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Abstract: The SDGS repeatedly emphasizes the importance of reducing greenhouse gas emissions
such as carbon dioxide. The strategic utilization of straw resources to curtail open-air burning not
only epitomizes optimal resource deployment but also constitutes a significant stride in environ-
mental preservation and sustainable development. Globally, the imperative of this challenge is
increasingly recognized, prompting nations to enhance straw resource utilization technologies, devise
regional management strategies, and extend requisite policy support. Regional straw utilization
encapsulates a comprehensive concept involving an array of stakeholders including governments,
farmers, corporations, brokers, and rural cooperatives, with each one of these uniquely contributing
to a multifaceted network that is influenced by their respective resource utilization intentions. This
heterogeneity, coupled with the diverse roles of these stakeholders, renders the identification of
the pivotal participants and their specific functions within the intricate network. To navigate this
complexity, this study employed text analysis and social network analysis, uncovering 30 robust
associative rules within this domain. Our findings elucidate that the stakeholder network in regional
straw resource utilization exhibits characteristics akin to the NW small-world network model. The
key network entities identified include farmers, corporations, governments, and rural cooperatives.
Furthermore, the study systematically categorizes the principal entities and elucidates the dynamics
of this multi-stakeholder network. This research delineates four developmental models that are
pertinent to regional straw resource utilization, which is a framework that is instrumental in pinpoint-
ing the accountable parties and optimizing the overarching benefits derived from these resources.
The significance of this research lies not only in showcasing the potential of straw resources for
environmental conservation but also in underscoring the importance of collaborative strategies and
network optimization in order to achieve sustainable development goals.

Keywords: sustainable regional straw utilization; complex network; associate rule; waste management

1. Introduction

As global warming intensifies, greenhouse gas emissions have become a focal point
of international concern. Carbon dioxide, a primary greenhouse gas, plays a significant
role in climate change, and its emission control is crucial. The reduction of CO2 emis-
sions from different sources is clearly highlighted in the sustainable development goals [1].
In agriculture, straw burning not only causes air pollution but is also a major source of
greenhouse gas emissions. In 2016, straw burning emerged as the third-largest source of
agricultural greenhouse gas emissions [2]. Hence, it is imperative to implement efficacious
straw treatment methods that circumvent open-air burning, thereby ameliorating rural
environmental quality and curtailing GHG emissions. In response to the biological proper-
ties of crop straw, diverse global strategies for straw valorization have emerged. Germany
concentrates on integrating crop straw use into plant breeding systems, while Denmark
harnesses straw for direct combustion in power generation [3]. Furthermore, nations like
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the United States and Brazil, as well as the European Union, are intensifying their reliance
on biofuels within their energy portfolios [4]. China, which has the highest volume of straw
resources, reported a theoretical straw resource of 977 million tons in 2022, with rice and
wheat straws accounting for 220 and 175 million tons, respectively [5]. The country has
made notable strides in straw resource utilization, achieving a comprehensive utilization
volume of 662 million tons. However, the journey towards the efficient utilization of straw
resources in China is long and challenging.

The concept of regional straw resource utilization encompasses a complex network
of multiple stakeholders including farmers (FA), companies (COM), governments (GO),
brokers (BR), and rural cooperatives (RC) [6,7]. In rural China, the decreasing agricul-
tural workforce due to urbanization and other factors poses challenges to straw resource
supply [8]. Additionally, the weak industrial base in rural areas hinders the growth and
development of companies focused on straw resource utilization [9]. Although the Chinese
government is gradually promoting county-level pilot policies, these external stimuli do
not adequately address the marketization challenges in straw resource utilization. Other
crucial but often overlooked entities include brokers, rural cooperatives, and research
institutions, whose roles are vital for fostering innovation systems among farmers and
comprehensive straw utilization [10].

Identifying the core entities and their interrelations within this network is essential for
advancing straw resource utilization from a stakeholder perspective, thereby contributing
to sustainable regional agricultural development and ecological balance. This study aims
to define the multi-stakeholder cooperation network in regional straw resource utilization
as a complex network. By employing the association rule mining and text mining methods,
we analyze the topological structure and characteristics of the multi-stakeholder network.
This approach will help identify the core entities in regional straw resource utilization and
their interrelations, thereby offering policy recommendations from the perspective of these
core entities to enhance the level of straw resource utilization in the region.

2. Literature Review

Regional straw resource utilization is inextricably linked to the participation and drive
of various stakeholders. This multi-faceted network includes governments, utilization
companies, farmers, intermediaries, rural cooperatives, and financing institutions. The
interests of these entities interconnect to form a complex and vast network [11]. Research
on these entities is pivotal in promoting straw resource utilization from a responsibility
standpoint. Studies on regional straw resource utilization entities encompass two areas
as follows: individual entity research and inter-entity interaction research. Focusing on
individual entities, Quan et al. employed a multiple regression analysis to highlight factors
like straw subsidies, the cost-benefit of straw utilization, awareness, technology, family farm
income, and farm size as significant influencers of farmers’ straw utilization and suggested
enhancing farmers’ comprehensive straw utilization by improving their understanding of
crop straw and leveraging the exemplary role of village cadres [12]. Guo et al. constructed
a Structural Equation Model (SEM) based on the Theory of Planned Behavior (TPB) to
investigate the main driving factors of farmers’ straw resource utilization behavior in Jilin
Province. The findings revealed that the farmers’ behavioral attitudes and subjective norms
directly influence their actual behavior through behavioral intentions. Notably, subjective
norms and moral obligation are critical in influencing the willingness to utilize straw
resources in Jilin Province [13]. For an example in Thailand, Sereenonchai and Arunrat
employed integrated behavioral theories such as TPB, Value–Belief–Norm (VBN), and the
Health Belief Model (HBM). They concluded that enhancing group-level action knowledge
and self-efficacy, coupled with self-awareness and commitment, can effectively promote
the non-burning management of straw and stubble [14]. Li et al. revealed that farmers’
decisions to return straw to fields are subject to conformity effects, which are influenced by
village cadres, neighbors, relatives, and environmental effect perceptions [15]. Overall, the
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factors influencing farmers’ willingness for resourceful straw utilization are multifaceted,
encompassing psychological, individual, and external environmental factors.

Extensive research on straw resource utilization companies primarily revolves around
analyses of operational costs and benefits. Jia notes that the assets of most Chinese straw re-
source utilization companies are generally below CNY 5 million, indicating a trend towards
smaller enterprise scales and lower levels of operational efficiency [16]. Shen et al. observe
that companies, as key market players in straw transactions, often engage in contracts with
farmers, villages, or towns to organize centralized mechanical harvesting, bundling, and
the transportation of straw. However, the high costs of raw material procurement and trans-
portation lead to lower profit margins, thereby posing challenges to developing scalable
commercial models for straw utilization [17]. Kaur et al. suggest that using straw as a raw
material in the pulp and paper industry presents a dual-benefit choice for both farmers
and companies [18]. Moreover, Sun and Hou argue that internal competition for straw
raw materials could decrease the likelihood of coexistence in the biomass industry [19].
Therefore, the escalating costs of raw materials and logistics are detrimental to companies’
large-scale utilization of straw, impeding the development of a straw economy.

Investigating the role of government in regional straw resource utilization, Del Valle
et al. emphasized the government’s crucial influence through setting straw utilization
goals, regulating the straw market, and implementing broader agricultural policies. These
initiatives are pivotal in fostering farmers’ active engagement in straw utilization [20]. Con-
cerning the policy content that the government should adopt, Bentsen et al. explored policy
measures and found that Denmark’s incentive policies have resulted in more advanced
straw energy utilization compared with that of Switzerland [21]. Wang et al. analyzed the
current comprehensive utilization policies, focusing on aspects such as technical training,
project subsidies, and the development of collection, storage, and transportation systems.
They point out an over-reliance on environmental policies and a lack of sufficient supply
and demand-oriented policies [22]. Additionally, Wang et al. examined the fiscal support
policies for various stakeholders in Jilin Province’s straw utilization industry chain, includ-
ing subsidies, tax and fee concessions, and economic rewards. They suggest intensifying
financial support for the collection, storage, and transportation phases and developing
fiscal policies to support consumption [23].

Beyond government initiatives, entities such as banks, rural cooperatives, and brokers
play a significant role in the regional utilization of straw resources. In Japan, expenses
beyond subsidies for the acquisition of agricultural return-to-field machinery are addressed
through low-interest loans provided by governments or banks. Furthermore, the govern-
ment leverages farmers’ associations to offer farmers a suite of socialized services including
credit for agricultural machinery, technical training, and maintenance [24]. The key partici-
pants in the straw logistic network encompass farmers, cooperatives, brokers, companies,
and the government [25]. Wu et al. highlight the pivotal role of intermediaries in China’s
“Farmer-Middleman-Enterprise” straw supply model [26]. These middlemen serve as
crucial connectors between farmers and factories, facilitating the entire straw supply chain.
Their responsibilities extend from straw collection, storage, and transportation to pro-
cessing. This comprehensive approach by middlemen ensures a seamless and efficient
flow in the straw supply chain, bridging the gap between rural agricultural practices and
industrial demands. Straw brokers, often farmers themselves, are driven by economic
interests to join the straw supply chain, yet they frequently lack standardized training
and management [25]. Research institutions and agricultural management departments
develop high-efficiency technologies for the utilization of agricultural waste, achieving
technological innovations and breakthroughs in the resource utilization of agricultural
waste [26]. The involvement of agricultural research institutions, universities, and other
societal entities in technical training for farmers significantly fosters the comprehensive
utilization of straw [27]. Government agencies can amplify the adoption of mechanized
straw utilization through media-driven public opinion and by creating an environment
rich in promotion and awareness [28]. While the critical roles of these entities in the straw
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utilization process are widely recognized in both the domestic and international literature,
research focusing on them remains limited.

Regional straw resource utilization forms a multifaceted system, where its effective
implementation is not dependent on a singular or a handful of actors but rather requires
a concerted effort from all the relevant stakeholders. Bhattacharyya et al. reviewed the
specific challenges in India and the subsequent initiative taken by the government and
related stakeholders [29]. Del Valle et al. demonstrated the interest relationship among
different stakeholders of straw utilization through a qualitative investigation [20]. As Zheng
and Shen suggest, developing a synergistic system for comprehensive straw utilization
hinges on the alignment of objectives among various participating subjects [30]. Yet, the
present scenario paints a less optimistic picture. By evaluating the actual benefits accrued
from recent applications and promotions, it is evident that there is marked reluctance
among market participants and farmers exhibiting a notable “negative psychology”. This
has led to a situation characterized by the governmental enthusiasm of “hot” in stark
contrast to the tepid response from the involved subjects, which is “cold” [31].

It is evident that there exists a misalignment in the objectives among different entities
engaged in straw resource utilization, which is marked by inherent contradictions and
internal game conflicts [32]. To address these issues, current research delves into the behav-
ioral interactions between key players, employing game theory to dissect the strategies and
internal discord. Specifically, by focusing on the “government-enterprise-farmers” nexus in
straw resource management, Zhang et al. developed a tripartite evolutionary game model
involving the government, farmers, and straw power generation companies [33]. Similarly,
Wang et al. formulated an evolutionary game model for the development of straw baling
service stations. They highlighted the crucial role of government incentives in this tripartite
strategy and provided a quantitative analysis of the profit distribution limits [34].

In exploring the intricate dynamics of “enterprise-farmer-middleman” within the
realm of straw resource utilization, Wang et al. introduced both decentralized and cen-
tralized decision models to capture the nuanced interactions within a Stackelberg game
framework involving farmers, companies, and brokers [35]. Furthermore, Wen and Zhang
advanced this understanding by constructing a sequential game theory model specific
to China’s straw supply chain [36]. Complementing these studies, Wang and Cai advo-
cated for leveraging professional cooperatives to orchestrate a robust system for straw
collection, storage, and transportation, thereby integrating the roles of farmers, brokers,
and others [37]. While these investigations have been pivotal in dissecting the functional
aspects of straw utilization and logistics, a comprehensive regional approach necessitates
both identifying and understanding the core entities and their interrelationships. Currently,
there is a noticeable gap in research focusing on the identification of these pivotal subjects
and the intricate web of interactions that define regional straw resource utilization.

The architecture of a network in a complex system is a critical determinant of its
overall operational efficiency. To effectively map out the interactions within such a system,
it is imperative to identify the core entities and unravel the intricate web of relationships
between them. With the evolution of complex network theories, an increasing number of
researchers are applying these principles to examine participant behaviors in complex sys-
tems [38,39]. Building on this momentum, this study utilizes complex network theory and
web crawler data to construct a comprehensive network model of regional straw resource
utilization. Through meticulous topological structure analysis, this research elucidates the
system’s architecture, offering insights into its functionality that is derived from the struc-
ture itself. This approach enables the identification of key responsible entities in regional
straw resource utilization and their interconnections, fostering multi-entity collaboration in
rural waste management. Our findings aim to contribute to the development of a green
countryside and the advancement of ecological agriculture, emphasizing the interplay
among multiple stakeholders.
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3. Data Sources and Methodology
3.1. Data Sources

The China Agricultural Information Network, an authoritative and influential national
agricultural portal under the Ministry of Agriculture and Rural Affairs of China, serves
as the foundational data source for this study. In this research, by leveraging Python, we
homed in on “straw” as a pivotal keyword to systematically mine data from news articles
published on the designated portal spanning from January 2016 to September 2023. In the
preliminary phase of our investigation, we deployed advanced web-scraping algorithms to
autonomously traverse a predetermined volume of web pages. For each page, a bespoke
URL was constructed, embedding the term “straw” to ensure the alignment of the extracted
content with our thematic research focus. Subsequently, we meticulously accessed links pre-
served in our repository to retrieve textual content from news articles. In instances where
the initial scraping did not yield the desired content, we revisited the links, thus reinforcing
the comprehensiveness and integrity of our data collection. Furthermore, capitalizing on the
data thus gleaned, we embarked on a scrupulous keyword matching endeavor grounded in
entities like “government” and “farmer”, as identified from our extensive literature review.
In this matrix, a news article mentioning “government” was algorithmically ascribed a
value of 1, while its absence entailed a value of 0. This systematic approach was replicated
across all the pertinent entities, culminating in the transformation of each news article into
a discrete row within our data matrix, thereby effectively capturing a binary representation
of the presence or absence of diverse entities. To ensure accuracy, different expressions
referring to the same entity, such as “Government” and “policy,” were consolidated under
a single category (e.g., all references were counted under “Government”). This methodolog-
ical approach led to the creation of a matrix database encompassing 32,121 news articles
and 10 key entities as follows: Government, Company, Farmer, Research Institution, Broker,
Bank, Media, Rural Cooperative, Community Resident, and Consumer.

Building upon the amassed dataset, this study employed Python to intricately analyze
and derive associative rules among the 10 entities involved in regional straw resource
utilization. Subsequently, utilizing Gephi software and based on the association matrix,
a complex network model of regional straw resource utilization was constructed and
thoroughly evaluated. This approach not only illuminated the dynamic interplays among
various entities but also revealed their relative positions and roles within the network.
This comprehensive analysis offers novel insights into optimizing the integrated use of
straw resources, significantly contributing to the advancement of ecological agriculture
and sustainable rural development.

3.2. Methodology

The methodology of this study is structured into three distinct phases as shown in
Figure 1, which are as follows: Initially, text mining was employed to construct a “News-
subject” matrix database. This was followed by the application of the Apriori algorithm
for association rule mining, focusing on metrics such as Support, Confidence, and Lift.
Leveraging this association database, a complex network was then established to conduct
a detailed analysis of its characteristics. This analysis is pivotal in discerning the most
influential nodes and their interconnections within the network, which holds substantial
importance for the effective management and optimization of resources.
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(1) Text mining approach

Text mining, often referred to as text data mining or knowledge discovery from textual
databases, entails the extraction of significant and non-obvious patterns or knowledge from
textual documents [40]. This field synergistically combines methodologies from data min-
ing, machine learning, natural language processing, information retrieval, and knowledge
management. This integration is key in addressing the challenge of information overload
in the contemporary world [41]. Zhang et al. identified how text mining encompasses text
classification, text clustering, the extraction of association rules, and trend analysis [42].
Drury and Roche reviewed the application of text mining for agriculture and concluded
that the related applications are mainly those in commodity and food price prediction, pest
control, and opinion monitoring [43]. Some scholars also use the text mining approach to
dig the existing literature research to sort out the key technologies and research hotspots
in the current agricultural field [44]. In this study, text mining was primarily utilized for
extracting and analyzing online news data, thereby forming the basis for constructing the
initial association matrix database.

(2) Association rule mining

Association rule mining (ARM) is a critical technique aimed at uncovering corre-
lations or causal relationships among factors within unstructured datasets [38]. Let
F = {f1, f2, . . ., fn} represent the set of all factors fi(1, 2, . . ., n), and the accident dataset
A containing several factors is a subset of F. All such subject datasets together form the
subject database B. An association rule is defined as C =⇒ D: if C occurs, then D occurs as
well, where C∩D = Ø and they form an itemset. C is known as the antecedent of the rule,
while D is the consequent.

Key metrics employed to evaluate the strength of the association rules include Support,
Confidence, Lift, Leverage, Conviction, and Zhang’s Metric [45,46]. The Support and Lift
measure the frequency and effectiveness of a rule, respectively. Confidence denotes the
conditional probability of the occurrence of D given that C has already occurred. Valid
and strong association rules are those with a Lift greater than 1 and the Support and Confi-
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dence meeting or exceeding a minimum threshold [46]. Leverage assesses the difference
between the observed Support and the expected Support assuming independence of the
antecedent and the consequent. A positive value in Leverage indicates a higher frequency
of the combined occurrences of C and D than the product of their individual probabilities,
suggesting a potential positive correlation or association between them. Conversely, a zero
Leverage value implies that the joint frequency of C and D equals the product of their
independent frequencies, indicating no significant association and implying independence.
Negative Leverage values are indicative of a lesser frequency of C and D appearing together
compared with the product of their independent probabilities, potentially signifying a
negative correlation between the two variables. Conviction measures the frequency of the
occurrence of C in the absence of D compared with the expected frequency if C and D
were completely independent. The higher the Conviction value, the higher the efficacy of
the rule C =⇒ D, implying an increased likelihood of D occurring in the presence of C.
A Conviction value significantly higher than 1 indicates that the rule C =⇒ D is highly
reliable. Conversely, a Conviction value near 1 suggests that the rule lacks strong predictive
power. As the Conviction level increases so does the effectiveness of the rule C =⇒ D,
implying a higher probability of the concurrent occurrence of C and D. Lastly, Zhang’s
Metric provides a measure to evaluate the interestingness of a rule by considering both
the Confidence and Support. These metrics are integral in identifying the most significant
rules that warrant special attention in the analysis. The calculation formulas for metrics
such as Support and Confidence are shown in Formulas (1)–(6).

Support(C =⇒ D) =
|{A : C∪D ⊆ A, A ⊆ B}|

|B| (1)

Confidence(C =⇒ D) =
Support(C =⇒ D)

Support(C)
=
|{A : C∪D ⊆ A, A ⊆ B}|
|{A : C ⊆ A, A ⊆ B}| (2)

Lift(C =⇒ D) =
Support(C =⇒ D)

Support(C)× Support(D)
(3)

Leverage(C =⇒ D) = Support
(

C
⋂

D
)
− Support(C)× Support(D) (4)

where Support(C
⋂

D) is the proportional relationship between the concurrent presence
of items C and D, Support(C) and Support(D) are the individual occurrences of items C
and D.

Conviction(C =⇒ D) = (1 − Support(D))/(1 − Confidence(C =⇒ D)) (5)

where Support(D) is the degree of Support for D, and Confidence(C =⇒ D) signifies the
probability of the occurrence of itemset D given the presence of itemset C.

Zhang’sMetric(C =⇒ D) =
Support(C

⋂
D)− Support(C)× Support(D)

max{Support(C)× (1− Support(D)), Support(D)− (1− Support(C))} (6)

where Zhang’s Metric has values between −1 and 1. When this value approaches 1, it
signifies a strong positive correlation between itemset C and itemset D, indicating that their
occurrences are closely linked. Conversely, a value near 0 points to a weaker association,
suggesting a less significant relationship. Notably, a negative value in the Zhang metric
denotes a negative correlation, implying that the presence of one itemset may inversely
affect the probability of the other’s occurrence.

Commonly used association rule algorithms include Apriori and FP-Growth. Among
these, the Apriori algorithm is the most widely employed due to its simplicity and practical-
ity. It primarily involves two steps as follows: mining all frequent itemsets and generating
association rules. The process begins by scanning the original database to identify the first
set of candidate items and calculate their Support. Items with a Support that is less than the
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minimum threshold are discarded, yielding the first frequent itemset. This set is then linked
to form the second set of candidate items, which undergoes pruning. The Support for these
candidates is computed, and those falling below the threshold are eliminated, resulting in
the second frequent itemset. This procedure is repeated until no frequent itemset remain.
The Confidence of all the frequent itemsets is calculated, and sets with a Confidence below
the minimum threshold are removed, resulting in the formulation of strong association
rules. The number of generated rules is closely tied to the parameter thresholds set; too
low a threshold leads to an overabundance of rules, making effective filtering challenging,
whereas too high a threshold may filter out significant information. Drawing upon the
research methodology outlined by Chen et al. [47], this study meticulously analyzes the
collected data through statistical methods, determining the quantity of association rules
generated under various parameter thresholds, as illustrated in Figure 2. In our rigorous
analytical approach, we have established the minimum Support threshold at 0.1 and the
minimum Confidence at 0.5. These thresholds significantly exceed those typically set in
similar studies of association rules [46], thereby ensuring a heightened level of stringency
in the identification of robust association rules.
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(3) Complex Network and Social Network Analysis Methods

In recent decades, complex networks have emerged as a pivotal formalism for rep-
resenting various scenarios where agent-based models are integral [48]. The formation
of these networks is reliant on the dynamic interactions among the diverse components
of a system [49]. Four fundamental models characterize complex networks as follows:
regular, random, small-world, and scale-free networks, each with unique edge distributions
and topological characteristics. For instance, small-world networks are defined by an
exponential distribution of nodes, relatively short average path lengths, and high clustering
coefficients [50]. Social networks, a specialized form of complex networks, originate from
the social sciences and emphasize the social attributes of networks [51]. Social network
analysis (SNA) plays a crucial role in mapping diverse networks, elucidating relationships
and exchanges between network actors [52]. SNA aims to uncover insights related to the
nodes and connections within social networks. Analyzing these networks requires an
in-depth examination of their structure [53]. The utilization of visual aids is vital for a
comprehensive understanding of social interactions. Scientific visualization tools, such
as social network indicators, facilitate the visual analysis of the research object’s social
network [54].

Social network analysis (SNA) encompasses a variety of indicators crucial for under-
standing the intricacies of network structures. Key among these are the average degree and
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various centrality metrics alongside modularity and other parameters. In this study, the
numerical aspects of social network analysis (SNA) were conducted using Gephi (version
0.10.2). For the identification of complex network models, Python was employed as the
primary computational tool. Additionally, Python programming was utilized to determine
the type of network, with specific thresholds set for this classification. In this study, the
thresholds for network robustness were determined based on the quantity of nodes and
edges within the network. These thresholds were defined as an average clustering coeffi-
cient higher than 0.3 and an average shortest path length of less than 5. This methodology
allowed for a precise and efficient analysis of network characteristics, aiding in the accurate
identification and classification of complex network models.

1© The average degree is a pivotal metric in network analysis, representing the mean
number of connections per node across the network, as presented in Formula (7) as follows:

Average Degree =
∑n

i=1 ki

n
(7)

where n signifies the total number of nodes in the network, while ki represents the degree of
node i. A higher average degree within the network indicates a more widespread presence
of connections, suggesting a faster propagation of information or influence through the
network. Conversely, a network with a lower average degree is indicative of a sparser
connection state. This distinction in average degree is pivotal as it reflects the network’s
capacity for efficient information dissemination and the robustness of its interconnectivity.

2© The average weighted degree incorporates the average value of edge weights into
its calculation. The formula for this is as follows:

Average Weighted Degree =
∑n

i=1 wi × ki

n
(8)

where wi represents the weight of the node I, ki is the degree of the node i, and n signifies
the total number of nodes in the network.

3© The network diameter refers to the maximum value among the lengths of the
shortest paths between all the pairs of the nodes in the network. The formula for this is
as follows:

Network Diameter = max(All shortest paths between every pair of nodes) (9)

where the shortest path here refers to the path in the network that has the least number of
edges when traveling from one node to another [55].

4© The average path length is the average value of the shortest path lengths between
all the possible pairs of the nodes in a network. The formula is as follows:

Average Path Length =
(Sum of the shortest path lengths between all node pairs)(

n×(n−1)
2

) (10)

where n is the total number of the node.
5© The clustering coefficient is a measure that quantifies the degree to which the

neighbors of a given node are interconnected. The formula is as follows:

Cluster ingcoefficient =
2T(i)

ki
(11)

where T(i) denotes the number of actual edges (triangles) existing among the neighboring
nodes of a particular node i. ki is the degree of node i.

6© Centrality analysis is used to measure the importance of the nodes in a network.
The main centrality metrics include degree centrality (DCi), closeness centrality (CCi), and
betweenness centrality (BCi). In the undirected network, DCi refers to how many neighbors
a node has. The specific formula is as follows:

DCi = ∑n
i=1 γij (12)
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where n is the total number of the nodes; γij = 1 indicates that node i is connected to node
j, and γij = 0 indicate that node i is not connected to node j.

The closeness centrality measures the average distance of a node to all the other nodes
in the network. The formula is as follows:

CCi =
n− 1

∑j 6=i dij
(13)

where dij is the shortest distance between node i and node j. Higher values of CCi in-
dicate a shorter average distance to the other nodes in the network, allowing for faster
communication with other nodes.

The betweenness centrality considers the “bridge” role that a node plays in a network.
It is the number of shortest paths in the network that pass through a specific node.

DCi= ∑l 6=i 6=m
εlm(i)
εlm

(14)

where εlm(i) is the number of shortest paths for nodes l to m passing through node i; εlm is
the number of shortest paths for nodes l to m. A node with a high DCi plays an important
role in the flow of information within the network.

7©Modularity is used to measure the strength of modules in a network. It indicates
how the network is divided into modules.

Modularity = (1/2m)× sum
{[

F{ij} −
(

ki × kj

2m

)]
× delta

(
Ci, Cj

)}
(15)

where F{ij} is an element in the adjacency matrix, indicating whether there is a connection
between node i and node j. ki and kj are the degrees of node i and node j, m is the total
number of edges in the network, and Ci and Cj are community labels between node i and
node j, indicating the community to which they belong. Delta is the Kronecker function,
which is 1 when Ci = Cj, indicating that the two nodes belong to the same community;
otherwise, 0 indicates that the two nodes belong to different communities.

8©Module tightness is used to measure the degree of close connection between the
nodes within each module. The specific calculation formula is as follows:

Module tightness =
L

Mθ × (Mθ − 1)÷ 2
(16)

where L represents the number of edges that exist and M is the node within the module θ.
The higher the connection density in a module is the closer the connection between nodes
in the module is.

4. Results
4.1. Analysis of Correlation Rules among Multiple Entities in Regional Straw Resource Utilization

Based on a comprehensive review of the literature and practical fieldwork, this study
reveals that regional straw resource utilization involves a diverse array of stakeholders,
including government, companies, farmers, research institutions, brokers, banks, social
media organizations, rural cooperatives, community residents, and consumers. Utilizing
text mining techniques, this research has compiled a matrix from news articles on China’s
Agriculture Information Network spanning from January 2016 to September 2023, detailing
the involvement of these entities in straw resource utilization, as presented in Table 1.
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Table 1. Multi-agent occurrence in the news (part).

Government Company Farmer Research
Institution Broker Bank Media Rural Co-

operative
Community

Resident Consumer

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0 0

Drawing on the original data from multi-agent news mining and employing
Formulas (1)–(3), this study has identified 30 robust multi-agent association rules for
regional straw resource utilization. These rules are ranked according to their Lift values,
with the top 10 presented in Table 2. Notably, the rule GO, RC =⇒ FA, COM has a Support
of 0.1174, a Confidence of 0.5921, and a Lift of 2.0728. This indicates that the joint efforts of
the government and rural cooperatives significantly foster enthusiasm among farmers and
companies for straw resource utilization. The primary drivers of this trend are the technical
challenges and the varied willingness of stakeholders. Currently, the utilization of straw
resources is predominantly driven by government initiatives, underscoring the critical role
of governmental influence. Meanwhile, as self-organized civil groups, rural cooperatives
play a pivotal bridge role in facilitating the scaled utilization of straw resources, mediating
between farmers and companies.

Table 2. Top 10 association rules of the regional straw resource utilization multi-agent association Lift.

Antecedents Consequents Support Confidence Lift

Government, Rural
Cooperative Farmer, Company 0.1174 0.5921 2.0728

Government, Farmer, Company Rural Cooperative 0.1174 0.6231 1.7836
Farmer, Company Rural Cooperative 0.1750 0.6128 1.7541
Rural Cooperative Farmer, Company 0.1750 0.5010 1.7541

Rural Cooperative, Company Government, Farmer 0.1174 0.5219 1.7527
Government, Farmer, Rural

Cooperative Company 0.1174 0.7347 1.6442

Government, Rural
Cooperative Company 0.1428 0.7198 1.6109

Government, Rural
Cooperative, Company Farmer 0.1174 0.8225 1.6085

Government, Rural
Cooperative Farmer 0.1598 0.8058 1.5759

Government, Farmer Rural Cooperative 0.1598 0.5367 1.5365

The rule GO, FA, COM =⇒ RC has a Support of 0.1174, a Confidence of 0.6231, and a
Lift of 1.7836, This suggests that when governments, companies, and farmers demonstrate
a sufficient willingness to utilize straw resources, rural cooperatives are more inclined
to engage. Typically, the triangular relationship among governments, companies, and
farmers forms a stable supply–demand dynamic for straw resource utilization, making it
more attractive to profit-oriented rural cooperatives. This indicates that a stable supply–
demand relationship can better attract other market players. However, in the straw re-
source utilization process, the government’s role is mainly that of an external stimulus,
with the willingness of companies and farmers being paramount. Therefore, the rule FA,
COM =⇒ RC has a Support of 0.1750, a Confidence of 0.6128, and a Lift of 0.7541, highlight-
ing that a complete market structure formed by the supply and demand sides is essential to
truly attract other market entities, thereby continually improving and shaping the market.
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Utilizing the original data derived from multi-agent news mining and applying
Formulas (4)–(6), this study has identified significant Leverage, Conviction, and Zhang’s
Metric values within the strong association rules of the multi-agent complex network for
regional straw resource utilization, as depicted in Figure 3. Among the 30 strong association
rules identified, all the Leverage values were positive, with the rule FA =⇒ RC exhibiting
the highest Leverage. This indicates that the co-occurrence of FA and RC is more frequent
than the product of their independent occurrence probabilities, suggesting a strong positive
correlation between them. Similarly, according to the rule RC =⇒ COM, FA showed a
high Leverage value, indicating a similar positive correlation. All 30 association rules
had Conviction values that were higher than 1, with 13.3% of them exceeding that of 2,
thereby affirming their strength. Notably, the rule RC, GO, COM =⇒ FA had a Conviction
value of 2.753, underscoring its high effectiveness. This suggests that the occurrence of
FA is highly probable when RC, GO, and COM are present, primarily due to government
support, corporate utilization, and rural cooperative management of straw resources, which
significantly attract farmer participation. The rule RC, GO =⇒ FA had a Conviction value
of 2.517, indicating a high probability of FA occurrence in the presence of RC and GO. This
suggests that even in the absence of straw resource utilization companies, joint incentives
and management by governments and rural cooperatives can enhance farmers’ willing-
ness to utilize straw resources. All Zhang’s Metric values were higher than 0, indicating
a strong correlation between antecedents and consequents in this itemset. The rule RC,
COM =⇒ FA had a Zhang’s metric value of 0.661, showing a strong positive correlation,
thereby implying that transactions including the itemset RC and COM are significantly
likely to also include FA. The rule RC, GO =⇒ COM, FA with a Zhang’s Metric value of
0.646 demonstrates a strong association between RC, GO, and COM, FA.
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resource utilization in multi-agent complex networks.

4.2. Analysis of Regional Straw Resource Utilization’s Multi-Agent Complex Network and
Network Characteristics

In this study, focusing on the multi-agent association rules for regional straw re-
source utilization, we utilized Gephi software to construct an undirected graph network
comprising 14 nodes and 24 edges, as illustrated in Figure 4.
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(1) Average degree and average weighted degree

Based on Formulas (7) and (8), our study determined that the average degree of the
multi-agent network for regional straw resource utilization is 3.429. This indicates that,
within this network, each entity—such as government, farmers, and companies—averages
direct connections or interactions with approximately 3.429 other entities. Furthermore,
an average weighted degree of 5.169 suggests a robust network not only in terms of the
quantity of connections but also in their level of reliance. These findings highlight that the
inter-agent relationships within the regional straw resource utilization network are strong
both in quantity and quality, thereby underscoring the intricate and interdependent nature
of this ecosystem.

(2) Average path length, clustering coefficient, and network model

Utilizing Formulas (9)–(11), our research deduced that the diameter of the multi-
agent network in regional straw resource utilization is 3, with an average path length of
1.945. This signifies that, on average, a fluctuation in one node can be triggered in just
1.945 steps, reflecting the close-knit connectivity of the network. The high interconnec-
tivity among various agents, such as government, farmers, and businesses, implies that
a change in the state of one node can easily instigate a chain reaction among the others,
thereby facilitating the effective allocation and utilization of straw resources. Moreover,
the network exhibits a high clustering coefficient of 0.319, indicating a tendency towards
tightly knit groupings. Consequently, with its relatively short average path length and high
average clustering coefficient, this network aligns with the characteristics of a small-world
network. Accordingly, we classify the multi-agent network in regional straw resource
utilization as a Newman–Watts small-world network, as evidenced by the uniform degree
distribution shown in Figure 5. This classification underscores the network’s capability
for rapid information and resource dissemination. Even if certain connections or nodes
undergo changes, the network retains its core functionality, demonstrating robustness and
adaptability to new dynamics. Furthermore, the diverse cooperative models among the
different agents contribute to a complex dynamic equilibrium within the network.
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(3) Centrality analysis

Employing Formulas (12)–(14), our study identified the degree centrality, closeness
centrality, and betweenness centrality for the 14 nodes within the multi-agent network of
regional straw resource utilization, as illustrated in Table 3. Table 3 reveals that individual
agents, such as straw resource utilization companies, farmers, governments, and rural
cooperatives, play pivotal roles within the entire network of association rules. These entities
are also central to the multi-agent network for straw resource utilization. Notably, the
betweenness centrality of these four nodes reaches 20.167, underscoring their significant
role in the network’s information exchange. The centrality indices for the interconnecting
nodes between companies and farmers, the government and farmers, rural cooperatives
and companies, and rural cooperatives and the government are also elevated, indicating
that the supply and demand sides in straw resource utilization consistently occupy crucial
positions within the network.

Table 3. Centrality analysis of associated nodes for regional straw resource utilization (part).

Associated Node Degree Centrality Closeness
Centrality

Betweenness
Centrality

Company 7 0.684 20.167
Farmer 7 0.684 20.167

Government 7 0.684 20.167
Rural Cooperative 7 0.684 20.167
Company, Farmer 3 0.52 1.333

Government, Farmer 3 0.52 1.333
Rural Cooperative, Company 3 0.52 1.333

Rural Cooperative, Government 3 0.52 1.333

(4) Modularity

Utilizing the modularity function in Gephi software, the modularity of the multi-agent
association rule network for regional straw resource utilization was calculated to be 0.218,
with the community network organization and specific divisions being depicted in Figure 6.
All four primary agents—government, companies, farmers, and rural cooperatives—are
present in each of the four communities. This underscores that these four entities are central
among the ten agents identified in our study’s regional straw resource utilization network.
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The network’s overall community structure is distinctly divided into four groups, each
with varying degrees of node density and tight internal node connections, highlighting
localized network density.
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According to Formula (16), the module containing the association rules (FA, COM) and
(RC, CO) (blue) has a module tightness degree of 1, indicating strong tightness within this
module. A likely reason for this is that of the preliminary market relationships established
between farmers and resource utilization companies, though these are not yet sufficient.
Given the current development stage of straw resource utilization, external stimulation or
support are necessary, hence the crucial role of government and rural cooperatives in this
association. Another module, comprising (GO, COM), (GO, COM, FA), and (RC) (yellow),
has a cohesion degree of 0.667, suggesting tightly knit internal cohesion. This likely results
from the involvement of external organizations like rural cooperatives, which are attracted
by the initial development scale of the straw resource utilization of government-supported
enterprise, further enhancing the regional straw resource utilization market. The module
tightness degrees of the other two modules also exceed 0.5, indicating tight interconnections
among the various agent networks.

4.3. Robustness Analysis

The robustness analysis of the complex networks, particularly through Monte Carlo
simulations, is an essential method for examining network stability and resilience in the
face of disruptions such as attacks or failures [56]. This research focuses on the multi-agent
networks involved in regional straw resource utilization. Understanding and evaluating
the stability of these networks is vital for identifying the central agents and their roles
within the overall network structure. Utilizing Python, the study conducts Monte Carlo
simulations to implement two strategies as follows: random attacks and targeted attacks
based on node significance [57]. This approach facilitates a comprehensive analysis of
network robustness, offering critical decision-making support for identifying key agents in
straw resource utilization networks.

In this study, we simulated the robustness of network nodes by setting a failure
threshold ranging from 1 to 20, with an increment of 1 at each step. Using the Monte
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Carlo simulation, we employed two strategies as follows: random attacks and targeted
attacks based on node importance. The variations in network robustness following these
attacks are recorded in Figure 7. The results show that network robustness gradually
decreases with the increase in the number of failed nodes, which occurs irrespective of the
attack strategy. However, a comparative analysis reveals that intentional attacks disrupt
the network more rapidly than random attacks. This finding suggests that strategically
enhancing the willingness of core agents to utilize straw resources is more effective in
maintaining network robustness.
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Our study explored the impact of different attack ratios, specifically those of 20%, 40%,
and 50%, on the average network reachability following random and targeted attacks, as
depicted in Figure 8. After randomly removing 20% of the nodes, the size of the network’s
largest connected subgraph was on average 82.285% of the original network, thereby
indicating that the overall structure and function of the network remain relatively stable
when nodes are randomly removed. However, the average network reachability after
targeted attacks was 0.6428, signifying that the targeted removal of critical nodes severely
impacts the overall connectivity of the network. Similarly, when 40% of the nodes were
randomly removed, the average size of the largest connected subgraph reduced to 55.428%
of the original network, thereby demonstrating a certain degree of robustness to random
attacks but with a significant loss in connectivity. At this point, the average reachability
under targeted attacks dropped to 0.1429, indicating that the robustness of the network
significantly diminishes under deliberate attacks, with the largest connected subgraph
reducing to approximately 14% of the original network. This highlights the severe impact
on network connectivity and functionality when critical nodes are targeted. When the
attack rate reached 50%, the average network reachability after targeted attacks dropped to
0, signifying the complete collapse of the network.



Sustainability 2024, 16, 1557 17 of 23

Figure 8. Average network reachability of random attacks and targeted attacks under different
attack probabilities.

5. Discussions and Conclusions
5.1. Construct of a Robust Regional Supply and Demand Market for Straw Resource Utilization

In our study of the regional straw resource utilization multi-agent network, we iden-
tified 30 closely interconnected associations, each varying in their interrelations. The
strongest connections were observed among farmers, businesses, governments, and rural
cooperatives. Rural cooperatives, primarily composed of farmers with a high willingness to
utilize straw, significantly contribute to the probability of these groups appearing together
more frequently than individually. The combination of government and rural coopera-
tives is tightly linked to the business and farmer duo. The government, as a key external
driver in the initial stages of regional straw resource utilization, primarily exerts influence
through fiscal measures to guide and stimulate development [58]. Rural cooperatives, as
self-organized profit-oriented organizations, are pillars of rural policy, promoting economic
cooperation and market integration [59,60]. However, they also exhibit characteristics
such as economic fragility and dependency on government support [61]. Therefore, the
combination of the external stimulus from the government and cooperatives encourages
businesses and farmers to move towards straw utilization. A stable market supply and
demand pattern formed by the government, farmers, and companies is crucial in attracting
rural cooperatives. Current research focuses on the interrelation of these entities as they
are the fundamental market and external environmental entities, thereby forming the base
of regional straw resource utilization development [32]. As the straw utilization market
evolves, it attracts more market participants, such as rural cooperatives, which also play a
role in mitigating the vulnerability of small-scale farmers to poverty [62]. Thus, policymak-
ers should focus on the relationship between market supply and demand, which is formed
by farmers and businesses, while continuously improving the utilization market through
external forces like those of governments and cooperatives in order to establish a robust
utilization framework, as shown as Figure 9.
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5.2. The Association Network among Agents Is a Small-World Network

Based on indicators like the average weighted degree and network diameter, it is
evident that the network of multi-agent associations in regional straw resource utilization
is closely-knit, exhibiting the characteristics of the NW small-world network. Small-world
networks are known for their high clustering coefficients, short average path lengths, and
robustness against random node failures. However, they can be extremely vulnerable
to attacks on critical nodes [63,64]. Our study finds that the network of multi-agent
associations in straw resource utilization aligns closely with these characteristics.

Current research often focuses on individual entities, such as analyzing farmers’ will-
ingness to utilize straw resources from a psychological perspective [13] or the significance of
government policies in encouraging such utilization [65]. However, given the small-world
network traits of the regional straw resource utilization network, the interconnections
and key relationships between different entities should be a focal point. This is especially
important when considering the maturation and perfection of the entire network. Particular
attention should be paid to the mutual influences among entities during the formation
of the basic market as the pursuit of environmental benefits in straw resource utilization
is as crucial as its economic benefits are [66]. Thus, in enhancing the level of regional
straw resource utilization, it is not only the willingness of individual entities that should
be considered but also the interactive influences among them. Recent studies have been
focusing on this aspect, employing game theory to analyze the interactive behaviors among
multiple entities. This trend is positive, indicating a growing recognition of the importance
of inter-entity interactions for the overall utilization level. However, current research has
paid less attention to the associations between rural cooperatives and other entities like
farmers, businesses, and governments, which are indispensable to the network.

In the NW small-world network of multi-agent associations in regional straw resource
utilization, rural cooperatives play a significant role and are closely associated with other
entities. Therefore, in efforts to enhance straw resource utilization at the regional level,
attention should not only be given to farmers, businesses, and governments but also to
external entities like rural cooperatives.

5.3. Diverse Cooperative Models among Multiple Agents in Regional Straw Resource Utilization

In the realm of regional straw resource utilization, multiple agents play a critical role,
and their influencing factors are diverse and complex. Consequently, regions develop
unique patterns based on their specific characteristics, which are primarily reflected in
the varying degrees of interrelations among the involved parties. This study, grounded
in original data derived from word frequency analysis in news reports, reveals that the
co-occurrence of multiple agents in these reports indicates collaborative links that foster
market-oriented development and the effectiveness of external environmental stimuli.

We categorize the existing models of regional straw resource utilization into four types,
which are based on the level of market-oriented development and the impact of external
stimuli, as illustrated in Figure 10. Module 1© represents regions where a stable market for
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straw resource utilization is emerging, involving companies and farmers with potential for
large-scale utilization. Governmental external stimuli are present, but market expansion
is limited due to farmers’ willingness and corporate costs. In such developmental stages,
regions are often advised to use financial incentives and other measures to invigorate the
market. Module 2© depicts regions with small-scale utilization, lacking the joint drive
of government and rural cooperatives. Module 3© includes five interconnected agents
with clear external stimuli, such as government incentives for farmers and cooperatives.
However, the level of market development and the stability of government incentives are
not high, thereby necessitating external stimuli to be more impactful. Module 4© represents
an ideal state, forming a tightly knit cooperation model among farmers’ cooperatives,
companies, and the government.
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Given the distinct characteristics of straw resource utilization in various regions of
China, the developmental models differ mainly in the degree and effectiveness of inter-
agent relationships. Future development strategies should emphasize the two aspects as
follows: firstly, that of market-oriented development, focusing on the utilization intentions
of companies and farmers; secondly, that of the support coming from the external envi-
ronment, such as from governments and cooperatives. However, the roles of other agents
should not be overlooked in this dynamic.

In this research, we employed text mining techniques and the Apriori algorithm for
association rules to extract a multi-agent relational database from online news sources,
thereby analyzing multiple subjects with strong associations. Building upon this, we
constructed a regional straw resource utilization multi-agent relational network, examining
its network characteristics, model types, and overall stability through robustness testing,
with a focus on the influence of core nodes. Key findings include the concentration of
regional straw resource utilization among farmers, businesses, governments, and rural
cooperatives. Farmers and businesses emerge as market players, while cooperatives and
governments act as external facilitators to enhance market development.

Our study reveals that this multi-agent network exhibits the properties of the NW
small-world network, characterized by relatively short average path lengths and high
average clustering coefficients. We found that targeted attacks on this network result in
faster degradation compared with random attacks, with individual agent nodes consis-
tently playing crucial roles. The network is divided into four modules with tight intra-
module connections.

Furthermore, the discussion in our study suggests that farmers, businesses, and
governments have formed a robust regional straw resource utilization market model.
However, considering the small-world network characteristics, market perfection requires
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the integration of additional external market entities, like rural cooperatives. Current
regional straw resource utilization patterns should focus on market-driven development
and external environmental stimuli, with targeted policy recommendations to address
these aspects.

This study acknowledges certain limitations. For instance, the number of agents
identified through the association rule algorithm was limited, excluding roles like brokers.
This may be attributed to the underdeveloped logistics supply chain for straw resource
utilization in China, which has not significantly contributed to the overall improvement
in regional straw resource utilization. However, the involvement of brokers could be
beneficial in reducing the costs for businesses to acquire straw and further facilitate the
marketization of straw utilization. Additionally, it is important to acknowledge that the
data underpinning our study were derived from secondary sources available online rather
than being directly sourced from key stakeholders, which might have offered a more
nuanced perspective. Moving forward, we aim to integrate these two data modalities more
effectively into our future research endeavors.

In subsequent research, the focus will shift towards an in-depth exploration of the evo-
lution and sophistication of the multi-agent network in regional straw resource utilization,
with a particular emphasis on the incorporation of key additional agents, notably that of
brokers. This is predicated on the understanding that the supply system constitutes one
of the fundamental subsystems underpinning the effective utilization of straw resources
in the region. Meanwhile, using an approach that is based on the perspective of complex
systems theory, our study will scrutinize the subsystems composed of diverse entities
and endeavor to synthesize these subsystems into an intricate network. By examining
the dynamics and emergent properties of this complex network, we aim to delve into the
synergistic effects of multi-agent collaboration in the realm of straw resource utilization.
This perspective is crucial for future focus in this field. The approach is designed to foster a
more comprehensive grasp of market dynamics and to identify innovative strategies that
could significantly augment the efficiency and efficacy of straw resource utilization.
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