of lane changing
(t = n) is uniformly defined as the moment when the body of the LCV returns to the parallel
state with the lane divider after entering the target lane. The above definition will be used
to process the vehicle trajectory data extracted from urban road traffic flow videos.
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3. Experimental Program and Data Collection

A section of the Haier expressway in Qingdao City, with a length of about 220 m,
a speed limit of 60 km/h, and signalized intersections upstream and downstream, was
selected as the study site. It is assumed that the drivers on the roadway can observe the
downstream intersection signals. Traffic flow videos of the study roadway are collected
on roadside high-rise buildings and vehicle trajectories are extracted. A total of 250 sets of
vehicle trajectory data are collected, and the collection points of each set of data include
the front corner points of PFV, the rear corner points of PLV, and the front and rear corner
points of LCV shown in Figure 3, with a sampling frequency of 10 Hz. At the same time,
the intersection signal color and the lane-changing type of the target vehicle were manually
observed on the roadside. The trajectory data were calibrated using an algorithm suitable
for urban road environments [28], and the speed values extracted from the data were
compared with those obtained from the radar speedometer to verify the accuracy of the
trajectory data extraction. Figure 4 shows the study section and the control points used for
calibration of the trajectory data. Figure 5 shows the trajectories of LCV moving vertically
in the direction of the lanes in Vehicle Group 126 (left graph) and Vehicle Group 134 (right
graph), that is, the correspondence between the vertical coordinate y and time in Figure 3.
The former stayed in the original lane for a longer period and made repeated trials as
well as positional adjustments (before 4 s) before moving smoothly into the target lane, a
process that lasted about 7 s. The latter changed from the right to the left lane, a process
that lasted about 5 s. The lateral movement was relatively smooth, and finding or creating
an insertable gap did not take a long time. Variables extracted from vehicle trajectories in
both horizontal and vertical directions as well as from manual observations will be used in
microscopic traffic flow modeling.
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4. Unified Modeling of Driving Behavior
4.1. Driving Behavior Model

Vehicles traveling on the inlet road of urban road intersections have the characteristics
of low average speed and frequent acceleration or deceleration. It is found that the full ve-
locity difference (FVD) model can better simulate the nonlinear acceleration or deceleration
actions of vehicles than the Gipps model and the OV model [29], so this model is chosen as
the basis for modeling the longitudinal driving actions of LCV and PFV uniformly in the
process of changing lanes. The structure of the FVD model is as follows:

ai(t) = βi{Vi[∆xi(t)]− vi(t)}+ λi∆vi(t) (4)

where ai(t) is the acceleration of the vehicle i at time t; ∆xi(t) is the headway between
the vehicle i and the vehicle in front of it at the time t; vi(t) is the speed of the vehicle i at
time t; Vi(.) is the optimized speed function identified by the driver of the vehicle i; βi is
the sensitivity coefficient of the driver of the vehicle i to the difference between Vi(.) and
vi(t); ∆vi(t) is the speed difference between vehicle i and the vehicle in front of it; λi is
the sensitivity of the driver of the vehicle i to ∆vi(t). The FVD model can be extended to a
longitudinal multi-vehicle following a model that takes into account the reaction time of
the driver and the influence of the multi-vehicle ahead:

ai(t + τi) = βi

{
Vi

[
∑J

j=1 δj∆xij(t)
]
− vi(t)

}
+ ∑J

j=1 λj∆vij(t) (5)

where J is the number of vehicles ahead affecting vehicle i; ∆xij(t) is the spacing between
vehicle i and vehicle j at the time t; δj is the coefficient of influence of ∆xij(t) on the driver
of the vehicle i, and the sum of all δj is 1; ∆vij(t) is the speed difference between vehicle i
and vehicle j at the time t; λj is the coefficient of influence of ∆vij(t) on the driver of the
vehicle i, and the sum of all λj is 1; Vi(.) is defined as [17]:

Vi[∆xi(t)] = Vi1 + Vi2tanh[Ci1∆xi(t)− Ci2] (6)

where Vi1, Vi2, Ci1, and Ci2 are the parameters to be calibrated.

4.2. Following Model

The longitudinal multi-vehicle following model is transformed into a following model
that takes into account the combined effects of driver multidirectional multi-vehicle ex-
pectancy capacity, traffic signals, and lane-changing type:

aPFV(t + τPFV) = βPFV{VPFV[FPFV∆x(.)]− vPFV(t)}+ FPFV∆v(.) (7)

where τPFV is the reaction time of the PFV driver; aPFV(t + τPFV) is the longitudinal acceler-
ation of the PFV at the moment t + τPFV; ∆vLCV and ∆vPLV are the velocity differences
between the PFV and the LCV or PLV, respectively; VPFV(.) is the optimized speed function
of the following driver; βPFV is the sensitivity coefficient of the following driver to the
difference between the speed vPFV(t) and the optimized speed vPFV(.) at the moment t. The
vehicle spacing variable function FPFV∆x(.) and the velocity difference variable function
FPFV∆v(.) of the green light phase period following model are defined as:{

FPFV∆x(.) = ξ∆xLCVθPFV(t)∆xLCV(t) + ξ∆xPLV∗ [1 − θPFV(t)]∆xPLV∗(t)
FPFV∆v(.) = ξ∆vLCVθPFV(t)∆vLCV(t) + ξ∆vPLV∗ [1 − θPFV(t)]∆vPLV∗(t)

(8)

where θPFV(t) is the lateral influence coefficient of the following model; ∆xLCV(t) and
∆xPLV∗(t) are the distance between the PFV and the LCV or PLV at time t, respectively;
∆vLCV(t) and ∆vPLV∗(t) are the speed difference between the PFV and the LCV or PLV at
time t, respectively. From the definition of A, it can be seen that when the LCV enters the
target lane, its effect on the PFV driver gradually increases, while the effect of the PLV
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on the PFV driver gradually decreases. The exact form of b will depend on the model
calibration results: 

θPFV1(t) = kPFV · PLCV(t)
θPFV2(t) = tan[PLCV(t)]/kPFV
θPFV3(t) = tanh[PLCV(t)]/kPFV

(9)

where kPFV is the parameter to be calibrated; the lateral deviation PLCV(t) is defined in
Equation (10). The definition of the red-light phase period is as follows:

FPFV∆x(.) = ξ∆xLCVθPFV(t)∆xLCVs(t) + ξ∆xPLV∗ [1 − θPFV(t)]∆xPLVs(t) (10)

where ∆xLCVs(t) is the distance between the LCV and the parking line at the moment t.
Similarly, using the forced lane-changing scenario as a baseline, the sensitivity coefficients
(ξ∆xLCV and ξ∆xPLV∗ ) of PFV drivers to their spacing with the LCV or PLV as well as
the sensitivity coefficients (ξ∆vLCV and ξ∆vPLV∗ ) of the speed difference in the active lane-
changing scenario satisfy the following constraints:{

ξ∆xLCV + ξ∆xPLV∗ = 1
ξ∆vLCV + ξ∆vPLV∗ = 1

(11)

4.3. Lane-Changing Model

Drawing on the modeling approaches of Wang et al. [13] and Yang et al. [14], the
longitudinal multi-vehicle following model shown in Equation (5) is transformed into a
lane-changing model that takes into account the multidirectional multi-vehicle anticipation
capability of LCV drivers while influencing factors such as traffic control signals and
lane-changing types are introduced into the model:

aLCV(t + τLCV) = βLCV{VLCV[FLCV∆x(.)]− vLCV(t)}+ FLCV∆v(.) (12)

where aLCV(t + τLCV) is the longitudinal acceleration of the LCV driver at the moment
t+ τLCV; τLCV is the reaction time of the LCV driver; βLCV is the sensitivity coefficient of the
LCV driver to the difference between the vehicle speed vLCV(t) and the optimized speed
VLCV(.) at the moment t; the vehicle spacing variable function FLCV∆x(.) and the vehicle
speed difference variable function FLCV∆v(.) are defined as follows:{

FLCV∆x(.) = ξ∆xPFVθLCV(t)∆xPFV(t) + ξ∆xPLV[1 − θLCV(t)]∆xPLV(t)
FLCV∆v(.) = ξ∆vPFVθLCV(t)∆vPFV(t) + ξ∆vPLV[1 − θLCV(t)]∆vPLV(t)

(13)

where θLCV(t) is the lateral influence coefficient in the lane-changing model; ∆xPFV(t)
and ∆xPLV(t) are the distance between LCV and PFV or PLV at moment t, respectively;
∆vPFV(t) and ∆vPLV(t) are the velocity differences between LCV and PFV or PLV at moment
t, respectively. Equation (8) describes the following driving scenario: as the LCV moves
progressively into the target lane, the LCV driver is progressively less influenced by the
PFV and gradually more influenced by the PLV. The specific form of A will be selected
from Equation (9) based on the lane-changing model calibration results:

θLCV1(t) = kLCV · PLCV(t)
θLCV2(t) = tan[PLCV(t)]/kLCV
θLCV3(t) = tanh[PLCV(t)]/kLCV

(14)

where tan(.) and tanh(.) are the tangent and hyperbolic tangent functions, respectively;
kLCV is the parameter to be calibrated; PLCV(t) is the lateral offset of the LCV at the time t:

PLCV(t) =
∣∣∣∣ yLCV_h(t)− yLCV_h(n)
max[yLCV_h(t)]− min[yLCV_h(t)]

∣∣∣∣ (15)
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where yLCV_h(t) is the longitudinal coordinate of the LCV head angle point (point LCV_head
in Figure 3) at time t; n is the end of lane change; max[yLCV_h(t)] and min[yLCV_h(t)] are the
maximum and minimum values of yLCV_h(t), respectively. The definition of the denominator
of Equation (10) ensures that PLCV(t) still reflects the degree of lateral excursion of the LCV
when the lateral movement distance of the LCV is greater or less than the lane width.

The influence of traffic control signals on LCV drivers is mainly reflected in their
judgment of the future driving trends of neighboring vehicles. PFV, LCV, and PLV all
pass through the intersection as quickly as possible during the green light phase, while
they all need to slow down and stop during the red-light phase. LCV drivers adjust their
expectation of vehicle speed according to this trend, and this behavioral mechanism can
be described by adjusting the optimized speed function VLCV(.) in the vehicle spacing
variable combination function FLCV∆x(.) to describe it. FLCV∆x(.), defined by Equation (8),
is still followed in the green phase period, i.e., it is assumed that the optimized speed of
the LCV depends on its spacing from the PFV and PLV. Assume that the desired speed of
the LCV in the red-light phase period depends on the distances of the PFV and PLV from
the stop line at the moment t. The definitions of both are shown in Figure 6. xsa f e is the
safe distance between the two vehicles at a complete stop, and L is the length of the vehicle
body, at which time the definition is modified to:

FLCV∆x(.) = ξ∆xPFVθLCV(t)∆xPFVs(t) + ξ∆xPLV[1 − θLCV(t)]∆xPLVs(t) (16)
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The effects of different types of lane changing on drivers’ behavior are mainly reflected
in the intensity of their vehicle maneuvers. According to the classification of drivers’ lane-
changing objectives, they can be categorized into discretionary lane changing to obtain a
higher speed or a shorter queue, and mandatory lane changing to drive to the destination.
As the initiator of the lane change, the LCV driver knows the purpose of their lane change,
and the PFV driver can obtain this information by comparing the LCV’s original lane with
the target lane flow. The willingness of mandatory lane-changing drivers is usually stronger
than that of discretionary lane-changing drivers. Using the mandatory lane-changing
scenario as a baseline, the sensitivity coefficients (ξ∆xPFV and ξ∆xPLV) of discretionary lane-
changing drivers to their spacing from the PFV and PLV and the sensitivity coefficients
(ξ∆vPFV and ξ∆vPLV) of the speed difference satisfy the following constraints, respectively:{

ξ∆xPFV + ξ∆xPLV = 1
ξ∆vPFV + ξ∆vPLV = 1

(17)

5. Model Calibration and Evaluation
5.1. Model Calibration

The model calibration is divided into three main steps:

1. Selecting the driver reaction times A and B in the lane changing and following model;
2. Selecting the calculation methods for the lateral influence coefficients C and D;
3. Calibrating the remaining parameters in the model. In the first two steps, all of the

study data were used for parameter calibration. In the third step, 200 sets of data were



Sustainability 2024, 16, 1956 11 of 18

randomly selected for model calibration and another 50 sets of data were used for
model performance testing.

The parameter calibration work for the lane changing and following models can
be abstracted as solving a nonlinear optimization problem, where constraints can be set
according to the physical range of values of each parameter. Then, the gap between the
actual vehicle position, velocity, or acceleration and the model predictions is minimized.
The Theil function is chosen as the optimization objective function, and the applicability
of this function in the calibration of microscopic traffic flow models has been verified by
previous studies [19,29]:

U =

√
∑M

m=1(areal_m − asim_m)
2√

∑M
m=1(areal_m)

2 +
√

∑M
m=1(asim_m)

2
(18)

where areal_m and asim_m are the longitudinal acceleration of the vehicle calculated using
the original data and the simulation model, respectively; m is the sample number of the
data, and M is the total number of samples; U is the inequality coefficient of the Theil
function, and the closer U is to zero the better the model fits the real data. The ranges of
the values of the parameters to be calibrated in the lane-changing model and the following
model are listed in Table 1. The genetic algorithm toolbox of MATLAB is used to solve this
optimization problem, and the algorithm parameters are set in reference [30]: population
size 50; maximum number of iterations 300; crossover probability 0.8; migration interval 20;
migration probability 0.2; initial penalty factor 10; minimum error 10−6.

Table 1. Value range of model parameters.

The Following Model

Parameter name βPFV kPFV ξ∆xLCV ξ∆xPLV∗

Range of values (0,1) (0,10) (0,1) (0,1)
Parameter name ξ∆vLCV ξ∆vPLV∗ VPFV1 VPFV2
Range of values (0,1) (0,1) (−30,30) (−40,40)
Parameter name CPFV1 CPFV2
Range of values (−10,10) (−10,10)

Lane-Changing Model

Parameter name βLCV kLCV ξ∆xPFV ξ∆xPLV
Range of values (0,1) (0,10) (0,1) (0,1)
Parameter name ξ∆vPFV ξ∆vPLV VLCV1 VLCV2
Range of values (0,1) (0,1) (−30,30) (−40,40)
Parameter name CLCV1 CLCV2
Range of values (−10,10) (−10,10)

5.2. Model Evaluation
5.2.1. Evaluation Indicator

The performance of the calibrated model was evaluated using the metrics of Mean
Error (ME), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), which were
calculated for each metric:

ME = 1
M ∑M

m=1(areal_m − asim_m)
MAE = 1

M ∑M
m=1|areal_m − asim_m|

RMSE =
√

1
M ∑M

m=1(areal_m − asim_m)
2

(19)

5.2.2. Experimental Model

First, four sets of test models are constructed. Then, by comparing the evaluation
results of the research model and the experimental model, we can understand the way
lane-changing drivers and following drivers cope with the influence of external factors.
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Experimental lane-changing model 1 and experimental following model 1: Assuming that
LCV drivers and PFV drivers only consider each other’s longitudinal traveling state, while
not taking into account the effects of the degree of lateral offset, PLV traveling state, and
changes in the type of lane changing, Equations (8) and (14) become:{

FLCV∆x(.) = ∆xPFV(t), FLCV∆v(.) = ∆vPFV(t)
FPFV∆x(.) = ∆xLCV(t), FPFV∆v(.) = ∆vLCV(t)

(20)

Experimental lane-changing model 2 and experimental following model 2: it is as-
sumed that LCV drivers and PFV drivers are affected by the side traveling vehicles and
the change of lane-change type, but the effect of PLV motion state is not considered,
Equations (8) and (14) become:

FLCV∆x(.) = ξ∆xPFVθLCV(t)∆xPFV(t)
FLCV∆v(.) = ξ∆vPFVθLCV(t)∆vPFV(t)
FPFV∆x(.) = ξ∆xLCVθPFV(t)∆xLCV(t)
FPFV∆v(.) = ξ∆vLCVθPFV(t)∆vLCV(t)

(21)

Experimental lane-changing model 3 and experimental following model 3: assuming
that both LCV drivers and PFV drivers are only concerned with the PLV traveling state in
the target lane, Equations (8) and (14) become:

FLCV∆x(.) = ξ∆xPLV[1 − θLCV(t)]∆xPLV(t)
FLCV∆v(.) = ξ∆vPLV[1 − θLCV(t)]∆vPLV(t)
FPFV∆x(.) = ∆xPLV(t)
FPFV∆v(.) = ∆vPLV∗(t)

(22)

Experimental lane-changing model 4 and experimental following mode 4: assuming
that LCV drivers and PFV drivers are not affected by the change in lane-change type,
Equations (8) and (14) becomes:

FLCV∆x(.) = θLCV(t)∆xPFV(t) + [1 − θLCV(t)]∆xPLV(t)
FLCV∆v(.) = θLCV(t)∆vPFV(t) + [1 − θLCV(t)]∆vPLV(t)
FPFV∆x(.) = θPFV(t)∆xLCV(t) + [1 − θPFV(t)]∆xPLV∗(t)
FPFV∆v(.) = θPFV(t)∆vLCV(t) + [1 − θPFV(t)]∆vPLV∗(t)

(23)

5.2.3. Comparison Model

The modeling method from Yang et al. [14] was used to construct the comparison lane-
changing model and the comparison following model, then by comparing the evaluation
results of the experimental model 4 and the comparison model, the effect of the difference in
the performance of the base model on the research results can be obtained. The comparison
lane-changing model is:

vLCV(t + τLCV) = θLCVvPFV(t + τLCV) + (1 − θLCV)vPLV(t + τLCV) (24)

where: vPLV(t + τLCV) and vPFV(t + τLCV) are defined as:

vPLV(t + τLCV) = dLCVτLCV +

√
(dLCVτLCV)

2 − dLCV

[
2∆xLCV/PLV(t)− vLCV(t)τLCV
−v2

PLV(t)/dPLV

]
(25)

vPFV(t + τLCV) = 0.5dLCVτLCV +

√
(0.5dLCVτLCV)

2 + dLCV

[
2∆xLCV/PFV(t) + vLCV(t)τLCV
−2vPFV(t)τLCV + v2

PFV(t)/dPFV

]
(26)

where dLCV, dPLV, and dPFV are the maximum deceleration of LCV, PLV, and PFV, respec-
tively, the range of values of dLCV is set to (−11.2, −3), the range of values of dPLV and
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dPFV is set to (−13, −3), and all units are m · s2. Although Yang et al. [14] did not state the
modeling method for PFV driver behavior in their study, it is still possible to draw on their
methodology to construct a comparison of the following model:

vPFV(t + τPFV) = θPFVvLCV(t + τPFV) + (1 − θPLV)vPLV(t + τPFV) (27)

where vLCV(t + τPFV) and vPLV(t + τPFV) are defined as:

vLCV(t + τPFV) = dPFVτPFV +

√
(dPFVτPFV)

2 − dPFV

[
2∆xPFV/LCV(t)− vPFV(t)τPFV
−v2

LCV(t)/dLCV

]
(28)

vPLV(t + τPFV) = dPFVτPFV +

√
(dPFVτPFV)

2 − dLCV

[
2∆xPFV/PLV(t)− vPFV(t)τPFV
−v2

PLV(t)/dPLV

]
(29)

5.3. Model Evaluation
5.3.1. Evaluation Indicator

Since the trajectory data are collected at a frequency of 10 Hz and the driver’s minimum
reaction time is usually not shorter than 0.2 s, the candidate values of τLCV and τPFV
are substituted into the lane-changing model and the follow-along model one by one in
intervals between 0.2 s and 1 s and at intervals of 0.1 s. By comparing the values of the
Theil function U computed by the model calibration, the values of τLCV and τPFV with
the highest fit to the original data are searched for. The results in Table 2 show that when
τLCV = 1 s and τPFV = 0.7 s, the lane-changing model and the following model have the
highest fit. Since τPFV is smaller than τLCV , it can be seen that the sensitivity of PFV drivers
to external stimuli during lane changing is higher than that of LCV drivers.

Table 2. Driver’s reaction time.

Driver Reaction Time (s) U(τLCV(t)) U(τPFV(t))

0.2 0.6022 0.6389
0.3 0.5994 0.6392
0.4 0.5964 0.6422
0.5 0.6017 0.6380
0.6 0.5964 0.6369
0.7 0.6031 0.6301
0.8 0.6003 0.6313
0.9 0.5987 0.6341
1.0 0.5886 0.6326

5.3.2. Lateral Influence Coefficient

Based on τLCV and τPFV , the calculations of the lateral influence coefficients θLCV(t)
and θPFV(t) are selected from Equations (9) and (15), then introduced into the lane-changing
and following models. The specific forms of θLCV(t) and θPFV(t) are determined by com-
paring the U values calculated using the different forms. The calculations in Table 3 show
that θLCV3(t) and θPFV1(t) have the best fit. Therefore, they will be used subsequently to
calibrate the remaining parameters:{

θLCV(t) = tanh[PLCV(t)]/kLCV
θPFV(t) = kPFV · PLCV(t)

(30)
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Table 3. Lateral influencing parameter.

θLCV(t) U(θLCV(t)) θPFV(t) U(θPFV(t))

entry 1 0.5900 θPFV1(t) 0.6360
θLCV2(t) 0.5923 θPFV2(t) 0.6384
θLCV3(t) 0.5834 θPFV3(t) 0.6419

Figure 7 shows the lateral offset PLCV(t), relative to θLCV(t)/θPFV(t). Combining the
definitions of the two, shows that the closer the LCV is to the end position of the changeover,
the smaller PLCV(t) becomes, which causes the values of θLCV(t) and θPFV(t) to gradually
decrease and approach each other. From the definitions of the lane-changing model in
Equation (7) and the following model in Equation (13), it can be seen that a decrease
implies that the LCV driver is progressively less affected by the PFV and progressively
more affected by the PLV; decreasing θPFV(t) means that the PFV driver is progressively
less affected by the PLV and progressively more affected by the LCV. Combining Figure 7
and the definitions of the two models shows that the effect of the LCV on the PFV driver
increases linearly as the LCV gradually enters the target lane. In addition, the influence
of PFV on the LCV driver decreases slowly (“LCV” curve slope is small) at the beginning
of the lane changing (larger interval of PLCV(t) value in Figure 7), indicating that the LCV
driver is still continuously concerned about the movement state of PFV at this stage; when
the LCV is near the terminal point of the lane changing (smaller interval of PLCV(t) value
in Figure 7), the influence of PFV on the LCV driver decreases rapidly (“LCV” curve slope
increases in Figure 7), and near the finish of the lane changing, the LCV driver is affected
only by the PLV. This result indicates that LCV drivers mainly focus on the state of the PFV
before entering the target lane and turn to pay more attention to the state of the PLV after
entering the target lane.
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5.3.3. Other Parameters

The selected driver reaction time and lateral influence coefficients are substituted
into the lane-changing model and the following model to calibrate the other parameters
in the model, and the results are shown in Table 4. Comparing the values of βPFV and
βLCV , it can be seen that the PFV driver is more sensitive to the difference between the
optimal speed and the current speed (βPFV = 0.114 > βLCV = 0.086). Since this coefficient
is equal to the reciprocal of the driver reaction time [16], this result indirectly verifies
the reasonableness of the driver’s reaction time setting in Section 5.3.1. In addition, lane-
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changing scenarios change the attention of both drivers to external stimuli. Compared to
the mandatory lane-changing scenario, LCV drivers in the discretionary lane-changing
scenario paid more attention to their spacing from the PLV than to their spacing from
the PFV (ξ∆xPFV = 0.241 < ξ∆xPLV = 0.759), and LCV drivers in this scenario are more
affected by their speed difference with the PFV than by their speed difference with the PLV
(ξ∆vPFV = 0.601 > ξ∆vPLV = 0.398). This means that the LCV driver in the discretionary
lane-changing scenario mainly ensures safe driving by regulating the spacing with the
PLV or the speed difference with the PFV. Similarly, it can be seen that the PFV driver
in the discretionary lane-changing scenario mainly avoids the traveling risk by adjusting
its spacing and speed difference with the PLV (ξ∆xLCV = 0.344 < ξ∆xPLV∗ = 0.656 ;
ξ∆vLCV = 0.129 < ξ∆vPLV∗ = 0.869).

Table 4. Results of model calibration.

The Following Model

Parameter name βPFV kPFV ξ∆xLCV ξ∆xPLV∗

Calibration result 0.114 0.218 0.344 0.656
Parameter name ξ∆vLCV ξ∆vPLV∗ VPFV1 VPFV2
Calibration result 0.129 0.869 −20.245 25.840
Parameter name CPFV1 CPFV2
Calibration result 1.055 5.249

Lane-Changing Model

Parameter name βLCV kLCV ξ∆xPFV ξ∆xPLV
Calibration result 0.086 0.942 0.241 0.759
Parameter name ξ∆vPFV ξ∆vPLV VLCV1 VLCV2
Calibration result 0.601 0.398 7.637 36.938
Parameter name CLCV1 CLCV2
Calibration result 0.285 0.543

5.4. Results of Model Evaluation

The models in Equations (7) and (13) are referred to as the study lane-changing model
and the study healing model, respectively, and the results of the evaluation of each model
are shown in Table 4, which show that the fit and accuracy of each model perform well. In
the study of the lane-changing model, the research lane-changing model has the lowest
average error, which indicates that the model considering the combined effects of driver’s
multidirectional multi-vehicle anticipation ability, traffic signals, and lane-changing types
is more consistent with the real data, and the extended full-speed-difference model can
better simulate the vehicle operation status on urban roads than the Gipps lane-changing
model. In the lane-changing model study, the average error of the experimental following
model 2 is significantly smaller than that of the other models, indicating that drivers are
significantly affected by the changes in side-traveling vehicles and lane-changing types,
and are more in line with the real-world scenarios.

Experimental model 1 assumes that LCV drivers and PFV drivers adjust their driv-
ing behaviors based on each other’s longitudinal travel status only, while experimen-
tal model 2 considers the effects of the other’s lateral motion status and lane-changing
type changes on drivers. It is worth noting that when the above two factors are consid-
ered in the model, the improvement effect of the experimental following model is more
obvious than that of the experimental lane-changing model (ME, lane-changing model:
|1.185–1.024| < following mode |1.200–1.082|; MAE, lane-changing model: |2.987–2.585|
< following mode: |3.366–2.677|; RMSE, lane-changing model: |3.732–3.249| < following
mode: |4.157–3.333|). The model evaluation results in Table 5 show that the experimen-
tal lane-changing model 2 outperforms the experimental lane-changing model 1 (lane-
changing model 1: |−1.185|/2.987/3.723 > lane-changing model 2:|−1.024|/2.585/3.249).
This result suggests that the effects of lateral moving vehicles and changes in lane-changing
type are more significant for PFV drivers than for LCV drivers, and also sides with the
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finding that PFV drivers are more sensitive to external disturbances than LCV drivers
during lane-changing as described in Section 5.3.1.

Table 5. Results of model evaluation.

The Following Model

Evaluation of indicators ME MAE RMSE
Research following model 0.404 3.279 4.142

Experimental following model 1 1.200 3.366 4.187
Experimental following model 2 1.082 2.677 3.333
Experimental following model 3 2.095 3.659 4.367
Experimental following model 4 0.856 3.296 4.223

Comparison with the following model 1.476 3.643 4.357

Lane-Changing Model

Evaluation of indicators ME MAE RMSE
Research lane-changing model −1.10 2.572 3.290

Experimental lane-changing model 1 −1.185 2.987 3.723
Experimental lane-changing model 2 −1.024 2.585 3.249
Experimental lane-changing model 3 −2.667 3.689 4.569
Experimental lane-changing model 4 −1.143 2.580 3.437

Comparison with the lane-changing model −1.768 2.589 4.432

Experimental model 3 assumes that LCV drivers and PFV drivers will only be affected
by PLV and will not pay attention to each other’s driving status, whereas the situation
described in the experimental following model 3 is a common setup in existing micro traffic
flow simulation software [3]. The results show that the performance of experimental model
3 is worse than that of experimental model 1 and 2 (lane-changing model, ME: |−2.667| >
|−1.185| > |−1.024|, MAE: 3.689 > 2.987 > 2.585, RMSE: 4.569 > 3.723 > 3.249; following
mode, ME: 2.095 > 1.200 > 1.082, MAE: 3.659 > 3.366 > 2.677, RMSE: 4.367 > 4.187 > 3.333).
Neglecting the lateral vehicle moving state has a more significant effect on the performance
of the lane-changing model than the following model.

The above results indicate that LCV drivers and PFV drivers do adjust their driving
behaviors according to each other’s driving conditions, and if the microscopic traffic flow
simulation software ignores this behavioral feature, the phenomenon of frequent emergency
braking output from the simulation model may occur, which affects the reliability of the
simulation results. The experimental model 4 and the comparison model have the same
model structure, with the difference is that they are extended from the FVD model and the
Gipps model, respectively. The results of the model evaluation show that the comparison
model fits the actual data less well than the experimental model 4 (lane-changing model,
ME: |−1.768| > |−1.143|, MAE: 2.589 > 2.580, RMSE: 4.432 > 3.437; following mode,
ME: 1.467 > 0.856, MAE: 3.643 > 3.296, RMSE: 4.357 > 4.223). This result suggests that the
FVD model can better describe the microscopic driving behavior in urban road traffic flow
compared to the Gipps model. Since the proposed model mainly takes into account the
influence of driving behavior of adjacent lanes on driver characteristics, and the urban
road traffic environment is complex and variable, the effects of traffic congestion and road
urbanization need to be fully considered in subsequent research sinks to improve the
applicability of the model.

6. Conclusions

Vehicle following and lane-changing behaviors can each anticipate multidirectional
multi-vehicle driving conditions, and driving behaviors are modeled uniformly to improve
the accuracy and efficiency of microscopic traffic flow simulation. Based on the full speed
difference following model, it is expanded into a lane changing model and a following
model that considers the driver’s ability to anticipate multi-directional multi-vehicle condi-
tions, and factors such as traffic control signals and lane-changing types are incorporated
into the model. Overall, four sets of experimental models and one set of comparison mod-
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els were constructed using a similar approach. Since the models are structurally uniform,
comparing the parameters of the different models provides insights into how following and
lane-changing drivers respond to external stimuli and the effects of the different underlying
research models on model performance.

Compared with lane-changing behavior, the following behavior is more sensitive to
external stimuli. As the lane-changing vehicle gradually enters the target lane, its effect
on the following driver increases linearly, while the effect of the following vehicle on the
lane-changing driver lasts longer. Driving behavior’s focus on external stimuli changes
with lane-changing scenarios.

Considering the effect of sideways moving vehicles in the lane-changing model and
the following model significantly improves the model performance. The effects of changes
in the lateral vehicle motion and lane change type were stronger for the following driver
than for the LCV driver. The extended full-speed difference model simulates vehicle driving
conditions on urban roads better than the Gipps following model.

The follow-up study will adopt a unified driving behavior modeling approach to
adapt the classical car-following models, such as the GM model and the IDM model, to
better understand the applicability of different base models in multidimensional traffic
scenarios by comparing the model performances. Since vehicle type and size are important
factors affecting drivers’ driving, as well as factors such as different road conditions and
intersections also affecting drivers’ operating behavior, we will fully consider the impact of
vehicle type on the optimization of the model in this study, as well as the impact of urban
traffic organization on driver characteristics in the follow-up study to further improve the
applicability of the model.
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