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Abstract: Construction waste is a global problem, including in New Zealand where it makes up
40–50% of landfill waste. Accurately measuring construction waste is crucial to reduce its impact
on New Zealand’s landfills and meet carbon targets. Waste can be effectively managed if predicted
correctly from the start of a project. Waste generation depends on factors such as geography, society,
technology, and construction methods. This study focuses on developing a model specific to New
Zealand to predict waste generation in residential buildings. By analysing data from 213 residential
projects, the study identifies the design features that have the greatest influence on construction waste
generation. A generalized linear model is constructed to correlate these design features with waste
generation. The findings are valuable for construction stakeholders seeking to implement waste
reduction strategies based on predicted waste quantities. This research serves as a starting point, and
further investigation in this area is necessary.

Keywords: construction waste; waste prediction; construction waste modelling; waste quantification;
waste management; generalised liner regression

1. Introduction

The construction industry is known for generating a substantial amount of waste due
to excessive consumption of natural resources beyond what is actually required. Tafesse
et al. [1] reported that construction waste poses a significant challenge for approximately
95.71% of ongoing construction projects, as it consists of discarded or surplus materials
or products that are incompatible with specifications, damaged, or created as secondary
products during the construction process [2]. Waste, as defined by the European Council [3],
refers to any substance or object that is discarded or intended to be discarded, regardless
of whether it is for disposal or recovery operations. Construction waste can have adverse
effects on the environment, economy, and social aspects of the industry [4]. Tafesse et al. [1]
highlight that globally, construction waste generation leads to cost overruns, environmental
pollution, reduced profits, bankrupt construction firms, excessive consumption of raw mate-
rials, and risks to public health and safety. Despite the potential for minimising construction
waste through practices such as reduction, reuse, and recycling, there is a prevailing ten-
dency among practitioners and workers to dispose of waste in landfills [5]. However, if
this trend continues, landfills may soon become inadequate to meet the growing demand.
Despite the negative consequences of inadequate waste management, the construction
industry has not given sufficient attention to effectively managing construction waste. A
large body of recent literature underscores the critical importance of construction minimi-
sation across the project lifecycle, from design and material procurement to construction
activities [6–9]. While various waste reduction solutions exist for all stages of the building
process, previous studies have highlighted the significance of taking measures at the early
stages in the project lifecycle to effectively manage construction waste [7,10–12]. Among
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these measures, the quantification and prediction of construction waste emerge as pivotal,
as they enable industry stakeholders to take appropriate actions at the right time, thereby
minimising and managing the generation of construction waste effectively.

2. Construction Waste Prediction and Quantification

Quantifying and predicting construction waste materials in the initial stages of a
project are commonly used methods for effective waste management. Around the world,
various studies have been conducted to investigate these approaches. To gain a compre-
hensive understanding of the existing research on methods for quantifying and predicting
construction waste, a thorough semi-systematic literature review was performed using the
Scopus database. The aim of this literature review was to identify and analyse previous
studies related to the quantification and prediction of construction waste materials. By
delving into the Scopus database, researchers were able to uncover a total of twenty-eight
studies that specifically focused on early quantification and prediction methods for con-
struction waste materials. These studies provide valuable insights into the methods and
strategies employed in assessing and forecasting construction waste at the early stages of
a project. Figure 1 illustrates the main methods used for early quantification/prediction,
which can be categorised into five distinct groups: waste generation rate (WGR) method,
variables modelling (VM) method, bill of quantity-based classification system (BoQs)
method, BIM-based classification system (BIMS) method, and other methods. These studies
utilised direct measurements on site, indirect measurements, secondary data, and user
inputs to quantify and predict construction waste generation.
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Figure 1. Construction waste estimation methods.

The WGR method involves calculating the waste generation rate (WGR) per unit
of construction area. By multiplying the WGR by the total construction area, the total
construction waste can be easily determined [13] Some authors have applied this method
to calculate waste generation rates for specific material types, such as concrete, steel, wood,
masonry, and tiles [14,15]. While the WGR method allows for the development of site waste
management plans, a limitation is the inability to track the origin of waste from specific
construction activities and elements, thereby impeding source waste reduction efforts.

The variable modelling method is frequently employed to predict waste generation
based on project characteristics. This method provides more accurate results in the early
stages of a project compared to the WGR method as it considers variables beyond con-
struction area that influence waste generation, such as structural types, design parameters,
and economic indicators. Multiple linear regression analysis is commonly utilised to es-
tablish the relationship between predictor variables and waste generation [4,11,13,16,17].
Furthermore, Maués et al. [18] developed a fuzzy logic model, and artificial intelligence
data-driven methods have been employed to predict waste quantities by capturing complex
non-linear relationships using historical data [19–21].

Waste estimation based on the bill of quantity (BoQ) classification system is another
commonly used method. In this approach, the total waste is determined by summing
the waste quantities of all items listed in the BoQ. The BoQs method estimates waste
quantities based on project design, incorporates waste categorisation by material type,
and enables waste source tracking. However, this method relies on the availability of the
bill of quantities, thereby limiting waste assessment during the early design stage. BIM-



Sustainability 2024, 16, 1941 3 of 14

based waste estimation follows a similar principle as the BoQ method but incorporates the
estimation model within Building Information Modelling (BIM) software. This integration
allows for automatic waste quantity estimation and updates throughout the design stage.
Other waste estimation methods include calculations based on the difference between
purchased and required materials [14,22,23] and multiplying the total quantity of consumed
material by a transformation coefficient [24].

3. Construction Waste Generation in Residential Projects in New Zealand

In New Zealand (NZ), the construction industry significantly contributes to the overall
waste in landfills, accounting for nearly 50% of it [4,25] A survey conducted by the Ministry
for the Environment in 2018 ranked waste reduction as the third most significant challenge
facing New Zealanders in the next two decades. In this context, residential construction
waste reduction holds paramount significance, particularly given that approximately 70%
of the country’s construction activities are attributed to residential building projects, as
reported by Stats NZ [26]. The demand for residential construction activities has been
consistently high, leading to an annual increase of approximately 7–8% in the issuance of
new consents [27]. In light of the “net zero waste” objective set to be achieved by 2040,
the New Zealand residential construction sector plays a critical role in the country’s waste
reduction efforts. Statistical data reveals that New Zealand industries and households
dispose of more than 3 million tonnes of construction and demolition debris into landfills
and clean fills every year, averaging about one tonne per person [28].

Numerous researchers worldwide have conducted studies specifically targeting the
reduction of construction waste in residential projects. Sáez, del Río Merino, Porras-Amores,
and González [29] conducted research specifically focused on residential projects and found
that the intermediate phases of a project significantly contribute to waste generation. They
were able to determine that the weight of waste per floor area amounts to 117.5 kg/m2

(or 0.18 m3/m2 in volume). A study by Mahayuddian et al. [30] identified the average
waste generation rate (WGR) in residential buildings in Malaysia as 16.6 kg/m2. Similarly,
Saez et al. (2014) [31] reported a figure of 21.4 kg/m2 in Spain. Moreover, Domingo and
Batty [4] revealed that the waste generation rate per gross floor area (WGR) of residential
projects in New Zealand stands at 32.2 kg/m2, placing it in the mid-range when compared
internationally.

Accurate waste prediction information plays a vital role in establishing a robust foun-
dation for waste recycling and utilisation, which are of utmost importance [32]. Predicting
construction waste quantities, as part of the project execution plan, is crucial for effective
project planning and execution. In the methods outlined in Section 2, waste generation
rate (WGR) and variable modelling techniques are the applicable means for estimating and
predicting waste generation during the initial phases of a construction project with minimal
information. In comparison to the WGR method, variable modelling holds greater potential
for aiding design teams in making informed decisions regarding waste source reduction
through the optimisation of design parameters in a building. However, developing a pre-
cise method for waste estimation and prediction is challenging, as the results heavily rely
on geographical, technical, and cultural variables [33]. The available waste-related ratios
and models are subjective, as they heavily depend on parameters such as building type,
construction methodology, construction materials, and the construction region or country.
Saez [31] emphasised that adopting waste quantities from other regions or construction
methods can lead to inaccurate results.

Similarly, Domingo and Batty [4] emphasised the distinctive nature of the New Zealand
construction industry, characterised by variations in materials, especially timber framing and
structures, technologies, and processes. Owing to methodological disparities in construction
practices across different countries, adopting existing models to predict waste generation
in diverse contexts proves challenging. Consequently, this study focuses on developing an
accurate construction waste prediction model specifically tailored for residential projects in
New Zealand, utilising design parameters as the foundation for estimation.
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4. Methodology

To accomplish the aforementioned research objective of developing a model for estimat-
ing construction waste during the early design stage of residential construction projects, a
quantitative approach was employed in this study. A total of 213 detached residential projects
were utilised, and both waste quantities and building designs were taken into consideration.
These projects were systematically selected to represent the typical range of construction
styles and sizes observed in New Zealand, encompassing the work of several small builders.
The sample spanned a period of approximately seven years, from 2015 to 2023. Within the
sample, there were residential projects completed by a national builder (n = 162) as well as
several small builders located in Palmerston North and Manawatu (n = 51) in New Zealand.
A smaller subset of the sample comprised architectural-style homes. The selected projects
predominantly featured detached houses with raft slab foundations, pre-nail timber frames,
colour steel roofing, and board/sheet and brick or stone cladding. The data collected for
analysis were divided into response variables and predictor variables.

4.1. Response Variable

The response variable utilised in this study was the waste volume of each residential
building. The waste volume for each building was determined by calculating a summary of
the waste data provided by the waste collection company, which was based on the number
of skips used and the weights recorded at the dumpsite. The waste data were typically
rounded to the nearest 250 or 500 kg and expressed in tonnes, reflecting the measurable
quantity of a skip bin. The waste volumes observed in the construction of New Zealand
residential buildings exhibited a highly positively skewed distribution, with a median value
of 6.20 tonnes. There were a few buildings that exhibited higher waste volumes, reaching up
to 15.00 tonnes (refer to Figure 2 and Table 1). As there were no miscalculations or significant
differences in the architectural aspects, the houses with greater waste volumes (>10 tonnes)
were included in the analysis, as they were assumed to contribute to the inherent variation
in waste volume generated by housing projects. Additionally, a Mann–Whitney U test
provided strong evidence (W = 1570.5, p value = 2.56 × 10−11; see Supplementary Figure 2
indicating that waste volumes were significantly greater in single-family houses constructed
by Palmerston North and Manawatu builders (subset2, median = 7.25 tonnes) compared to
those built by the national builder (subset1, median = 5.43 tonnes).
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Table 1. Summary of numerical variables.

Variables n Mean ± SD Median Minimum Maximum Skewness Kurtosis

Response Variable

Waste volume (tonnes) 213 6.28 ± 2.16 6.20 1.85 15.00 1.08 2.40

Predictor Variables

Working days (days) 213 139.02 ± 33.97 132.00 67.00 310.00 1.36 3.11

Floor area (m2) 213 192.38 ± 41.45 192.00 89.60 337.90 0.55 1.13

External perimeter (m) 213 72.95 ± 17.32 69.30 40.00 154.00 1.75 4.51

Internal wall length (m) 213 67.51 ± 19.88 63.00 13.00 165.00 1.19 3.49

Corners (count) 213 18.70 ± 6.50 17.00 9.00 46.00 1.43 2.30

Board cladding (m2) 213 50.92 ± 56.16 34.00 0.00 224.00 0.84 −0.30

Sheet cladding (m2) 213 85.92 ± 75.38 77.00 0.00 384.00 0.70 0.35

Brick or stone (m2) 213 26.83 ± 55.81 0.00 0.00 240.00 2.00 2.83

Roof area (m2) 51 299.76 ± 51.26 291.00 211.00 460.00 0.94 1.51

4.2. Predictor Variables

The predictor variables for this study were chosen based on the methods outlined by
Domingo and Batty [4], considering their impact on construction cost and material input.
A total of nine numerical variables (refer to Table 1) and four categorical variables (refer to
Table 2) were employed as predictor variables in the statistical models utilised in this study.
Design measurements such as floor area, internal wall length, external perimeter, roof area,
cladding types and areas, number of corners, number of stories, and number of bathrooms
were extracted from architectural plans as well as tracked during the construction process.
In cases where architectural plans were not available, on-site physical measurements were
conducted to collect the necessary data. However, it should be noted that roof area and roof
cladding type were only accessible for houses within subset 2 of the sample. The number
of working days was calculated by adjusting the project duration to account for statutory
holidays, Christmas shutdown periods, and COVID-19 lockdown periods.

Table 2. Summary of categorical variables.

Category Levels

House type Single-family houses (n = 169)
Houses with a self-contained flat (n = 44) *

Number of stories
1 (n = 188)
1.5 (n = 1)
2 (n = 24)

Number of bathrooms

1 (n = 6)
1.5 (n = 1)
2 (n = 101)
2.5 (n = 39)
3 (n = 54)
3.5 (n = 7)
4 (n = 4)
5 (n = 1)

Roof cladding type (for small builders only) Pressed metal (n = 12)
Steel (n = 39)

Builder type National builder (n = 162)
Small builders (n = 51)

* Residential buildings by small builders do not contain houses with self-contained flats.
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The sample consisted of two types of detached houses: single-family houses and
houses with a self-contained flat/granny flat/rental unit. The houses included in the
analysis comprised both one-storey and two-storey structures. However, one house with
1.5 stories and two houses with 1.5 and 5 bathrooms, respectively, were excluded from
the analysis due to the small sample sizes for these specific levels compared to the other
levels within their respective categories (see Table 2). Additionally, similar to the waste
volume, certain variables such as floor area, working days, external perimeter, internal wall
length, roof area, and different cladding areas (board, sheet, and brick or stone) indicated
that there were a few buildings with larger built areas compared to the majority of resi-
dential buildings (see Table 1). However, upon closer examination, no discernible patterns
were observed among residential buildings with higher waste volumes (>10 tonnes) and
larger built areas. Consequently, it was assumed that houses with greater built areas also
contributed to the natural variation in the built area of housing projects in New Zealand.

5. Results

Multiple generalised linear models were fitted to develop a tool that predicts the waste
volume of residential buildings with the highest accuracy. This involved two approaches:
(a) combining predictor variables additively in different combinations, and (b) using
different subsets of data. To identify highly correlated parameters, a Pearson correlation
analysis was initially conducted. The results of this analysis are illustrated in Figure 3.
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5.1. Predicting Waste Volume without Roof Parameters

The correlation analysis revealed a strong correlation of 0.96 between floor area and
roof area. Consequently, roof parameters were excluded from the initial model. The
dataset was divided into training (n = 160) and test (n = 50) sets using the ‘sample.split()’
function from the ‘caTools’ package [34] in the R statistical software, version 4.2.0 [35].
Generalised linear models were fitted for waste volume using both subset1 and subset2
together to investigate the impact of design parameters, project timeline, and builder type
on waste volume. The ‘glm()’ function from the ‘stats’ package [36] was employed for
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model fitting. The Akaike information criterion (AIC) was used as a measure to evaluate
model fitness. The model with the lowest AIC value, determined through the ‘stepAIC()’
function in the ‘MASS’ package [37,38], was selected as the best-fitting model. The stepwise
procedure started with the full model and iteratively removed one variable at a time
while adding another variable to obtain different combinations of predictor variables,
aiming for the optimal fit with the lowest AIC. The models were evaluated based on their
statistical properties using AIC values, and the accuracy of prediction was assessed using
the test data for the prediction tool. The ‘predict()’ function in the ‘car’ package [39] was
employed to calculate the model predictions and determine the 99% confidence interval of
the predictions. The best prediction model, excluding roof parameters, was chosen based
on its lower AIC value and the highest prediction accuracy on the test dataset. A prediction
was considered accurate if the actual waste volume fell within the predicted 99% confidence
interval.

5.2. Predicting Waste Volume with Roof Parameters

In the second attempt, the prediction tool was enhanced by including roof parameters,
as suggested by the existing literature, which indicates that roofing systems contribute more
to construction waste compared to floors or walls, primarily due to their complexity [40].
Subset2 was utilised for model fitting, and since roof area exhibited a strong correlation with
floor area, internal wall length, and external perimeter (correlation coefficient > 0.7), the
number of variables was reduced to orthogonal axes using principal component analysis
(PCA). This approach allowed for a generalised representation of the built area through
the extracted principal components. The data were subsequently divided into training
(n = 43) and test (n = 8) sets, and models were trained using the training data. Different
combinations of predictor variables were employed as fixed effects in the model training
process. The model with the lowest AIC value and the highest prediction accuracy on the
test dataset was identified as the best prediction model incorporating roof parameters.

5.3. Prediction Tool

To reduce the generalization error of prediction, the prediction tool was developed
using ensemble models [41]. The models with the highest accuracy for predicting the
waste volumes with and without roof parameters were used in the prediction tool. Here,
estimated waste volumes from both models (with and without roof parameters) were
averaged to deliver the final prediction with a 99% confidence interval.

5.4. Predicting Waste Volume without Roof Parameters

The best-fitting model (model 1) to describe the waste volume with the lowest AIC
(516.28) contained the number of working days, corners, floor area and the builder type
as fixed factors. The number of working days, corners, and floor area showed a strong
positive correlation with the waste volume (Table 3; p value < 0.05). Further, there was
strong evidence that residential projects carried out by small builders generated more waste
than the national builder (Table 3; p value <0.05). However, the accuracy of the predicted
values for the model 1 was 56.00%.

Table 3. Best-fitting generalised linear model (model 1) for residential buildings.

Estimate Std. Error t Value p Value

(Intercept) 0.352 0.094 3.754 0.000

Working days 0.004 0.001 6.858 0.000

Floor area 0.003 0.000 6.868 0.000

Number of corners 0.008 0.003 2.905 0.004

Builder type—small builders 0.372 0.046 8.090 0.000
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Since the accuracy of the predictions was low in model 1, the model was extended by
adding other predictor variables, as shown in Table 2.

The model with highest accuracy in predictions (model 2: 80.00% accuracy), with an
AIC of 528.25, showed that having all predictor variables increased the accuracy of the
predictions (Table 4). In addition to the positive correlation between working days, floor
area, and number of corners as in model 1, model 2 showed that having two complete
bathrooms and a powder-room/toilet increased the waste volume compared to having one
bathroom. Comparing the fitness of model 2 with model 1, using the ‘lrtest’ function in
the ‘lmtest’ package, revealed that the fitness of model 2 was not significantly different to
model 1 (chisq = 12.03, p value > 0.05). Therefore, model 2 can be used as the prediction
model without roof parameters.

Table 4. Selected list of models with more than 56% accuracy.

Model Name AIC Accuracy of Prediction

Model 1: volume ~ working days + floor area + corners + type of builder 516.28 56.00%

Model 2: volume ~ working days + floor area + internal wall length + external
perimeter + board cladding + sheet cladding + brick or stone + stories + bathrooms +
house type + corners + type of builder

528.25 80%

Model 3: volume ~ stories + sheet cladding + PC1 + PC2 71.48 75.00%

Model 4: volume ~ working days + PC1 + PC2 + roof clad + sheet cladding +
bathrooms + stories 82.40 100.00%

Model 5: volume ~ working days + floor area + bathrooms + corners + type of
builder 72.00%

Model 6: volume ~ working days + floor area + bathrooms + corners + type of
builder + stories 72.00%

Model 7: volume ~ working days + floor area + bathrooms + corners + type of
builder + house type 72.00%

Model 8: volume ~ working days + floor area + bathrooms + corners + type of
builder + sheet cladding 72.00%

Model 9: volume ~ working days + floor area + bathrooms + corners + type of
builder + sheet cladding + board cladding 74.00%

Model 10: volume ~ working days + floor area + bathrooms + corners + type of
builder + sheet cladding + board cladding 78.00%

5.5. Predicting Waste Volume with Roof Parameters

Two principal components were extracted from the principal component analysis
(Table 5). All four parameters contributed to the first principal component (PC1), which
explained 89.93% of the total variance (eigenvalue = 3.57); and internal wall length and
roof area contributed to the second principal component (PC2), which explained 7.41% of
the total variance (eigenvalue = 0.30). Together, PC1 and PC2 explained 97.34% of the total
variance (Table 6). The best-fitting model (model 3) with roof parameters to describe the
waste volume with the lowest AIC (71.48) contained the number of stories, sheet cladding
area, PC1, and PC2 as the fixed factors of the model. The accuracy of the predicted values
for model 3 was 75.00% for the test data. In model 3, there was strong evidence that PC1
and PC2 showed a negative correlation with the waste volume (Table 7; p value < 0.05). The
model suggested that an overall reduction in the built area may reduce the waste volume.
Further, there was strong evidence that adding an extra level to the house had a positive
correlation with the waste volume.
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Table 5. Principal component analysis of built area for subset2.

PC1 PC2

Eigenvalue 3.57 0.30

Variance explained 89.93 7.41

Loading scores:
Floor area −0.52 −0.33

External perimeter −0.51 0.29

Internal wall length −0.48 0.67

Roof area −0.49 −0.60

Table 6. Generalised linear model (model 2) without roof parameters.

Estimate Std. Error t Value p Value

(Intercept) 0.609 0.165 3.682 0.000

Working days 0.003 0.001 4.103 0.000

Floor area 0.002 0.001 2.741 0.007

Internal wall length −0.001 0.001 −0.463 0.644

External perimeter 0.002 0.003 0.755 0.451

Board cladding area 0.000 0.001 0.334 0.739

Sheet cladding area 0.000 0.001 0.710 0.479

Brick or stone cladding area 0.001 0.001 1.313 0.191

Number of stories—2 0.094 0.092 1.017 0.311

Number of bathrooms
2 −0.183 0.127 −1.442 0.151
2.5 −0.286 0.143 −1.994 0.048
3 −0.162 0.142 −1.141 0.256
3.5 −0.236 0.170 −1.388 0.167
4 −0.202 0.230 −0.875 0.383

House type 0.073 0.065 1.135 0.258

Number of corners 0.008 0.004 2.212 0.029

Builder type—Small builders 0.367 0.076 4.861 0.000

Table 7. Best-fitting generalised linear model (model 3) for waste volume with roof parameters.

Estimate Std. Error t Value p Value

(Intercept) 2.00 0.02 95.60 0.00

Stories—2 0.26 0.08 3.35 0.00

Sheet cladding area 0.00 0.00 1.79 0.08

PC1 −0.09 0.01 −10.42 0.00

PC2 −0.05 0.02 −2.15 0.04

However, when model 3 was extended by adding other predictor variables (see all
models in Table 6) the model with the highest accuracy in predictions (model 4), with an
AIC of 76.07, showed that addition of roof cladding type, the number of working days,
and bathrooms increased the accuracy of predictions in the test data to 100.00% (Table 6).
Similar to model 3, model 4 also showed strong evidence that PC1 (overall built area) had a
positive correlation with the waste volume (Table 7; p < 0.05). There was no evidence that
the fitness of model 3 was different to model 4 (chisq = 5.40, p value > 0.05) as shown in
Table 8. Therefore, model 4 can be used as the prediction model with roof parameters.
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Table 8. Generalised linear model (model 4) with roof parameters.

Estimate Std. Error t Value p Value

(Intercept) 2.040 0.044 45.989 0.000

Working days 0.000 0.000 −0.237 0.814

PC1 −0.095 0.017 −5.460 0.000

PC2 −0.060 0.039 −1.520 0.138

Roof cladding type −0.003 0.026 −0.123 0.903

Sheet cladding area 0.000 0.000 1.672 0.104

Number of bathrooms
2.5 −0.044 0.025 −1.800 0.081
3 −0.043 0.157 −0.274 0.786
3.5 0.050 0.098 0.509 0.614

Number of stories—2 0.217 0.154 1.415 0.166

5.6. Prediction Tool

Finally, ensemble models (model 2 and model 4) were used to calculate the final
prediction and 99% confidence intervals for the prediction using the test data (n = 8) of
subset 2. The tool demonstrated that 100% of the actual waste volumes were within the
predicted range (Table 9).

Table 9. Predicted values from ensemble models of the prediction tool.

Model 2 Model 3 Average Predictions Actual
Waste

VolumePrediction Lower
Limit

Upper
Limit Prediction Lower

Limit
Upper
Limit Prediction Lower

Limit
Upper
Limit

6.96 5.75 8.42 7.10 6.44 7.83 7.03 6.10 8.13 7.00

6.81 5.82 7.96 7.68 7.14 8.26 7.24 6.48 8.11 7.25

6.76 5.81 7.88 7.38 6.91 7.89 7.07 6.36 7.88 7.00

7.17 6.16 8.35 7.55 7.02 8.11 7.36 6.59 8.23 7.25

6.08 5.23 7.06 6.67 6.06 7.35 6.38 5.65 7.21 6.50

6.88 5.69 8.32 7.06 6.42 7.76 6.97 6.06 8.04 7.50

8.11 6.93 9.49 8.09 7.47 8.76 8.10 7.20 9.13 8.00

7.68 6.48 9.10 6.94 6.36 7.57 7.31 6.42 8.33 7.50

6. Discussion

In the literature, there are several variable modelling techniques available to measure
and predict construction waste generation using different approaches. For instance, Hu
et al. [19] employed design features such as floor area, height, and material quantities
that go into different building components to estimate construction waste generation on
site. This model significantly contributes to enabling construction teams to predict and
manage construction waste generation in materials. However, a more detailed level of
design is required to apply this model to material waste prediction. Islam et al. [16]
followed a rigorous approach to waste prediction, using regression analysis to predict
construction and demolition waste based on the estimation of total floor area and waste
generation rate. However, this method does not support design teams in making informed
decisions on design parameters and waste generation. Domingo and Batty [4] and Keren
et al. [11] identified a comprehensive relationship between building waste and building
characteristics. Both studies used multiple regression analysis to develop waste prediction
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models with various design parameters. However, the accuracy of these models ranges
between 60 and 70%, leaving room for further improvement to increase the accuracy.

Multiple regression models assume the distribution of the response variable is normal,
while generalised linear models (GLMs) allow for a more flexible approximation of the
response variable distribution, including non-normal distributions such as gamma or Pois-
son distributions [42]. Positively skewed response variables, such as the amount of waste
generated in residential construction projects (Figure 2), can be better described by GLMs
than multiple regression models. This is because multiple regression models assume a
symmetric distribution, which may not accurately capture the shape of a positively skewed
distribution. Generalised linear models can accommodate positively skewed distributions
by allowing for different types of link functions, such as log-link functions, which can
transform the response variable to better approximate a normal distribution. Therefore,
GLMs used in this study can better capture the underlying distributional properties of the
building and project data, leading to more accurate and reliable statistical inference than
the models used in Domingo and Batty [4].

This article presents a comprehensive investigation into the residential building design
factors influencing construction waste volume, utilising multiple predictive models. The
study primarily focuses on identifying the best-fit model to enhance the accuracy of waste
volume predictions. As the Pearson correlation analysis shows a strong correlation between
floor area and roof parameters, the analysis involves three distinct models (model 2, model
3, and model 4), each incorporating different sets of predictor variables. The findings reveal
intriguing insights into the correlation between various construction parameters and waste
generation.

The increasing importance of sustainable construction practices has spurred research
into understanding and predicting construction waste volume. This study delves into three
predictive models, aiming to identify the most influential factors and enhance prediction
accuracy. Notably, the research explores the impact of roof parameters on waste generation,
shedding light on previously underexplored dimensions of construction waste modelling.

The initial model (model 1) establishes a strong correlation between construction waste
volume and fundamental factors such as working days, corners, and floor area. Intriguingly,
residential projects led by small builders exhibit significantly higher waste generation,
providing valuable insights for waste management strategies. Model 2 introduces enhanced
accuracy (80.00%) by incorporating additional predictor variables, notably the presence
of multiple bathrooms. Despite the increased accuracy, the study suggests that the fitness
of model 2 is not significantly different from model 1, emphasising the practicality of
model 2 for prediction without roof parameters. The incorporation of PCA elucidates
the dominant factors contributing to waste generation. PC1, representing overall built
area, emerges as a significant contributor to waste volume. PC2, influenced by internal
wall length and roof area, provides supplementary insights. The combination of PC1 and
PC2 explains a substantial 97.34% of the total variance, underscoring their importance
in waste volume prediction. Model 3 introduces roof parameters, showing a lower AIC
(71.48) and an accuracy of 75.00%. The negative correlation observed between PC1, PC2,
and waste volume suggests that reducing the built area may mitigate waste generation.
Moreover, the study identifies a positive correlation between adding extra levels to a
structure and increased waste volume. The final model (model 4) incorporates roof cladding
type, working days, and bathrooms, achieving a remarkable 100.00% accuracy in test
data predictions. The positive correlation between PC1 and waste volume is reaffirmed.
Importantly, model 4 does not exhibit a significant difference in fitness compared to model
3, signifying its applicability for accurate predictions with roof parameters.

7. Conclusions

This study employed generalised linear models to examine the relationship between
design features and waste generation in residential buildings within New Zealand. Gener-
alised linear models were chosen due to their ability to offer a more flexible approximation
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of the distribution of the response variable, surpassing the capabilities of multiple regres-
sion models. Consequently, this approach enabled the development of a model with a high
level of accuracy, estimating construction waste generation in residential projects within
New Zealand at approximately 80% accuracy.

The analysis revealed that small builders tend to generate a greater amount of waste
in residential projects compared to national builders, as supported by compelling evidence
obtained from the model. Furthermore, the results indicate that enhancing the accuracy of
waste estimation can be achieved by incorporating additional design features into the model.
Principal component analysis demonstrated that certain design features, specifically overall
built area, internal wall length, and roof area, significantly contributed to the variance
in waste volumes. This implies that these particular design aspects exert a substantial
influence on waste generation, surpassing the impact of other design features. Additionally,
the findings indicate that the overall waste volume can be reduced by minimising the
number of bathrooms and the overall built area. The implications of this study’s findings
are particularly valuable to construction stakeholders, especially those involved in the
design phase, as they offer insights into minimising waste generation by optimising design
parameters. By implementing the recommendations derived from this study, construction
industry professionals can contribute to sustainable practices and waste reduction in
residential projects.
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