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Abstract: As a major energy-consuming industry, energy conservation and emission reduction in
the logistics industry are critical to China’s timely achievement of its dual-carbon goals of “carbon
peaking” by 2030 and “carbon neutrality” by 2060. Based on deep learning, Random Forest (RF)
was used to screen out the key factors affecting carbon emissions in the logistics industry, and the
Whale Algorithm-optimized Radial Basis Function Neural Network (WOA-RBF) was proposed. The
Monte Carlo simulation predicted the future evolution trends of each key factor under the three
scenarios of baseline scenario (BAU), policy regulation scenario (PR), and technological breakthrough
scenario (TB) and accurately predicted the carbon emission trends of the logistics industry from
2023 to 2035 by using the most probable future values of each influencing factor as inputs to the
WOA-RBF prediction model. The results of the study demonstrate that fixed asset investment (LFI),
population (P), total energy consumption (E), energy consumption per unit of value added of the
logistics industry (EIL), share of oil consumption (OR), and share of railway freight turnover (RTR)
are the key factors influencing the logistics industry’s carbon emissions. Monte Carlo simulations can
effectively reflect the uncertainty of future changes in these key factors. In comparison to the BAU
and PR scenarios, the TB scenario, with the combined incentives of national policy regulation and
technology innovation, is the most likely for the logistics industry to meet the “Peak Carbon” goal
baseline scenario.

Keywords: China’s logistics industry; carbon peak pathway; random forest; WOA-RBF; Monte
Carlo simulation

1. Introduction

The logistics industry has grown in importance as a strategic, fundamental, and
pioneering industry for the growth of the national economy, and demand for logistics
has increased. With the increase in logistics scale and geographical agglomeration, the
logistics industry offers substantial support for numerous industries while using a lot
of energy and emitting a lot of carbon dioxide (CO2). At the same time, rising carbon
dioxide and other greenhouse gas emissions have intensified climate change, resulting in
irreparable losses to the world economy, society, and ecology [1]. As the largest developing
nation and energy consumer in the world, China is proactively taking on the responsibility
of energy conservation and emission reduction to counteract the warming trend. The
country has committed to achieving “carbon peaking” by 2030 and “carbon neutrality” by
2060. Additionally, the implementation of the “dual-carbon” policy is having an impact
on the growth of China’s logistics industry [2]. However, China’s logistics industry has
traditionally demonstrated high input, high energy consumption, and poor output as
harsh development characteristics [3]. The logistics industry’s technology level and energy
structure have not fundamentally changed; oil-based fossil fuels continue to dominate
the logistics industry’s energy consumption, and the consumption is massive, making the
logistics industry one of the most difficult industries to achieve the “dual-carbon” goal [4,5].
Will China’s logistics industry be able to meet the “peak carbon” goal by 2030 in the context
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of the “dual-carbon” policy? What are the factors influencing changes in carbon emissions
in the logistics industry? How can the future trend of carbon emissions be predicted in
uncertain situations, and when will the “peak carbon” goal be reached? The answers to
these concerns are extremely important in terms of developing suitable emission reduction
strategies, advancing the development of green logistics, reducing global warming, and
fostering sustainable economic growth.

Existing research on carbon emissions from the logistics sector focuses mostly on
the investigation of carbon emission-affecting variables and prediction methods. The
key influencing elements determining the change in carbon emissions include the econ-
omy, population, energy consumption, energy intensity, energy structure, and so on [6–9].
Many studies have been conducted in recent years to investigate the influence of various
macro-factors on carbon emissions, utilizing methodologies like the Stochastic Impacts by
Regression on Population, Affluence, and Technology (STIRPAT) model. Wang et al. (2021)
combined the system dynamics theory study to conclude that the economic scale consisting
of infrastructure investment, tertiary sector value-added, and environmental investment
is the core factor influencing carbon emissions in the transport sector [10]. Oladunni et al.
(2022) examined the significant effect of population size, energy intensity, urbanization,
economic level, energy consumption, and freight turnover on freight carbon emissions
in South Africa [11]. Sporkmann et al. (2023) extended the classic STIRPAT model to ex-
plore the direct effects and spatial spillovers of infrastructure investment, energy intensity,
transport intensity, and transport structure on carbon emissions from land transport in
Europe [12].

Scholars have offered qualitative approaches such as scenario analysis and quantitative
methods such as statistical analysis models, gray prediction models, machine learning, and
deep learning models for prediction models. Both Asim et al. (2022) [13] and Wang et al.
(2022) [14] used scenario analysis to predict the future trends of overall energy consumption
and greenhouse gas (GHG) emissions in the transport sector under different scenarios.
An Autoregressive Integrated Moving Average (ARIMA) model was employed by Yang
and Connell (2020) to forecast the aviation sector’s carbon emissions between 2017 and
2021 [15]. Saisirirat et al. (2022) predicted the carbon emissions of the transport industry in
Ghana from 2020–2036 by constructing baseline, alternative, and extreme scenarios [16].
Li et al. (2023) analyzed the link between input variables such as demographic, economic,
technological, and equipment structure and carbon emissions by partial least squares and
used scenario analysis to calculate the carbon emissions of the transport industry from
2019 to 2035 [17]. However, the above models demand a large number of sample inputs
and a large amount of raw data and have low prediction accuracy.

The gray model (GM) suggested by Deng (1982) [18] can successfully solve the un-
certainty problem of small sample sizes. This model and various variants are also widely
used for carbon emission prediction in the transportation field, such as the adaptive gray
model with buffered rolling mechanism (BR-AGM (1, 1)) model proposed by Xu et al.
(2019) [19] combining the grey model with the buffering rolling method, the classical gray
prediction model (GM (1, 1)) model used by Kazancoglu et al. (2021) [20], and the accumu-
lative time-delay multivariate gray prediction model (ATGM (1, N)) proposed by Ye et al.
(2021) [21], as well as the Improved discrete gray prediction model (DGM (1, N)) proposed
by Javed et al. (2022) [22]. These improved models, to some extent, overcome the problem
of underfitting in traditional models and improve prediction accuracy.

As AI technology has advanced and the demand for prediction accuracy has increased,
so has the number of available data samples on carbon emissions and their drivers. Because
of their enhanced learning capabilities, robustness, and high nonlinear fitting performance,
machine learning and deep learning methods have become increasingly utilized in the
prediction of carbon emissions. Ghalandari et al. (2021) predicted carbon emission trends
in the transport sector in the UK, Germany, Italy, and France using two types of Artificial
Neural Networks (ANNs), the grouped data processing approach and the multilayer
perceptron [23]. Ağbulut (2022) compared the effectiveness of three algorithms, Artificial
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Neural Network (ANN), Support Vector Machines (SVMs), and deep learning (DL), in
forecasting, and the results showed that compared to the DL algorithms, ANN and SVM
algorithms were more effective in predicting carbon emissions and energy demand in the
transport sector [24].

Meanwhile, scholars have suggested several hybrid algorithms to better capture the
nonlinear connection of data samples and increase prediction performance. Sahraei and
Çodur (2022) empirically analyzed the carbon emissions of the transport sector in Turkey
from 1975 to 2019 by three hybrid algorithms, namely, ANN-Genetic Algorithm (ANN-GA),
ANN-Simulated Annealing (ANN-SA), and ANN-Particle Swarm Optimization (ANN-
PSO), respectively [25]. Tang et al. (2023) combined the Sparrow Search Algorithm Opti-
mized Long Short-Term Memory Network (SSA-LSTM) and scenario analysis to predict
the carbon emissions of the transport sector in 2036 [26]. Yang et al. (2023) predicted
aviation carbon emissions in 2050 using the BP neural network, Monte Carlo simulation,
and scenario analysis and quantified the carbon emission pathways [27]. Emami Javanmard
et al. (2023) integrated the outputs of machine learning algorithms such as Autoregressive
(AR), ARIMA, Autoregressive fractional integrated Moving Average (ARFIMA), Seasonal
ARIMA (SARIMA), SVR, Mixed-Data Sampling (MIDAS), GM, and Generalized Autore-
gressive conditional heteroskedasticity (GARCH) and constructed a new framework of
multi-objective optimization model, which was solved by the Whale Optimization Algo-
rithm (WOA), which effectively predicts the energy demand and carbon emissions of the
Canadian transport sector from 2019 to 2048 [28].

In summary, a huge number of results have emerged from studies on carbon emission-
affecting variables and prediction in the field of transportation; however, several research
gaps remain. On the one hand, most studies in the screening of carbon emission influenc-
ing variables employ the STIRPAT framework to uncover common factors in historical
literature or use the least absolute shrinkage and selection operator (LASSO) regression, the
Delphi method, and other methods to screen carbon emission influencing factors. Random
Forest (RF), on the other hand, may examine the complex aspects of interactions to iden-
tify the influencing elements that can appropriately depict the prediction outcomes [29].
However, while most studies discuss carbon emission pathways by combining algorithms
such as machine learning and deep learning with scenario analyses, the rate of change
of each influencing factor is fixed, which may affect the final carbon emission forecast’s
accuracy and realism. As a result, the technique of Monte Carlo simulation can address
the uncertainty of future carbon emission-impacting factors [30,31]. Based on previous
literature analysis and the current state of China’s logistics industry, this study investigates
a machine learning method, Random Forest (RF), to screen the key factors impacting its car-
bon emissions and combines Radial Basis Neural Networks (RBF) and Whale Optimization
Algorithm (WOA) to propose a WOA-RBF prediction model, which predicts the trend of
China’s logistics industry’s carbon emissions from 2023 to 2035 and employs Monte Carlo
simulation to account for the uncertainty of future changes in the variables, so that it can
provide feasible policy recommendations for the logistics industry to achieve the goal of
“peak carbon emissions”.

2. Methodology
2.1. Random Forest

Random Forest (RF) is an integrated machine learning algorithm, i.e., it randomizes
the use of variables and data to generate and aggregate the results of multiple classification
trees [32]. Random forest has good robustness to missing data and unbalanced data, has
fast learning speed, is widely used to solve regression, classification, and other problems,
but can also be used for high-dimensional data feature selection [33].

Regarding the feature selection of RF, the Gini index is usually used to measure the
importance of features; if there are M features, i.e., X1, X2, X3 . . . Xm, then the importance
of each feature Xj needs to be calculated. The specific steps are as follows:



Sustainability 2024, 16, 1826 4 of 23

(1) From the original training dataset, K new sample sets are randomly selected by the
bootstrapping method, and K classification regression trees are constructed. The unselected
samples constitute K out-of-bag (OOB) data.

(2) Assuming that there are n features, mtry features (mtry ≤ n) are randomly extracted
at each node of each tree as a randomly generated feature subset. By calculating the
information contained in each feature subset, the features with the strongest classification
ability are selected among the mtry features for node splitting, thus making the decision
tree more diverse.

(3) Use the Gini coefficient to score VIM(Gini)
J and calculate the importance of features.

VIM denotes variable importance, GI denotes Gini index, and VIM(Gini)
J denotes the

Gini index of each feature Xj. The formula for the Gini index is as follows:

GIm =
|K|

∑
k=1

∑
k′ ̸=k

pmk pmk′ = 1 −
|K|

∑
k=1

p2
mk (1)

where pmk denotes the percentage of category k in node m. The importance of the feature
Xj in node m is calculated as follows:

VIM(Gini)
jm = GIm − GIl − GIr (2)

GIl and GIr represent the Gini index of two new nodes after branching. If the node of
the feature Xj in the decision tree i belongs to set M, the importance of the feature Xj in the
decision tree i is calculated as follows:

VIM(Gini)
j = ∑

m∈M
VIM(Gini)

jm (3)

Suppose there are n trees in the RF:

VIM(Gini)
j =

n

∑
i=1

VIM(Gini)
ij (4)

2.2. Radial Basis Function Neural Networks

Radial basis function neural network (RBF) is a locally responsive forward neural
network that consists of input, hidden, and output layers [34]. Compared with BP neural
networks, which tend to fall into local optimum, it has the characteristics of simple structure,
fast training speed, and strong global approximation ability [35]. The structure of the RBF
neural network is shown in Figure 1.

The basic idea of using the RBF neural network for prediction is as follows: the value
of each influencing factor as input is mapped to the hidden layer through the RBF function,
the network weight vector is determined through the training algorithm, and its output
model can be expressed by a linear equation as follows:

y(x) =
I

∑
i=1

ωij φj(∥xn − ci∥) (5)

where y(x) is the output of the neural network, ∥·∥ is the Euclidean paradigm, xn is the nth
input sample, ωij is the weights from the hidden layer to the output layer, i = 1, 2, . . ., I,
j = 1, 2, . . ., J, and there are a total of i input nodes and j output nodes in the hidden layer;
and ci is the center of the radial basis function.
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The learning process of the RBF neural network is divided into two phases: self-
organized learning and supervised learning, and the parameters of each part are learned
quickly to improve the training speed. In the RBF neural network training process, the
main radial basis functions are center ci, variance σ, and network weights ωij. The most
commonly used radial basis function is the Gaussian radial basis function. The formula is
as follows:

φj(∥xn − ci∥) = exp

(
−∥xn − ci∥2

2σ2

)
(6)

Typically, K-mean clustering is used to select the radial basis function center ci located
in the hidden layer, which in turn solves for the variance σ. The formula is as follows:

σi =
cmax√

2I
(7)

Finally, the network weights ω can be calculated using the least squares method. The
formula is as follows:

ω = exp
(

1
c2

max
∥xn − ci∥2

)
(8)

2.3. Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA), proposed by Mirjalili and Lewis (2016) [36],
is a population intelligence optimization algorithm that mimics the feeding behavior of
whales in nature. It achieves the optimization purpose by simulating the behaviors of
humpback whale groups, such as searching, encircling, pursuing, and attacking the prey,
etc. It has the advantages of simple operation, fewer adjustment parameters, and a strong
ability to jump out of the local optimal solution, and it can deal with the problems of image
cutting, scheduling optimization, feature selection, and prediction. WOA consists of three
main processes: surrounding prey, capturing prey, and searching for prey [36].

(1) Surrounding prey

Humpback whales can recognize prey locations and encircle them. Since the location
of the optimal solution is unknown, the WOA assumes that the position of the optimal
whale in the current population, i.e., the position of the goal prey, approaches the prey in
various ways. Meanwhile, the other whales update their positions by using Equation (9) to
move closer to the optimal individual.

Xt+1
i = Xt

best − A·D1 (9)
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D1 =
∣∣C·Xt

best − Xt
i
∣∣ (10)

where Xt
best is the position of the individual whale within the population that achieves the

globally optimal solution when searching up to generation t, Xt
i is the position of individual

i at the t th iteration, D1 denotes the encircling step size, and A and C are coefficient vectors,
which are calculated as follows:

A = 2a·r − a (11)

C = 2·r (12)

a = 2 − 2
t
T

(13)

where T is the maximum number of iterations and r is a random number between [0, 1].

(2) Capturing prey

To effectively model the way whales spit out bubble nets along the helix and approach
their prey, Equation (14) was used to update the position of individual whales.

Xt+1
i = Xt

best + D2·ebl ·cos(2πl) (14)

where D2 =
∣∣Xt

best − Xt
i

∣∣ denotes the distance from the whale to the prey, b is a constant
controlling the logarithmic spiral shape, and l is a random number between [−1, 1].

It is worth noting that the whale shrinks towards the prey through the spiral shape
while also shrinking the envelope. Therefore, it is assumed that there exists a probability pi
to choose the shrinking envelope mechanism and a probability 1 − pi to choose the spiral
model to update the whale position as follows:

Xt+1
i =

{
Xt

best − A·D1
Xt

best + D2·ebl ·cos(2πl)
(15)

(3) Searching for prey

In the prey search phase, individual whales no longer target the optimal individual for
position updates but instead target a random individual in the current group for position
updates. The equation in this phase is as follows:

Xt+1
i = Xt

rand − A·D3 (16)

D3 =
∣∣C·Xt

rand − Xt
i
∣∣ (17)

where Xt
rand represents the exact position of a single whale chosen at random throughout

the population at generation t. Meanwhile, when A ≥ 1, a search agent is randomly
selected to update the position of other whales with the position of the randomly selected
whale as the goal, forcing whales to move away from the prey and then search for a more
suitable prey to expand the search range and discover the best solution while preserving
the population’s variety. The flowchart for WOA is shown in Figure 2.

2.4. Uncertainty Analysis Based on Monte Carlo Simulation

The WOA-optimized RBF model can forecast the trend of carbon emissions in China’s
logistics industry going forward, but the yearly growth rate of each indicator is set because
it is based on classical scenario analysis. In actuality, though, there are many uncertainties
regarding the future evolution trend of carbon emissions as well as additional factors; there-
fore, the probable rate of change needs to be a range rather than an exact value [37]. Monte
Carlo simulation, as a method of analyzing uncertainty problems, can simulate the actual
physical processes with its flexibility and comprehensiveness, so that the solution results
can be consistent with the actual situation [38]. The advantage of Monte Carlo simulation
over other methods of uncertainty analysis is that it can not only set the probability of
the occurrence of different variables but also set values based on existing research and
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policy [39]. Based on this, this study introduces Monte Carlo simulation to dynamically
analyze the potential evolution of carbon emissions in China’s logistics industry under
different scenarios in the context of the “dual-carbon” goal. Before conducting the Monte
Carlo analysis, the distribution of key variables in the model must be assumed, which has
a significant impact on the prediction results [37]. The results of Monte Carlo simulation
depend on the selection of probability distributions for the potential rates of change of the
factors, and there are usually discrete, normal, and triangular distributions for the selection
of the distributions. When the possible outcomes of the variables and the value intervals
are known but the probability distribution is unknown, the triangular distribution is more
suitable for variable selection [39]. Therefore, in this study, the triangular distribution is
chosen to randomly generate the variables.
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2.5. Research Process

Combining RF, WOA, RBF, and Monte Carlo simulation to establish the carbon emis-
sion prediction model of the logistics industry. Firstly, based on the STIRPAT theory, to find
potential influencing factors, RF is used to measure and rank the importance of each vari-
able, and the most important influencing factors are screened out to simplify the prediction
model. Second, the RBF neural network model under WOA optimization is constructed
as well as proving the superiority of the model. Third, Monte Carlo simulation is used
to reflect the uncertainty of the future changes of the influencing factors under the three
scenarios, and then the WOA-RBF model is used to predict the trend of carbon emissions
in China’s logistics industry and to judge the realistic path of carbon emission reduction in
the logistics industry.

3. RF-WOA-RBF for Forecasting Carbon Emissions
3.1. STIRPAT Model

The STIRPAT model, which is improved by Dletz and Rosa [40] based on the IPAT
model, serves as the primary basis for choosing the potential influencing factors of carbon
emissions in the logistics industry in this study. This model can be used to reveal the
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effects and influences of population, economic and social development, and science and
technology on the environment, and its specific equations are as follows:

I = αPβ AθTγε (18)

where I denotes environmental impact, P denotes population, A denotes affluence, and
T is the level of technology; α represents the coefficient for constructing the model; ε
represents the error in constructing the model; and the parameters of the STIRPAT model
corresponding to the driving forces are denoted by β, θ, and γ, respectively. Taking
logarithms on each side of the equal sign of Equation (19) can be obtained as follows:

lnI = lnα + βlnP + θlnA + γlnT + ln (19)

The model is deformed to get the following:

lnI = α + blnP + clnA + dlnT + ε (20)

In this study, the model is improved and extended based on the traditional STIRPAT
theory, and the extended model is as follows:

lnI = α + blnP + clnA + dlnEC + elnEI + f lnES + glnTS + ε (21)

where I denotes carbon emissions, P is population, A is economic level, EC is total energy
consumption, EI is energy intensity, ES is energy structure, and TS is transport structure; b,
c, d, e, f, and g represent the coefficients of each factor.

3.2. Data Collection and Processing

In this study, based on six parameters, 14 potential factors influencing carbon emissions
in the logistics industry were chosen. At the same time, data on the 14 potential factors
and carbon emission data from 1980 to 2022 were collected from the “China Statistical
Yearbook”, “China Energy Statistical Yearbook”, “China Logistics Yearbook”, etc., which
did not include carbon emission data in the information reviewed. The consumption
of raw coal, gasoline, paraffin, diesel fuel, fuel oil, natural gas, liquefied petroleum gas,
thermal energy, and electricity consumed by the “transport, storage, and postal industry”
are the items chosen for this study’s measurement of carbon emissions in the logistics
industry. The carbon emission coefficients and the conversion factor of standard coal for
each type of energy are derived from the “2006 IPCC Guidelines for National Greenhouse
Gas Inventories”. Therefore, combined with the estimation methods provided by IPCC,
this study adopts a “top-down” approach to measure the carbon emissions of the logistics
industry [41]. The formula is as follows:

TCE = ∑
i

TCEi = ∑
i

Ei × αi × δi ×
44
12

(22)

where Ei denotes the actual consumption of energy class i, αi denotes the standard coal
conversion factor of energy class, and δi denotes the carbon emission factor of energy class.
The particular coefficients are displayed in Table 1.

3.3. Importance of Potential Influences on Logistics Carbon Emissions

Carbon emissions in the logistics industry in real-life activities are subject to a variety
of influencing factors, and this study summarizes 14 influencing factors. However, if all
the influencing factors are used as input variables in the WOA-RBF prediction model, the
model will be too complex, thus increasing the training time [29]. As a consequence, this
study uses RF to evaluate the significance of 14 influencing factors and chooses the most
accurate and representative influencing factors to measure the outcomes of the carbon
emission projection. The specific influencing factors are displayed in Table 2.
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Table 1. Standard coal factor and carbon emission factor for various energy sources.

Energy Type
Standard Coal
Conversion
Coefficients

Carbon Emission
Coefficient Energy Type

Standard Coal
Conversion
Coefficients

Carbon
Emission
Coefficient

Raw coal 0.7143 0.7599 Natural gas 1.2721 0.4483
Gasoline 1.4714 0.5538 Liquefied petroleum gas 1.7143 0.5042
Kerosene 1.4714 0.5714 Heating power 0.0341 0.2520
Diesel oil 1.4571 0.5921 Power 0.1229 0.7140
Fuel oil 1.4286 0.6185

Source: 2006 IPCC Guidelines for National Greenhouse Gas Inventories.

Table 2. Potential influences on logistics carbon emissions.

Dimension Factor Abbreviation Unit Reference

Economy (E)
Gross Domestic product GDP CNY 108 [7]

Fixed asset investment in logistics LFI CNY 108 [6]
Value added to the logistics LVA CNY 108 [10]

Population (P) Total population at the end of the year P person [11]
Urbanization rate UR percent [11]

Energy consumption
(EC) Total energy consumption of the logistics E million tons [6,28]

Energy intensity (EI)
Energy consumption per unit of GDP EIG tons of standard

coal/CNY 104 [11]

Energy consumption per unit of value
added in the logistics industry EIL tons of standard

coal/CNY 104 This study

Energy consumption per unit turnover
of goods EIT

tons of standard
coal/104 tons

kilometers
[42]

Energy structure (ES)

The percentage of fossil fuels in total
energy consumption FR percent [29]

The percentage of oil in total
energy consumption OR percent [29]

The percentage of clean energy in total
energy consumption (natural gas, electricity,

and heat)
CR percent [26]

Transportation
structure (TS)

The percentage of railway freight volume in
total freight volume RFR percent [12,43]

The percentage of railway freight turnover
in total freight turnover RTR percent This study

Source: Authors.

The normalized raw data are used as input to the RF to generate several decision times
to calculate the importance of the 14 variables. To ensure the stability and reliability of
the measurement results, the importance degree of each variable of the 40 outputs was
averaged after 40 consecutive runs through the RF, and the results are shown in Figure 3.

To balance the comprehensiveness of variable dimensions with the importance of
individual variables, this study screens the key influences through the following two
steps: First, variables with an importance level greater than or equal to 0.3 are retained.
Second, among the retained variables, the optimal variables for each dimension are selected
according to the dimensions to which the variables belong in Table 2. Six key variables
were finally screened, namely LFI, P, E, EIL, OR, and RTR. Their importance degrees are
shown in Table 3.

3.4. Model Test Results

To test the accuracy of the WOA-RBF prediction model, this study selects 80% of the
samples (1980–2013) as the training set and 20% of the samples (2014–2022) as the test set
to predict the total carbon emissions from China’s logistics industry. The WOA algorithm
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is used to optimize the expansion speed parameter of RBF, the number of whale searches
in WOA is set to 5, the maximum number of iterations is set to 40, and MATLAB 2023a
is used to implement the general steps of WOA-RBF. At the same time, the optimized
RBF algorithm is compared with the particle swarm algorithm optimized under the back
propagation neural network (PSO-BPNN), support vector machine (SVM), and extreme
learning machine (ELM) tuned to the optimal parameter. The comparison of the carbon
emission prediction results in the period 2014–2022 with the actual values is displayed in
Figure 4, and the results of the calculation of the error indicators are displayed in Table 4.
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Table 3. Importance of key influencing factors.

Importance Degree (Note: Retain Three Decimal Places)

LFI P E EIL OR RTR

0.421 0.415 0.410 0.302 0.329 0.382

Table 4. Calculation of error metrics for each algorithm.

Error Index PSO-BPNN ELM SVM WOA-RBF

R2 0.921 0.980 0.989 0.999
RMSE 11.325 6.003 4.528 1.397

MAPE, % 1.266 0.685 0.466 0.138
MAE 10.024 5.436 3.660 1.101

Source: Authors.

As demonstrated by Table 4, the R2 of the carbon emission forecasts for the logistics
sector varies between 0.921 and 0.999. R2 is the most commonly used metric when dis-
cussing the degree of success of the forecast results about the actual data, and it gives an
idea of how the forecast curve follows the forecast curve of the actual data [24]. The values
of R2 show that all four algorithms have values greater than 0.9, which is a strong fit overall.
The remaining three indicators, such as RMSE, MAPE, and MAE, are also important metrics
in the prediction process, all of which indicate that the lower the value of the indicator,
the higher the prediction accuracy. Based on this, by comparing multiple error indicators,
WOA-RBF has the smallest error in doing carbon emission prediction in the logistics indus-
try, and the prediction accuracy of each algorithm is ranked as WOA-RBF > SVM > ELM
> PSO-BPNN. PSO-BPNN has the worst prediction performance. The main reason may
be that the prediction result of BPNN relies on the repeated training of large sample data,
and the number of hidden layers affects the prediction result, so it is easy to fall into the
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local optimal solution even if the parameters are optimized by the PSO algorithm, which
affects the prediction result. Overall, the RBF neural network is more advantageous than
SVM, ELM, and PSO-BPNN in terms of approximation ability and learning speed, and it
can achieve better prediction results even in the face of datasets in terms of years and with
smaller sample data sizes. Therefore, the hybrid WOA-RBF algorithm is better suited for
carbon emission prediction in China’s logistics industry, provided that the parameters are
adjusted using the whale optimization technique.
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4. Scenario Analyses for Forecasting Carbon Emissions
4.1. Scenario Setting

This study sets the future scenarios into a baseline scenario, a policy regulation sce-
nario, and a technological breakthrough scenario based on the distributional characteristics,
change trends, and emission reduction potentials of the key influencing factors of carbon
emissions in the past. It then uses Monte Carlo simulation to explore the evolutionary
trends of the influencing factors from 2023 to 2035 in order to predict the trend of car-
bon emissions in China’s logistics industry and determine a reasonable carbon emission
reduction path.

According to the STIRPAT theory, one of the major variables influencing carbon
emissions is population. According to the data in the “Forecast of Medium- and Long-Term
Trends in China’s Population Changes (2021–2050)”, the country’s population will peak in
2022 and then slowly decline, which is in high agreement with the trend of actual population
data recorded by the National Bureau of Statistics (NBS). According to predictions, China’s
population will fall to 1.382 billion in 2035, with a −0.16 percent yearly change compared
to 2022. As a result, the median value of the average annual rate of population change is
anticipated to be −0.16 percent for the three scenarios, with the minimum and maximum
values established by floating up and down by 0.05 percentage points from the median
value. The future rates of change concerning demographic factors are displayed in Table 5.

Table 5. Annual rates of change in demographic factors (unit: %).

Variable
2023–2035

Min Middle Max

P −0.21 −0.16 −0.11
Source: Authors.
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(1) Baseline scenario (BAU)

Based on past industrial development characteristics, the baseline scenario assumes
that the trend of carbon emissions follows the “inertia characteristics” of industrial devel-
opment and that future economic conditions, technological advancements, policy direction,
and other factors have not changed [44]. Existing research indicates that the presence of
“inertia characteristics” in economic and industrial development makes the baseline sce-
nario highly relevant [37], especially given that China’s economic development trend since
the beginning of the 21st century has had a profound impact on economic and industrial
development in the coming period.

This study combines the research of Lin and Ouyang (2014) [44] and the cyclical
features of China’s “Five-Year Plan” for development to set the minimum, median, and
maximum values of the potential annual average rates of change of each influential factor
in the baseline scenario for the period 2023–2035. The three values are set concerning
the average annual rates of change in 2001–2005, 2006–2010, 2011–2015, and 2016–2020.
Specifically, the minimum and maximum values correspond to the minimum and maximum
of the average annual rates of change in the past four cycles, respectively. For the two
average annual rates of change in the middle, the average annual rate of change closer
to the current period is selected as the middle value, considering that the closer the time
between the cycles, the less different the future situation will be. The rates of change of the
factors for the baseline scenario are displayed in Table 6.

Table 6. Annual rates of change of the impact factors in the baseline scenario (unit: %).

Variable
2023–2035

Min Middle Max

LFI 5.44 14.84 25.46
E 0.58 6.71 13.42

EIL −4.45 −1.85 1.61
OR −1.37 −0.44 0.44
RTR −8.30 −5.76 3.99

Source: Authors.

(2) Policy Regulation Scenarios (PR)

As a result of the “dual-carbon” goal, the government will implement a series of policy
initiatives to hasten the green and low-carbon transformation of the logistics industry. The
State Council’s 2021 publication, “The Action Plan for Carbon Dioxide Peaking Before
2030”, states that in order to reach the goal of peak carbon dioxide emissions, the logistics
industry must boost the share of renewable energy consumption and enhance energy
efficiency; meanwhile, the State Council’s 2022 publication, “14th Five-Year Plan for the
Development of a Modern Comprehensive Transportation System” and “14th Five-Year
Plan for the Development of Modern Logistics”, both propose initiatives such as developing
multimodal transport and increasing the percentage of rail and waterway transport. Under
the policy regulation scenario, the rates of change of each factor based on the historical
data of the National Bureau of Statistics and relevant policies are displayed in Table 7.

Table 7. Annual rates of change of the impact factors in the policy regulation scenarios (unit: %).

Variable
2023–2025 2026–2030 2031–2035

Min Middle Max Min Middle Max Min Middle Max

LFI 4.00 5.00 6.00 3.50 4.50 5.50 3.00 4.00 5.00
E 3.00 4.00 5.00 2.00 3.00 4.00 1.00 2.00 3.00

EIL −3.92 −2.92 −1.92 −4.42 −3.42 −2.42 −4.92 −3.92 −2.92
OR −1.60 −1.40 −1.20 −1.80 −1.60 −1.40 −2.00 −1.80 −1.60
RTR 4.30 4.80 5.30 4.50 5.00 5.50 4.70 5.20 5.70

Source: Authors.
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In terms of the economy, to achieve the “carbon peak” goal of the logistics industry as
soon as possible, the government will take more measures to curb excessive investment
and improve investment efficiency. Considering the average annual growth of fixed asset
investment in the logistics industry since the “13th Five-Year Plan” and the resumption
of work and production after the liberalization of the epidemic in China at the end of
2022, fixed asset investment will maintain steady growth in the next few years. The fixed
asset investment growth rate is expected to remain at around 5% per year on average
between 2023 and 2025. The growth rate is expected to decrease during the “15th Five-Year
Plan” and “16th Five-Year Plan” periods. In summary, the logistics industry expects the
annual average change rate of fixed assets investment (LFI) to be 5% (2023–2025), 4.5%
(2026–2030), and 4% (2031–2035). This value is taken as the middle value, and the minimum
and maximum values are set by floating up and down by one percentage point.

In terms of energy consumption, according to the “Energy Supply and Consumption
Revolution Strategy (2016–2030)”, the overall energy consumption should be kept under
6 billion tons of standard coal by 2030. In 2021, the logistics industry consumed 8.4%
of the nation’s energy, and by 2030, that percentage is predicted to rise to almost 12%.
This means that the logistics industry’s overall energy consumption should be kept under
control at 720 million tons, which calls for a 4% annual growth rate. Therefore, the average
annual change rate of energy consumption (E) in the logistics industry will decrease
by 0.5 percentage points, with median values of 4% (2023–2025), 3% (2026–2030), and
2% (2031–2035). Correspondingly, the minimum and maximum values will be set by a
fluctuation of one percentage point.

In terms of energy intensity, the “14th Five-Year Plan for Modern Energy System”
proposes a cumulative decrease of 13.5% in energy consumption per unit of GDP by 2025,
which can be inferred as an average annual decrease of 2.92% during the period 2021–2025.
Due to the similar downward trend between energy consumption per unit of value added
in the logistics industry and energy consumption per unit of GDP and considering the
continuous maturity of industries such as smart logistics and new energy technologies
driven by future policies, the growth rate of value added in logistics will accelerate year
by year, while the energy consumption growth in the logistics industry will slow down
year by year. Therefore, it is inferred that the annual average change in energy intensity
during the periods 2026–2030 and 2031–2035 will further increase. Therefore, it is expected
that the average annual change rate of energy consumption per unit of value added (EIL)
in the logistics industry will be −2.92% (2023–2025), −3.92% (2026–2030), and −4.92%
(2031–2035), with corresponding fluctuations of one percentage point to set the minimum
and maximum values.

In terms of transportation structure, the “14th Five-Year Plan for the Development of
Comprehensive Transportation Services” proposes to increase the percentage of railway
freight turnover to 17% by 2025, compared to 15.5% in 2022. To achieve the 2025 goal,
the average annual change rate of the percentage of railway freight turnover from 2023 to
2025 is at least 4.8%. At the same time, with the maturity of technologies such as high-
speed rail express and the continuous promotion of multimodal transportation policies, the
percentage of railway freight turnover will continue to accelerate. Therefore, this article
predicts that the average annual change rates of the percentage of railway freight turnover
(RTR) are 4.8%, 5%, and 5.2%, with a fluctuation of 0.5 percentage points to set the minimum
and maximum values.

(3) Technology Breakthrough Scenario (TB)

Technological innovation and progress are necessary pathways for energy conservation
and emission reduction, which can effectively adjust the energy structure of the logistics
industry, increase the percentage of nonfossil energy use, optimize the transportation
structure of the logistics industry, increase the percentage of railway, waterway, and other
transportation, and carry out multimodal transportation, thus achieving the goal of “energy
conservation and emission reduction” in the logistics industry. “14th Five-Year Plan for the
Development of Modern Logistics” proposes to promote the development of green logistics,
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including strengthening the application of new energy equipment, using circular packaging,
accelerating the promotion of standardized logistics turnover boxes, establishing reverse
logistics information systems, and other technical measures, relying on technological
innovation to achieve the upgrading and upgrading of the logistics industry. At the same
time, in the scenario of a technological breakthrough, the focus of investment in fixed assets
in the logistics industry has gradually shifted from traditional productive investment to
investment in energy-saving and emission-reduction technologies such as green packaging
and new energy logistics vehicles, and fixed asset investment still maintains steady growth.
Therefore, compared with the policy regulation scenario, the change rate of LFI in the
logistics industry remains unchanged, and the relevant parameters of E, OR, EIL, and RTR
in the logistics industry are adjusted. The change rates of various factors in the technology
breakthrough scenario are displayed in Table 8.

Table 8. Annual rates of change of the impact factors in the technology breakthrough scenarios
(unit: %).

Variable
2023–2025 2026–2030 2031–2035

Min Middle Max Min Middle Max Min Middle Max

LFI 4.00 5.00 6.00 3.50 4.50 5.50 3.00 4.00 5.00
E 2.00 3.00 4.00 0.50 1.50 2.50 −1.00 0.00 1.00

EIL −3.92 −2.92 −1.92 −4.92 −3.92 −2.92 −5.92 −4.92 −3.92
OR −1.60 −1.40 −1.20 −2.00 −1.80 −1.60 −2.40 −2.20 −2.00
RTR 4.30 4.80 5.30 4.70 5.20 5.70 5.10 5.60 6.10

Source: Authors.

4.2. Monte Carlo Simulation Ideas

Through Monte Carlo simulation, the range of values and probable values of each
influencing factor from 2023 to 2035 under various scenarios are determined based on the
change rates of each factor in the three scenarios mentioned above and their respective
occurrence probabilities. This article establishes the probability distribution relationship
between the minimum, median, and maximum potential change rates of each variable
through a triangular distribution and uses MATLAB 2023a to simulate 100,000 poten-
tial change rates in benchmark scenarios, policy regulation scenarios, and technological
breakthrough scenarios, thereby presenting the value range and most likely values of each
variable. The evolution trend of various influencing factors is displayed in Figure 5.
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5. Results of Carbon Emissions in the Logistics Industry Forecasting

Through scenario analysis and Monte Carlo simulation, this study obtained the range
of the predicted values of each influential factor from 2023 to 2035 and used the most
likely values of each variable and historical data as inputs to the WOA-RBF neural network
model to predict the carbon emissions of China’s logistics industry from 2023 to 2035 under
the baseline scenario (BAU), the policy regulation scenario (PR), and the technological
breakthrough scenario (TB). The results of the carbon emission predictions are displayed in
Figure 6 and Table 9.
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Table 9. Forecast results for 2025, 2030, and 2035 under BAU, PR, and TB conditions.

Year
TCE (Unit: Million Tons)

BAU PR TB

2025 1005.56 932.26 906.09
2030 1344.23 1076.93 971.03
2035 1715.22 1183.11 965.30

Source: Authors.

According to the BAU scenario, China’s logistics industry would emit 1005.56 million
tons of total carbon emissions (TCE) in 2025, 1344.23 million tons in 2030, and 1715.22 mil-
lion tons in 2035. The average annual growth rate during the 2021–2025, 2026–2030, and
2031–3035 periods is estimated to be 5.09%, 6.09%, and 4.78%. During the period 2016–2020,
carbon emissions from the logistics industry achieved negative growth for two consecutive
years in 2019 and 2020 and gradually rebounded in 2021 and 2022. However, based on
the baseline scenario, if the logistics industry continues to follow its previous extensive
development model, this type of emission reduction will not be sustainable in the absence
of more legislative involvement and more cutting-edge technology breakthroughs. With
the orderly resumption of work and production in the post-epidemic era, as well as the
expanding scale of the domestic logistics industry and the increasing number of consump-
tion scenarios, the logistics industry in this scenario will result in even larger-scale carbon
emissions. Therefore, government policy intervention and regulation are crucial for the
logistics industry to achieve the goal of “peak carbon emissions”.

According to the PR scenario, the TCE is 932.26 million tons in 2025, 1076.93 million
tons in 2030, and 1183.11 million tons in 2035, compared with the BAU scenario, which
achieves emission reductions of 73.3 million tons, 267.3 million tons, and 532.11 million
tons, respectively, with emission reductions of about 7.29%, 19.88%, and 31.02%, with
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a significant decrease. Meanwhile, the average annual growth rates of 3.12%, 2.93%,
and 1.91% during the 2021–2025, 2026–2030, and 2031–3035 periods are expected to slow
down compared with the baseline scenario. The average annual growth rates during
the “14th Five-Year Plan”, the “15th Five-Year Plan”, and the “16th Five-Year Plan” are
3.12 percent, 2.93 percent, and 1.91 percent, respectively, which are also slower than the
base scenario. This shows that if the series of low-carbon policies and corresponding
goals introduced by the government are strictly implemented, the asset investment, energy
structure, and transport structure of the traditional logistics industry will be optimized, and
the construction of green logistics and low-carbon supply chain systems will be accelerated,
resulting in a significant reduction in energy consumption and overall carbon emissions in
the logistics industry.

According to the TB scenario, the TCE are 906.09 million tons in 2025, 971.03 million
tons in 2030, and 965.3 million tons in 2035, compared with the BAU scenario, which
achieves emission reductions of 26.17 million tons, 105.9 million tons, and 217.81 million
tons, respectively, with emission reductions of about 2.81%, 9.83%, and 18.41%; and com-
pared with the BAU scenario, which achieves emission reductions of 99.47 million tons,
373.2 million tons, and 749.92 million tons, with emission reductions of about 9.89%, 27.76%,
and 43.72%, and the emission reduction effect is further increased. Unlike the BAU and PR
scenarios, the TCE predicted in the TB scenario will reach an inflection point in 2030 and
maintain a downward trend in the following years. This indicates that with the increasing
popularity of energy-saving logistics equipment such as new energy vehicles, the pro-
motion of recycled logistics packaging, the improvement of green logistics standards, the
maturity of multimodal transport equipment and business models, as well as the gradual di-
versification of logistics information systems and carbon emission monitoring mechanisms,
the logistics industry is most likely to achieve the goal of “Peak Carbon” under the dual
conditions of guidance from national policy and the driving force of logistics innovation.

6. Discussions

In order to represent the future development trend of the logistics industry and the
state of emission reduction, the purpose of this study is to examine the possible rate
of change of numerous major elements impacting carbon emissions in China’s logistics
industry under three very different scenarios:

(1) In the baseline scenario, the logistics industry continues to follow the traditional
“investment-heavy, service-light” model, with a lack of policy guidance and energy-saving
technology, as well as severe homogeneous competition and duplication of investment
by logistics enterprises, making it difficult to meet the rapidly increasing demand for
new retailing, cold chain, and bulk commodity consolidation in the post-pandemic era.
At the same time, in this scenario, the logistics industry always adheres to an energy
structure based mostly on fossil fuels like oil and a transport structure based mostly on
road transportation, which will inevitably result in resource waste and environmental
pollution, resulting in higher carbon emissions.

(2) In the policy regulation scenario, the government establishes several emission
reduction goals and proposes and implements initiatives such as limiting excessive in-
vestment, increasing the percentage of non-fossil energy use, and implementing multi-
modal transportation such as “public-to-water transfer”, “public-to-rail transfer”, and
“public-to-rail-to-water transfer”. “Multimodal transport” and other initiatives in existing
energy-saving technology will optimize the energy structure of the logistics industry and
the transport structure, reduce logistics energy consumption and energy intensity, and
achieve a more significant effect of emission reductions. However, many of the existing
energy-saving technologies are not yet mature, the green logistics standard system is not
yet perfect, and not forming large-scale energy-saving technologies in the short term may
increase the cost pressure on the logistics industry. In addition, China’s logistics enterprises
are “small, scattered, and chaotic” in distribution, with large regional development gaps,
especially for small and medium-sized enterprises (SMEs) and central and western regions
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that can hardly bear the loss of economic costs brought about by low-carbon transformation,
which also inhibits the promotion of energy-saving technologies among these enterprises
and regions. Therefore, it is difficult for China’s logistics industry to achieve the goal of
reaching its peak under the scenario of policy regulation.

(3) In the scenario of technological breakthroughs, the Chinese government has always
followed the policy guidelines of energy conservation, emission reduction, and logistics
development planning, gradually integrating digital technologies such as the Internet of
Things (IoT), big data, artificial intelligence, and other digital technologies into the logistics
industry and deeply plowing into the emerging fields of smart logistics and green logis-
tics. Simultaneously, the government, while suppressing traditional production-oriented
investment, gradually shifted the focus of investment to intelligent platforms, new energy
equipment, green packaging, and other areas, which will further improve the logistics
industry’s investment efficiency, accelerate the transformation of low-carbon logistics tech-
nology results, and facilitate equipment iteration to better meet the development needs of
low-carbon logistics. In addition, technological breakthroughs can accelerate the large-scale
production of software and hardware such as intelligent platforms, new energy equipment,
green packaging, etc., reduce application costs, help many small and medium-sized logis-
tics enterprises gradually achieve intensive digital and low-carbon transformation, and
promote the popularity of green logistics technology in the central and western regions of
China through the spillover effect of digital technology to optimize the energy structure of
the logistics industry and the transport structure to a greater extent and lower the energy
intensity, thus bringing more significant emission reduction. Therefore, under the scenario
of technological breakthroughs, China’s logistics industry has the potential to reach “peak
carbon” by 2030.

7. Conclusions and Policy Implications
7.1. Conclusions

This study proposes an RF-WOA-RBF prediction model to accurately predict the
future trend of carbon emissions in China’s logistics industry and to provide a potential
reference for low-carbon research in other areas under the “dual-carbon” context. The main
findings of this study are as follows:

(1) Adopting RF for feature selection can effectively screen out key factors, reduce
data redundancy, and improve forecasting efficiency and accuracy. It is also concluded
that logistics fixed asset investment (LFI), population (P), total energy consumption of the
logistics industry (E), energy consumption per unit of logistics value added (EIL), share
of oil consumption (OR), and share of railway freight turnover (RTR) are the key factors
affecting the carbon emissions of the logistics industry.

(2) Comparing with PSO-BPNN, ELM, and SVM algorithms, WOA-RBF has a lower error-
index value and a higher prediction accuracy of carbon emissions in the logistics business.

(3) The accuracy of carbon emissions prediction under the WOA-RBF model can
be increased by using Monte Carlo simulation to effectively reflect the uncertainty of
future changes in the key factors affecting carbon emissions in the logistics industry and
to determine the range of values and most likely values of each variable’s potential rate
of change.

(4) It is difficult for China’s logistics industry to achieve the goal of a “carbon peak” in
2030 under the BAU and PR scenarios, while it is most likely to achieve the goal under the
TB scenario. This also shows that energy savings and emission reduction in the logistics
industry cannot be achieved without the dual incentives of national policy regulation and
technological innovation.

In addition, this study still has some limitations: First, the selection of factors influenc-
ing the logistics industry’s carbon emissions is mainly based on the econometric method of
STIRPAT theory, and in the future, we can consider combining the factor decomposition
method of LMDI and GDIM with machine learning algorithms for the feature selection
of variables. Secondly, logistics policy and digital transformation, as important factors
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affecting carbon emissions, have not yet been considered in this study due to the lack of
good quantitative mechanisms and data support, which can further expand the research
on these areas in the future.

7.2. Policy Implications

(1) Promoting the low-carbon transformation of logistics and building a green logistics
service system

The government should strengthen the layout and construction of infrastructure such
as freight vehicle charging piles, accelerate the application of new energy batteries, hydro-
gen energy, natural gas, advanced biological liquid materials, etc. in the field of power
and energy storage, and promote the application of new energy vehicles, forklifts, etc.
in the field of transportation and warehousing. At the same time, we are accelerating
the standardization and construction of green logistics packaging, popularizing circular
packaging, reducing secondary packaging and excessive packaging in logistics activities,
and promoting the research and development process of degradable and high-performance
packaging. Furthermore, establishing a mature reverse logistics service system, cultivating
a group of professional reverse logistics service enterprises around the national logistics
hub, and carrying out circular utilization of resources such as product packaging, logistics
equipment, new energy batteries, and materials. In addition, relying on third-party institu-
tions such as industry associations to carry out green logistics carbon trading markets and
monitoring the carbon footprint and emission reduction of logistics enterprises in real-time
through public information platforms promotes the contract energy management model,
thereby establishing a low-carbon management concept for enterprises.

(2) Strengthening the digital empowerment of logistics and carrying out emerging for-
mats of smart logistics

The government should closely follow the development trend of low-carbon green
logistics and fully play the role of policy guidance, legal constraints, standard specifica-
tions, and process supervision in the process of “new infrastructure” strategy and modern
circulation system construction. While promoting internet construction and intelligent man-
ufacturing, it should work with enterprises to apply the existing information infrastructure
achievements to strengthen the layout of freight hub facilities, enhance the intensification
and digitization level of logistics nodes, build a moderately high logistics resource-sharing
platform, and other aspects that can better integrate technologies such as the Internet of
Things, big data, and cloud computing with the logistics industry. In addition, strengthen-
ing the construction of a green logistics public information platform and jointly establishing
a carbon emission monitoring and management system with leading enterprises will pro-
vide services such as carbon disclosure, quota trial calculation, carbon account management,
and green finance to logistics enterprises, especially small and micro enterprises.

(3) Accelerating the diversified transformation of transportation and creating a competi-
tive advantage in multimodal transportation

The government should increase efforts to control pollution from large diesel trucks,
adjust transportation structures, and increase the percentage of railways and waterways.
Firstly, promoting the “public to rail or water” transfer of bulk materials, encouraging grain,
mining, and other related enterprises to use container transportation, and using railway
and waterway transportation for medium to long distances, while new energy vehicles and
ships are used for short distance transportation. Secondly, accelerating the research and
application of standardized container, semi-trailer, pallet, and other transportation units,
as well as new energy-heavy trucks, transport ships, aircraft, charging stations, and other
technical equipment, and building a green and intelligent port and station hub. Thirdly,
promoting information sharing among various intermodal transportation entities, that is,
strengthening the integration of information systems and data sharing among departments
such as railways, ports, shipping companies, and civil aviation, including information
on cargo loading and unloading, vehicle arrival and departure times, and ship arrival
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and departure times, and carrying out joint scheduling of logistics operations to achieve
monitoring and traceability throughout the transportation process.
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