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Abstract: Supercapacitors (SCs) are gaining attention for Internet of Things (IoT) devices because
of their impressive characteristics, including their high power and energy density, extended lifes-
pan, significant cycling stability, and quick charge–discharge cycles. Hence, it is essential to make
precise predictions about the capacitance and lifespan of supercapacitors to choose the appropriate
materials and develop plans for replacement. Carbon-based supercapacitor electrodes are crucial
for the advancement of contemporary technology, serving as a key component among numerous
types of electrode materials. Moreover, accurately forecasting the lifespan of energy storage devices
may greatly improve the efficient handling of system malfunctions. Researchers worldwide have
increasingly shown interest in using machine learning (ML) approaches for predicting the perfor-
mance of energy storage materials. The interest in machine learning is driven by its noteworthy
benefits, such as improved accuracy in predictions, time efficiency, and cost-effectiveness. This paper
reviews different charge storage processes, categorizes SCs, and investigates frequently employed
carbon electrode components. The performance of supercapacitors, which is crucial for Internet
of Things (IoT) applications, is affected by a number of their characteristics, including their power
density, charge storage capacity, and cycle longevity. Additionally, we provide an in-depth review of
several recently developed ML-driven models used for predicting energy substance properties and
optimizing supercapacitor effectiveness. The purpose of these proposed ML algorithms is to validate
their anticipated accuracies, aid in the selection of models, and highlight future research topics in the
field of scientific computing. Overall, this research highlights the possibility of using ML techniques
to make significant advancements in the field of energy-storing device development.

Keywords: supercapacitors; machine learning; energy storage materials; Internet of Things (IoT);
carbon nanotubes (CNTs)

1. Introduction

With the advancement of modern technology, there is a critical situation regarding
global warming and energy shortages. Although a lot of investigations are being performed
on renewable energy, alongside the worldwide population, which is expected to expand,
there remains a need to improve or replace the current energy storage technologies [1].
In this scenario, energy storage technologies are of keen interest to cater to this situation.
Supercapacitors (SCs) have gained significant attention as an environmentally friendly
option for applications involving the storage of energy. This is owing to its exceptional
qualities, such as its high energy density, rapid charging and discharging abilities, and
extended lifespan. Furthermore, its capacity to generate a high level of power per unit
volume bridges the gap between batteries and traditional capacitors [2,3]. In addition,
supercapacitors have gained attention for Internet of Things (IoTs) applications due to their
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light weight, mechanical properties, and safety [4,5]. Supercapacitors can be utilized as
power sources for IoT devices such as wearable sensors, medical devices, and environmen-
tal monitoring gadgets [6,7]. Hence, there is a critical need for the further development
of SCs with regard to how effectively they can maintain a consistent performance over
repeated cycles, as well as their capacity to store energy and provide power while also
ensuring safety.

Machine learning (ML) technologies are increasingly being recognized as viable so-
lutions for addressing a wide range of technological and scientific problems. Machine
learning involves using historically measured data and current knowledge to create pre-
diction models using ML algorithms. In recent times, there has been significant interest in
the use of ML approaches due to their remarkable capacity to properly forecast physical
and chemical attributes [8], crystal structures through high-throughput screening [9], as-
certain the correlations between the structure and characteristics [10], and speed up the
chemical synthesis of high-performance materials [11]. There has been increasing attention
given to the utilization of machine learning techniques for precisely predicting material
characteristics. Machine learning not only reveals the properties of examined compounds
but also provides suggestions for future experiments. The recent advancements in machine
learning use in material research facilitate the effective development, advancement, and
improvement of novel materials with improved energy efficiency [12–14].

ML technology enhances precision, reduces time consumption, and accelerates the
investigation of energy materials. Ziheng Lu [15] conducted a discussion on the implemen-
tation of neural networks in energy devices, specifically focusing on batteries and photo
energy storage technologies. Liu et al. [16] conducted a thorough investigation of the latest
advancements in machine learning algorithms for batteries, solar energy systems, catalytic
materials, and carbon dioxide capture materials. In their study, Liu et al. [17] studied the
predictions of the remaining usable life (RUL) and state-of-charge (SOC) of SCs using both
data-driven and modeling-based forecasting techniques. These authors examined and
contrasted several research methodologies for estimating the state of charge and predicting
the remaining useful life of SCs. Most of these works primarily examined the use of ML
in energy storage devices, particularly batteries and photovoltaics. Nevertheless, there is
still a deficiency in providing a comprehensive analysis of machine learning applications
specifically for supercapacitor materials.

As a result, we present a thorough analysis of the progress and advancements in
ML approaches towards the fabrication of SC materials. This review is structured as
follows: Firstly, different types of supercapacitors are discussed, such as EDLCs (carbon-
based), pseudocapacitive, and hybrid supercapacitors. Then, various electrode materials
for supercapacitors are reviewed. Secondly, a conventional procedure for constructing
a ML model for supercapacitors is described. Various resources are offered, including
the detailed processes of this procedure. Subsequently, a comprehensive examination is
conducted on the practical implementation of ML approaches for the estimation of the
power capacitance and lifespan of SCs. Lastly, we summarize the main discoveries and
provide overall insights for future endeavors.

2. Supercapacitor Types

Before going into further detail, here, we will discuss various types of supercapacitors
(SCs) depending on their charge storage mechanisms. According to the composition of
the materials used for electrodes, SCs may be divided into two categories: symmetric SCs
and asymmetric SCs. Supercapacitors may be mainly classified into three categories based
on their mechanisms of charge storage: electric double-layer capacitors, often known as
EDLCs, pseudocapacitors, and asymmetric SCs (ASCs). Symmetry supercapacitors (SSCs)
are devices that consist of two identical electrode materials. Nevertheless, the applicability
of these devices is limited because of their narrow potential range and inadequate energy
density. Pseudocapacitors store energy by the Faradic process, which involves reversible
redox reactions or intercalations. ASCs, or asymmetric supercapacitors, are devices that are
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made up of two distinct electrode materials. The many types of capacitors are classified
according to their distinct charge storage characteristics, such as electric double-layer
capacitors (EDLCs), pseudocapacitive-type asymmetric supercapacitors (ASCs), all-redox-
type ASCs, and hybrid SCs (supercapacitors); the different types of these SCs are shown in
Figure 1a. These three different categories of supercapacitors are categorized in this manner
due to their different mechanisms of energy storage, which will be explained in the next
few sections in further detail.
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2.1. Electric Double-Layer Capacitors

Supercapacitors basically consist of two electrodes with the presence of electrolytes and
a separator to avoid short connections. The origin of electrochemical supercapacitors can be
attributed to the presence of the electric double layer (EDL) at the interface of electrodes [18].
The theory of the EDL provides the fundamental understanding of the electrochemical
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events occurring during the interaction between the electrode and electrolytes during the
process of charge accumulation [19]. The attainment of very high capacitance relies on
the surface area of the electrode that encounters the electrolyte. Helmholtz became the
first individual to detect the phenomenon of charge separation occurring at the interfaces.
Additionally, he proposed the existence of counter ions or charges present on the surfaces
of electrodes. Consequently, two charge layers with opposite polarities appear [20]. The
proposed interface model posits the potential occurrence of ion adsorption on the surface
as opposed to the traditional understanding of adsorption at the electrode–electrolyte
interface. Helmholtz proposed the concept of an EDL that functions like a molecular
dielectric, which serves to store charge by electrostatic means. The Gouy–Chapman model
(1910), which followed the previous model, states that the capacitance is influenced by the
applied voltage and the concentration of ions. This concept posits that the electric field
diminishes upon reaching the electrolyte [21]. The Stern model, first published in 1924,
addresses the limitations of previous models by integrating both models [22]. As per the
Helmholtz model, certain ions exhibit adhesion to the surface of the electrode, resulting
in the formation of an internal Stern layer, while other ions create a diffusion layer. There
are further models that, in detail, address the aspects of the charge storage mechanism.
All these models are working mechanisms that are presented in Figure 1b. Simple electric
double-layer capacitors store their charge by using the electrostatic mechanism instead of
any redox reaction at the electrode/electrolyte junction. Due to the physical charge storage
mechanism of this type of supercapacitor, their cyclic life turns out to be enhanced as there
are no chemical bonding formations and no breaking of bonding occurs, which makes
them more reversible even for longer cyclic stability. The EDLC’s behavior is mostly related
to carbon-based materials and its derived compounds [23]. When the supercapacitor’s
electrode encounters electrolyte ions, the coulombic forces cause the formation of a double
layer with opposing charges at the interface between the electrode and electrolytes. The
presence of this double layer serves as a charge-trapping layer in the storage mechanism.
The charge density at the electrode surface is influenced by the applied voltage and the
capacitance of the double layer. The EDLC, or electric double-layer capacitor, serves as the
fundamental principle behind the development of electrochemical supercapacitors.

2.2. Pseudocapacitors

The pseudocapacitive term is derived from a Greek word that means the ability to
hold. In this type of supercapacitor, the charge storage mechanism originates from faradic
processes, which includes redox reactions at the electrode/electrolyte interface [24]. Pseudo-
capacitors exhibit higher charge storage characteristics with higher energy density but poor
power density as compared to EDLCs [25]. Pseudocapacitive characteristics are exhibited
by transition metal oxides, layer hydroxides, metal sulfides, and other polymers [26–28].
However, pseudocapacitors are at the early stages of their commercialization due to the
lack of electrode materials. Ruthenium-based materials are the best candidates so far, but
their applications are impossible due to their higher cost of fabrication.

2.3. Hybrid Supercapacitors

This category of supercapacitor exhibits similar behaviors to battery-type superca-
pacitors since they possess a much greater energy density compared to other types. The
working mechanism of such a type of supercapacitor is a hybrid of both types of superca-
pacitors, which includes pseudocapacitors and EDLCs. Hybrid supercapacitor devices can
be fabricated by using an asymmetric scheme. Even though this class of supercapacitor has
a higher energy density, it still suffers from stability and lower power density issues due to
sluggish reactions at the electrode surface [29–31]. Moreover, as compared to conventional
supercapacitors and batteries, their electrochemical performances are excellent in terms of
their energy and power density, as depicted in Figure 1c. The electrode materials commonly
utilized for hybrid supercapacitors consisted of carbon-based materials, along with the
metal oxides, metal vanadates, and other materials [32,33]. So far, a considerable number
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of studies have been conducted, and hybrid devices have been reported in references.
Minakshi et al. [34] developed a novel method for synthesizing electrodes using renewable
materials. They accomplished this by fusing a mixed binary metal oxide pseudocapacitor
cathode with an eggshell capacitor anode that had been previously calcined. The binary
metallic oxide (NiO/Co3O4) demonstrated its distinctive pseudocapacitive behavior that
was caused by both the charge transfer processes and electrostatic mechanisms, yielding a
discharge capacitance of 225 F/g. This hybrid prototype has a power density of 420 W/Kg
and an energy density of 35 Wh/Kg.

3. Electrode Materials for Supercapacitors

The electrodes utilized in supercapacitors are required to possess certain key charac-
teristics to ensure optimal performance. The properties included are elevated electrical
conductivity, stability over a wide range of temperatures, exceptional resistance to chemical
reactions (inertness), an extensive surface area, resilience to deterioration, climate com-
patibility, and cost-effectiveness. Furthermore, the material’s capacity to enhance faradaic
charge transfer results in an increase in the total specific capacitance. Generally, a reduc-
tion in pore size leads to an augmentation in energy storage capabilities. Nevertheless,
a decrease in the size of the pores results in an elevation of the series resistance, which,
therefore, leads to a decline in power density.

Applications that necessitate higher peak currents should employ SC electrodes with
bigger holes, while electrode materials featuring smaller pores are advantageous in appli-
cations that require a higher level of energy density. Until now, many electrode materials
have been discovered for better energy storage characteristics. Here, we will discuss the
application of carbon and their composites for SCs.

3.1. Carbon and Their Composite Electrode Materials

Carbon materials are often used as electrode substrates for electrolytic double-layer
capacitors because of their prominent features, such as their significant surface area, out-
standing electrical conductivity, and great chemical stability [35]. The charge storage
properties of carbon-based supercapacitors are influenced by several parameters, including
the surface area, conductivity, pore size, and morphology of the electrode materials. These
factors also affect the specific capacitance of the supercapacitors [36]. Carbon nanomateri-
als, such as carbon nanotubes (CNTs), CVD graphene, activated carbon (AC), and carbon
nanocages (CNCs), have been thoroughly studied and used as electrode materials in the
supercapacitor industry [37–39]. Each of these materials has its own advantages accord-
ing to their applications. For instance, CNTs possess a one-dimensional (1D) structure,
exhibiting a very uniform pore structure, a significant specific surface area, excellent con-
ductivity, and notable chemical stability [40]. A 2D structure of graphene layers has notable
characteristics, such as a substantial specific surface area, elevated electrical conductivity,
and enduring thermal and chemical stability [41,42]. The utilization of AC offers several
benefits, including its affordability, straightforward synthesis procedure, excellent conduc-
tivity, significant specific surface area, and consistent electrochemical performance [43].
Another important morphology is the nanocage morphology of carbon, which offers a 3D
morphology that offers a substantial specific surface area, a consistent distribution of pore
sizes, commendable conductivity, and other advantageous characteristics. However, there
is a need to improve the carbon-based materials’ charge storage characteristics by making
composites with other materials for better performances.

3.2. Carbon Nanotube-Based Electrode Material

Carbon nanotubes were first identified in the early 1990s as a type of nanoscale tubular
carbon material. The seamless hollow tubes discussed here are constructed using single
or multilayer graphene sheets [44]. CNTs are a class of carbon-based nanomaterials that
exhibit a one-dimensional structure. These materials possess several advantageous proper-
ties, including a well-defined pore structure, a significant specific surface area, excellent
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electrical conductivity, and remarkable chemical stability [45]. As a result, CNTs hold
considerable potential for applications in energy storage devices. The hollow structure,
excellent conductivity, significant specific surface area, appropriate pores, facilitating elec-
trolyte ion migration (typically with a pore diameter exceeding 2 nm), and the formation
of a nanoscale network structure through cross-winding collectively render them highly
desirable as electrode materials for supercapacitors, particularly those designed for high-
power applications. CNTs demonstrate capacitance values that are similar to those of
activated carbon, despite the fact that AC has a greater surface area [46]. The exceptional
performance observed in the usage of CNTs can be attributed to their ability to effectively
utilize the extensive surface area. Furthermore, the mesoporous nature of these materials
facilitates enhanced electrolyte diffusion, resulting in a reduction in the impedance and,
consequently, leading to an improvement in power output. In recent years, this topic has
garnered significant attention and has emerged as a prominent area of research. Previous
research has investigated the procedures involved in preparing, normalizing, and arranging
CNTs to produce electrode materials with exceptional electrochemical characteristics.

Gbordzoe et al. [47] utilized plasma for the functionalization of CNTs to enhance
the supercapacitor performances. The CNT fibers were produced by the dry spinning
technique after the synthesis of vertically aligned CNTs using the chemical vapor de-
position (CVD) method. The supercapacitor devices were created using various ionic
gel electrolytes, such as polyvinyl alcohol (PVA) combined with sulfuric acid (H2SO4),
polyvinylidene fluoride (PVDF) combined with 1-ethyl-3-methylimidazolium bis (triflu-
oromethylsulfonyl)imide (EMIMTFSI), and polyvinylidene fluoride (PVDF) combined
with 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4). Using ionic electrolytes
expands the operating potential range of supercapacitors. These researchers found that
applying the controlled plasma treatment led to a substantial improvement of roughly
132.8% in the electrical storage properties of the fiber electrodes compared to the untreated
fiber. The use of plasma is very successful in removing contaminants from the surface of car-
bon nanotubes (CNTs). This treatment further leads to the expansion of their tips, altering
the surface topography, and causing changes in their porosity. The measured surface area
showed a significant augmentation, reaching a value of 208.01 m2/g. In addition, by using
its etching process, it efficiently breaks the chemical bonds with reactive elements during
oxygen plasma functionalization, resulting in the introduction of oxygen functional groups.
This mechanism facilitates the formation of a pseudocapacitive effect, eventually leading to
an increased capacitance. A comparative analysis was conducted to assess the performance
of pristine carbon nanotubes (CNTs) and functioning CNT fibers in three distinct elec-
trolytes via the use of cyclic voltammetry (CV) (Figure 2a). The findings demonstrated that
the plasma-functionalized fiber had a higher specific capacitance compared to the untreated
CNT fiber-based supercapacitors, as shown in Figure 2b. When the current density was set
at 0.5 mA/cm2, it was found that the device using EMIMBF4 showed a specific capacitance
that was about 27% and 65% greater than the devices using the EMIMTFSI and H2SO4 elec-
trolytes, respectively. The supercapacitor that used an EMIMBF4 electrolyte demonstrated
an energy density of 5.15 µWh/cm2 and a power density of 7.76 W/m2 (Figure 2c). The
EMIMTFSI electrolyte-based supercapacitor demonstrated a similar degree of performance,
with an energy density of 2.91 µWh/cm2 and a power density of 6.59 W/m2. On the other
hand, the supercapacitor that was based on H2SO4 demonstrated an energy density of
0.27 µWh/cm2 when it was operated at a power density of 2.27 W/m2. CV curves were
acquired at various scan speeds spanning from 5 to 500 mV s−1 (Figure 2d). In addition, the
devices underwent a charge/discharge test (GCD) at various current densities, as shown in
Figure 2e. The symmetrical form of the GCD curves remained consistent, even at increasing
current densities. In addition, it shows excellent performance properties when exposed
to mechanical deformation and bending with a cycle stability of 93.2% and a prolonged
operating lifetime (Figure 2f).
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Furthermore, a comparison table is presented for the various composites of CNTs with
different electrode materials for the enhanced capacitive properties, as shown in Table 1.

Table 1. Summary of various CNTs with different electrode materials.

Material Specific/Volumetric
Capacitance Electrolyte Potential

Window (V)
Capacitance
Retentions (%)

Number of
Cycles Ref.

PPy/CNT 202.2 mF/cm2 Hydrogel 0 to 0.8 97.6 1000 [48]
NiO/MnO2/CNT 23 F/g 2 M KOH 0.2 to 0.55 Over 100 10,000 [49]
CNT–PDMS Sponge 13.82 mF/cm3 PVA/H3PO4 0 to 1 98.44 3000 [50]
CNT-reinforced MS
sponge 6.7 F/g NaClO4 0 to 1 88 5000 [51]

Ti3C2Tx/CNT/PC 364.8 mF/cm2 KOH/PVA −0.6 to 0.6 ~90 15,000 [52]
Ti3C2Tx/CNTs 300 F/g 1 M H2SO4 −0.7 to −0.2 92 10,000 [53]
Ti3C2Tx//rGO/CNT/PANI 117 F/g 3 M H2SO4 0 to 0.8 80 10,000 [54]
MoS2@CNT/RGO 129 mF/cm2 H2SO4/PVA −0.6 to 0.4 94.7 10,000 [55]
PANI/GO/CNT 729.3 F/g PVA/H3PO4 0 to 1 80 500 [56]

RGO+CNT@CMC 177 mF/cm2 H2SO4/PVA 0 to 0.8 Greater than
100 1000 [57]

CNT/MnO2 231 mF/cm Na2SO4 0 to 0.8 ~100 3000 [58]
MoS2/CNT 337 mF/cm2 Na2SO4 −0.7 to 0.7 97.6 2500 [59]
CNT/PANi/PDMS 265 F/g PVA/H3PO4 0 to 1 76 5000 [60]
MoS2/PANI/CNT 168 mF/cm2 H2SO4/PVA −0.2 to 0.8 80 1000 [61]
CNT/graphene/PANI 261.5 mF/cm2 PVA/H3PO4 0 to 1 80.2 5000 [62]
TiO2/VACNT 16.24 mF/cm2 Na2SO4 0 to 1 99.7 5000 [63]
CNT/PANi/PDMS 265 F/g PVA/H3PO4 76 5000 [60]
Fe2O3-based
supercapacitor 2371 F/g Na2SO3 0 to 2.2 95.38 5000 [64]

PANI/N-CNT@CNT fiber 323.8 F/g (PVA)/H3PO4
gel 0 to 0.8 92.1 10,000 [65]

MnO2/CNT//PPy/CNT 10.7 F/g LiCl/PVA 0 to 1.8 86 5000 [66]
CoSe2/CNT 593.5 mF/cm2 3.0 M KOH −0.2 to 0.3 85.29 4000 [67]
CeO2/CNTs 818 F/g 2 M KOH 0.3 to 0.81 95.3 2000 [68]
CeO2/activated carbon 162 F/g 1 M H2SO4 −1 to 1 99 1000 [69]
CNT-ZnO 126.3 F/g PVA/PMA −0.5 to 0.5 - - [70]
ZnO/CNT nanocomposite 25.66 F/g 0.5 M KCl −0.8 to 0.8 - - [71]
CNT/GT/ZnO composites 6.99 F/g 1 M KCl −0.5 to 0.5 Above 70 100 [72]
CNT/GNF/ZnO 306 F/g 1 M H2SO4 −0.2 to 0.8 99.4 200 [73]
CNT/ZnO/NiO HNCs 67 µAh/cm2 1 M KOH 0 to 0.6 112 3000 [74]
PEDOT–V2O5–VA-
CNTs/GF 1016 F/g 5 mol/L LiNO3 −0.2 to 0.8 64 5000 [75]

SnO2/CNT
nanocomposites ∼4.42 mF/cm PVA-H2SO4 gel 0 to 0.8 98.3 1000 [76]

Fe2O3/CNT composites 54 F/g 2 M KCl 0 to 0.8 ∼100 1000 [77]
NiO/MWCNT 1028 F/g 1.0 M Li2SO4 −0.8 TO 1.2 99 40,000 [78]
NiO-CNT composite 878.19 F/g 1 M Na2SO4 0 to1.2 89 4000 [79]
NiO/MWCNTs
Nanohybrid 1727 F/g PVA/LiClO4

gel −0.1 to 0.5 91 2000 [80]

NiO/CNT nanohybrids 622 F/g 2 M KOH 0 to 0.5 ∼100 4000 [81]
CNT@NiO-nanosheet 1177 F/g 2 M KOH - 89.92 1000 [82]
Vertically aligned CNT 158 F/g 0.25 M HNO3 1 to 2 95.7 2000 [83]
α-Ni(OH)2 grown on
CNTs 2325 F/g 6 M KOH 0.1 to 0.7 83.6 10,000 [84]

3.3. Graphene Oxide-Based Electrode Material

Graphene oxide (GO) is a unique chemical characterized by its structure, which can
be conceptualized as a monomolecular layer of graphite. This layer is distinguished by
the presence of various oxygen-containing functional groups [85,86]. Graphene oxide is
the oxidized form of graphene, a monolayered material consisting of carbon atoms in-
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terconnected in a hexagonal lattice. Graphene oxide is synthesized using the oxidation
process of graphite, a readily available and cost-effective material. Graphene oxide exhibits
its solubility in various solvents, including water. The thickness of the graphene oxide
layers is approximately 1.1 ± 0.2 nm, and these layers are characterized by the presence
of functional groups at the edges of each layer. Graphene oxide exhibits non-conductive
properties due to the presence of oxygen inside its lattice structure. However, it has the
potential to be transformed into graphene through the utilization of chemical methodolo-
gies [87]. One of the salient features of GO is its substantial surface area. The presence
of oxygen-containing chemical compounds on the surface of graphene introduces defects
and functional sites. This results in a notable augmentation of the surface area compared
to graphene in its pristine state. This characteristic renders GO a very suitable contender
for utilization in energy storage systems, catalytic processes, and sensing technologies.
Due to its exceptional capacitance and electrochemical stability, this material has found
extensive application in energy storage systems, including supercapacitors and batteries.
Additionally, GO has exceptional dispersibility in both water and organic solvents because
of the hydrophilic oxygen groups it contains. This characteristic allows for the creation
of consistent dispersions and aids in the manipulation and manufacturing of products
based on GO. Despite the presence of impurities and functional groups, graphene oxide
maintains its sp2 carbon network, which confers it with intrinsic mechanical stability.
This characteristic facilitates the advancement of graphene oxide-based composites that
exhibit improved mechanical properties. Furthermore, GO possesses excellent thermal
and electrical conductivity. The presence of oxygen functional groups in graphene has a
disruptive effect on its electronic structure. However, it is possible to selectively remove
these groups to restore the electrical conductivity of graphene. The capacity of GO to adjust
its conductivity renders it well-suited for implementation in several fields such as electronic
devices, along with energy management.

Aliakbari et al. [88] reported a functionalized graphene oxide composite with cobalt.
Graphene oxide sheets were obtained by using the modified Hummer’s method. The obtained
nanosheets were functionalized by using the precursor of 5-Amino-1,10-phenanthroline and
labeled as N-FGO. Furthermore, N-FGO nanosheets were utilized to make composites
with cobalt, and the final product obtained was titled as a N-FGO-Co composite. Various
spectroscopic techniques were utilized to study the characteristics of the obtained final
product. Furthermore, an active electrode material (N-FGO-Co) was deposited on stainless
steel, which was utilized as a current collector for the electrochemical testing procedure. A
symmetric device was fabricated to estimate the electrochemical performances, as shown
in Figure 3. Initially, CV measurements were conducted using a scan rate of 5–100 mV s−1

within the potential range of 0 to 1.0 V, as depicted in Figure 3A. It is noteworthy that
the shape of the CV curves remains consistent across a broad spectrum of scan rates
ranging from 5 to 100 mV s−1. This observation provides more evidence for the capacitive
properties of the N-FGO-Co/N-FGO-Co system, aligning with the expected behavior. The
observed phenomena demonstrate a notable capacity for high-rate performances and a
reduced overall resistance. Additionally, the determination of specific capacitance levels are
conducted at different scan rates (ranging from 5 to 200 mV s−1), as depicted in Figure 3B.
Specific capacities were recorded at various scan rates ranging from 5 to 200 mV s−1.
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4. The ML Model’s General Workflow

The prediction or classification of materials using a machine learning model is mostly
contingent on the integrity and structure of the dataset, the identification of significant fea-
tures, and the appropriate application of strategies inside the machine learning framework.
Figure 4 illustrates a conventional procedure for the development of ML models. The next
sections present a thorough description of the necessary steps.
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4.1. ML Model Data Collection and Extraction

The method of collecting data acts as the initial stage in the training of the ML model.
A dataset that is both extensive and representative, in conjunction with a machine learning
model that has been correctly trained, has the potential to provide predictions with im-
proved accuracy. The collection of extensive datasets required for experiments is facilitated
using open source databases. To predict the performance of supercapacitors, researchers
often collect source datasets from experimental studies, the scientific literature, or computa-
tional simulations. Data pre-processing is a necessary step in the data analysis process since
it involves the identification and handling of missing or erroneous data [89]. This entails
the replacement, updating, or deletion of such data from the acquired dataset. The efficacy
of machine learning methods in the domain of material research relies on the quantity and
nature of the data that are accessible for training the machine learning networks.

The feature extraction methodologies used in the machine learning applications for
supercapacitor materials heavily depend on human decision making and judgment. Nev-
ertheless, in some instances, the use of algorithms, such as principal component analysis
(PCA), is employed as a means of reducing dimensionality [90]. To predict the perfor-
mance of supercapacitors, various input features are utilized to train machine learning
models. These features encompass synthesis conditions, such as precursor type, activation
temperature, and activation type. Additionally, the structural properties of SC materials,
including their composition, morphology, specific surface area (SSA), pore volume (PV),
pore size (PS), ID/IG ratio, and presence of doping elements, are considered. Furthermore,
operational properties, such as power window (PW), current density, electrolyte type, and
electrolyte concentration, are also considered as input features for the training of these
networks. Correlations or redundancies among these features might complicate the process
of selecting the most informative ones. To achieve this, the use of correlation analysis and
feature significance methodologies is applied to discover and only keep the most relevant
characteristics. In addition, the use of methods like Recursive Feature Elimination (RFE)
may help decrease the presence of less informative features by repeatedly eliminating them
and prioritizing those that have the greatest effect [8]. Furthermore, the dependability of the
chosen features may be affected by noise and fluctuations in data quality. This issue may be
addressed by thoroughly preprocessing the data, dealing with outliers, and ensuring data
quality. These measures will strengthen the resilience of the results of feature selection.

4.2. ML Model Development and Evaluation

The categorization of ML approaches may be divided into four primary classifications:
supervised, unsupervised, reinforcement, and ensemble learning. The optimal use of
a state-of-the-art machine learning model in conjunction with the appropriate training
data yields exceptional levels of prediction accuracy [90]. Supervised learning methods,
such as artificial neural networks (ANNs), support vector machines (SVMs), decision
trees (DTs), multi-layer perceptron (MLPs), random forests (RFs), linear regressions (LRs),
recurrent neural networks (RNNs), and Gaussian process regressions (GPRs), are often
used in the field of material science. Most of the previous research has effectively used
artificial neural network and recurrent neural network models to accurately predict the
performance of supercapacitors. Deep neural networks (DNNs) are frequently employed
for the classification and regression of targeted properties, though RNNs are specifically
designed to handle sequential or time-series data. Moreover, the utilization of DNNs such
as MLP has been used to improve the overall efficiency of supercapacitors. LSTM (long
short-term memory) models are a particular type of RNN built to address the challenge of
learning order dependence in sequence prediction tasks. LSTM networks possess feedback
connections, which distinguishes them from conventional feedforward neural networks.
Figure 5 shows several types of machine learning methods.
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ML models undergo an evaluation and verification of their predictive results us-
ing performance metrics, such as the correlation coefficient (R2), root-mean-square error
(RMSE), mean absolute error (MAE), mean square error (MSE), mean absolute percent-
age error (MAPE), and error rate [91]. Furthermore, considering the characteristics, each
machine learning model has hyperparameters that have an impact on its performance.
Therefore, the optimization of hyperparameters is conducted to minimize the challenges of
underfitting and overfitting. Moreover, by using the most appropriate machine learning
model, one may successfully estimate their performance, conduct material screening, and
optimize processes.

5. The Application of ML for Supercapacitors

In recent years, the use of machine learning for storing energy materials, particularly in
the context of supercapacitors, has shown positive results. The primary parameters used to
assess the efficiency of SCs are capacitance, resistance, cycle life, energy density, and power
density. Researchers prioritize the prediction of capacitance, state of charge, and usable life-
cycles of supercapacitors owing to their importance in choosing appropriate supercapacitor
materials, arranging replacement schedules, and identifying optimal operating conditions.
Figure 6 is a flow diagram illustrating the technique used in machine learning models for
predicting capacitance, power density, usable lifecycles, and state of charge.
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5.1. Capacitance Prediction with ML

Carbon materials with a substantial specific surface area, pores, electrical conductivity,
and thermal resistance are often considered as suitable choices for hybrid supercapac-
itors. The efficacy of SCs is affected by non-linear effects resulting from variations in
both their structural and operational characteristics. In the past decade, there has been a
growing use of ML algorithms to gain insights into the correlation among the performance
of carbon-derived supercapacitors and various structural and operational characteristics.
Liu et al. [92] suggested a method for predicting the capacitive behavior of carbon-based
materials by investigating the correlation among their structural characteristics and capaci-
tance. A dataset of 105 diverse carbon compounds, each defined by 11 structural factors,
was obtained with the aim of predicting capacitance. This work used several models,
namely RFs, Gradient Boosting Machines (GBMs), and Extreme Gradient Boosting (XGB),
for the purpose of predicting capacitance. Furthermore, the use of supervised learning
models, including ANNs, SVMs, and MLR, have been employed for the same objective.
However, the complexity of ensemble models may hinder the interpretability of the results.
Zhou et al. [93] used four regression models, including ANNs, RFs, SVMs, and Generalized
Linear Regression (GLR), to forecast the essential characteristics of activated carbon that
provide the highest amount of energy and power density. The input parameters that were
utilized for model training consisted of the scan rate and the surface area of micropores and
mesopores. The output parameters that were implemented were capacitance and power
density. The use of an ANN model exhibits superior efficacy in determining the value
of capacitance for activated carbon, hence establishing a greater correlation between the
predicted and measured power density values. In addition, an ANN model predicts that
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the highest energy density may be attained by activated carbon molecules with a surface
area of 920 m2/g for micropores and 770 m2/g for mesopores, respectively. The ANN
model excels at recognizing the complex patterns and relationships within large datasets,
enabling the extraction of valuable insights of supercapacitor performances.

Tawfik et al. [94] investigated the machine learning methods that provide direct, effi-
cient, and accurate forecasting skills in the context of designing materials for porous carbon
supercapacitor electrodes. A total of 260 distinct carbon-based electrodes were obtained,
each exhibiting unique morphologies. Various machine learning methods were examined
to forecast the capacity of the porous carbon supercapacitors, including artificial neural
networks with diverse architectures, Lasso, and support vector machine models. Their
findings demonstrated that the artificial neural network with two hidden layers has supe-
rior performance in the context of SCs, as shown by the RMSE, MAE, and R values of 28.67,
37.59, and 0.895, respectively, while the XGB shows the second-highest performance after
the ANN with R value of 0.892, as shown in Figure 7a,b. The performance and relative con-
tribution of the predictive features are shown in Figure 7c. It shows the importance of the
SSA, which affects more in terms of the output capacitance. Furthermore, Saad et al. [95]
used several ML models, including k-nearest neighbors’ regression, Bayesian ridge re-
gression, decision trees, and artificial neural networks, to achieve precise predictions of
graphene’s capacitance. These models were trained using diverse electrochemical and
physiochemical characteristics of graphene. The ANN model has superior performance
compared to the other three models. The ANN suggested by Lu et al. [96] was utilized to
predict the capacitance of the carbonized metal–organic framework. This study involved
a comparison between the experimental capacitances and those predicted by the ANN.
The results demonstrated that the suggested model surpasses in its ability to forecast the
capacitance of supercapacitors, exhibiting the lowest error range of 0.02% to 1.05%.

Chemical doping using heteroatoms, such as boron, nitrogen, sulfur, phosphorus, and
other elements, may greatly enhance the capacitive abilities of carbon-based materials [97–100].
Consequently, there has been a shift in focus towards using ML models to forecast the
effectiveness of SCs, considering the impact of doping materials as a percentage, as well as
other structural and operational characteristics. Mishra et al. [101] evaluated the impact of
heteroatom doping composition and structural characteristics of carbon materials on the ef-
fectiveness of capacitance using ML models. A comprehensive dataset of 147 carbon-based
supercapacitor sets was compiled from the existing literature. This dataset encompasses
several input parameters, such as current density, pore volume, pore size, presence of
defects, potential window, specific surface area, oxygen, and nitrogen content, of the
carbon-based electrode material. The regression analysis of the target specific capacitance
from the physicochemical features of the SCs involved the implementation of five distinct
approaches. These approaches encompassed the Ordinary Least Square Regression (OLS)
method, as well as several data-driven techniques, namely SVMs, DTs, RFs, and XGB.
The XGB and RF performed better, which is evident by the R2 values of 0.79 and 0.75,
respectively. They used different carbon electrodes to produce the proportional impact of
any given input parameter on the capacitance using the trained XGB model. Moreover,
Zhu et al. [102] used ML methods, including ANNs, linear regression, and Lasso, to deter-
mine the capacitance of carbon materials. A comprehensive data collection consisting of
681 supercapacitors based on carbon materials has been compiled from over 300 scholarly
articles. This ML model was trained using five input features, specifically the specific
surface area, PS, ID/IG (intensity ratio of D and G bands), N-doping level, and voltage
window. The results indicated that an ANN model outperforms both the linear regression
and Lasso models, as shown by its higher R2 value of 0.91.
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Machine learning methods are also used to forecast efficiency and optimizing the
design of pseudocapacitive SCs, which include oxides and composite materials. Numerous
scholars have conducted investigations on the utilization of artificial intelligence models
for the purpose of effective prediction, pertaining to various types of pseudocapacitive
supercapacitors. Mathew et al. [103] used a ML model to investigate the impact of the
electrode area on the efficiency of the hybrid supercapacitor. The design of hybrid superca-
pacitor electrodes involves the use of both MnO2 and activated carbon materials. These
electrodes are configured in rectangular and square geometries, with their areas being
subjected to variation. The findings suggest that electrodes with a rectangular form exhibit
improved qualities in comparison to electrodes with a square shape. The model that has
been presented demonstrates reliability in its predictive capabilities, as shown by its mean
squared error value of 0.02. The ML model is well-suited for handling large and diverse
datasets of the SC, whereas the conventional methods struggle to extract meaningful in-
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formation. Similarly, Lokhande and Chavan [104] conducted an investigation of the cyclic
behavior of the Ni(OH)2 supercapacitor electrode that was created using the ML model.
The electrochemical test of the constructed electrode was conducted at various scan rates,
and the resulting experimental data were used to train the model. The calculation of the
specific capacitance involves the consideration of several factors, including instantaneous
current, active mass, scan rate, and potential window. The ANN model has superior
performance, as seen by its low percentage error of 0.14%. Additionally, Alimi et al. [105]
investigated an ANN model to achieve precise forecasting of the CV characteristics of
trijunction supercapacitor electrodes composed of MnO2, NiO, and ZnO. The obtained R2

value of 0.999 indicates a high level of accuracy in their predictions. Table 2 presents a
summary of the literature studies on the machine learning applications for predicting the
capacitance of supercapacitors.

Table 2. Summary of capacitance prediction with ML.

Material Targeted Prediction Modeling Approach Remark Ref.

EDL capacitor Solvent effect on
capacitance MLP, SVR, and LR ML models identify the influence of the

solvent variable and dielectric constant. [106]

Activated carbon
electrodes

Prediction of
capacitance and power
density

GLR, SVM, RF,
and ANN

Quantitative correlation between the
structural design of electrode and EDLC
performance through ML.

[93]

Graphene-based
electrode Predict capacitance ANN, KNN, and DT ANN model identifies the current

density and potential window. [95]

Porous carbon
materials Predict capacitance MLR, ANN, SVM, RF,

and XGB
ML provides the design strategy to tune
the microstructure. [92]

EDL capacitors Predict capacitance MLP-RT ML provides the correlation of EDL
with particle curvature. [107]

Carbonized ZIF-67
supercapacitor

Predict electrochemical
response ANN ML provides the performance

of supercapacitor. [96]

Algae-based BACs
Predict the structural
feature performance
and capacitance

ANN and RF Predicts the specific capacitance of
the supercapacitor. [108]

BACs from
jackfruit seed

Optimization of
processes; prediction of
capacitance and ESR

ANN, PSO
The ANN optimized the impregnation
ratio to the activated carbon for
better performance.

[109]

BACs from mango
seed husk Predict capacitance DT, LR, SVR, and MLP

Developed correlations for the systems
at non-equilibrium conditions, which
results in large gaps in theoretical and
experimental research that has been
addressed by ML.

[110]

BAC-based
supercapacitor

Influence of synthesis
and operational
parameters on
capacitance

ANN (RBF) The ANN facilitates the synergetic effect
of various parameters. [111]

BAC-based
supercapacitor Predict capacitance ANN (BP), RF, DT,

and XGB ML predicts the electrical capacity. [112]

BAC electrodes Predict capacitance ANN
The ANN provides the prediction for
super capacitive energy
storage materials.

[113]

N-doped carbon-based
supercapacitor Predict capacitance ANN, LR, and Lasso The ANN provides the capacitance

performance of carbon. [102]

N/O-doped
carbon-based
supercapacitor

Predict capacitance and
influence of heteroatom
doping composition

RT, MLP, SVR, and LR
ML provides the influence of porosity
and potential window on
EDL capacitance.

[114]
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Table 2. Cont.

Material Targeted Prediction Modeling Approach Remark Ref.

N/O-doped carbon
electrodes

Influence of heteroatom
doping on capacitance
and power density

GLR, SVM, RF,
and ANN

ML correlates the dependance of the
supercapacitor performance on
structural feature and composition.

[115]

Maxwell
supercapacitors

Power density and
electron density ANN The ANN predicted the specific energy

and powder. [116]

MnO2 supercapacitor
electrode

Effect on cyclic
voltammetry ANN (LM-BP) The ANN model was used to improve

the performance. [117]

Ni(OH)2 electrode Effect on cyclic
voltammetry ANN (LM-BP) CV modeling was predicted using

the ANN. [104]

Hybrid supercapacitors
with manganese
dioxide and activated
carbon

Forecast the precise
capacitance, parallel
resistance, power
density, and pulse
current

ANN (LM-BP)
The ANN model predicted the specific
capacitance, series resistance, and
pulse current.

[103]

Boron-doped carbon
derived from sucrose

Influence of synthesis
and operational
parameter on
capacitance

ANN(LM-BP) Large mesopores influence better
responses analyzed by ML. [118]

S/N-doped chicken
bone-based BACs

Influence of heteroatom
doping and type of
electrolyte on
capacitance

ANN and RF The ANN predicts the capacitance and
energy density. [119]

N/O-doped ACs Influence of heteroatom
doping on capacitance MLP The ANN predicts the effect of the N/O

functional group on the AC materials. [120]

N-doped carbon-based
Supercapacitors Predict capacitance SVM-GWO

The SVM investigates the impact of
structural features on capacitor
performance.

[121]

Mixed type of
supercapacitor

Capacitance prediction
Energy density and
power density

ANN
The ANN predicts the power and
energy density to calculate the
performance of supercapacitor.

[122]

rGO/ANFs/CNTs

Optimize combination
of rGO, ANFs, and
CNTs for energy and
power density

GPR
Provided the understanding of
functional relationships in a
material problem.

[123]

Cobalt-doped
Ceria/reduced
graphene oxide
nanocomposite

Cyclic voltammetry
behaviour ANN and RF The ANN model acts as a potential tool

to add more to energy storage systems. [124]

5.2. Remaining Useful Life Prediction with ML

The degradation of supercapacitors is affected by several variables, including temper-
ature, voltage, and the materials used for the electrode and separator [125]. To effectively
manage the intricate aging state system of supercapacitors, it is essential to use indirect
monitoring and prediction techniques. Two crucial indicators, state of health (SOH) [126]
and remaining usable life (RUL) [127], are identified among them. Supercapacitors pos-
sess a comparatively extended operational lifespan in comparison to other energy storage
technologies. However, it is important to note that their lifespan is subjected to limitations
imposed by external stress factors encountered during actual use. The primary elements
that contribute to the aging of supercapacitors are electrical stress, namely voltage and
current, and thermal stress, specifically temperature. SCs consist of electrodes, electrolytes,
diaphragms, and fluid collectors. Therefore, the aging characteristics of supercapacitors
often include shell damage, electrolyte breakdown, and electrode deterioration [128]. The
accurate and timely monitoring of the SOH and RUL of supercapacitors is essential for the
precise assessment of their aging process [129,130].

Machine learning prediction models have been developed for the purpose of moni-
toring the state of health of supercapacitors in the respective area. The aging process of
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supercapacitors is influenced by a multitude of variables. The hybrid genetic algorithm
(HGA) was presented by Zhou et al. [131] to enhance the long short-term memory (LSTM)
model. In this approach, the genetic algorithm incorporates sequence quadratic program-
ming as its local search operator, leading to the development of a novel recurrent neural
network (RNN) model [91]. The experimental findings demonstrated that the HGA-LSTM
model exhibited superior prediction accuracy, with a prediction error of less than 2%,
as well as enhanced resilience compared to both the separate LSTM and HGA models.
However, HGA-LSTM lacks interpretability, making the results challenging to understand
the reasoning behind the prediction accuracy. In addition, a prediction approach was
developed by Wang et al. [132], which utilizes a novel variant of LSTM in conjunction
with the Adam and Dropout algorithms. This study aims to estimate the status of the
cycle aging of supercapacitors in various operating conditions. The experimental findings
demonstrated that the newly developed LSTM-RNN exhibited superior prediction accu-
racy, as shown by an RMSE of 0.0261. Furthermore, Weigert et al. [133] employed a neural
network with full connectivity to forecast the cycle life of hybrid electric automobiles that
utilize battery–supercapacitor technology. In addition, they examined the main factors that
contribute to the aging of SCs. The RUL of the SC is determined by the examination of
a brief charge–discharge curve, resulting in a strong correlation coefficient of 0.95 for the
predicted results. The literature review on machine learning applications for predicting the
RUL and SOH of SCs is shown in Table 3.

Table 3. Summary of RUL prediction with ML.

Material Targeted Prediction Modeling Approach Remark Ref.

SC RUL prediction LSTM, GRU,
and BPNN

ML provided an accurate
prediction of RUL to ensure the
reliability and stability of the
supercapacitor.

[134]

SC RUL prediction LSTM HGA-LSTM predicted the life of
the energy storage device. [131]

Hybrid SC Lifetime prediction (SOC) ANN The ANN predicted the state of
charge of the battery. [133]

SC RUL prediction LSTM, GRU,
and simple RNN

LSTM-RNN predicted long
short-term memory. [125]

Activated carbon
electrodes Supercapacitor aging NFN

A neo-fuzzy neuron-based ML
study took place for the aging
study of a supercapacitor.

[135]

SC RUL prediction BLSTM, BGRU, RNN,
and LSTM

BLSTM-RNN predicted the life of
the supercapacitor. [136]

SC Charge/discharge behaviour MLP The MLP determines the behavior
of supercapacitor accurately. [137]

Carbon electrodes Lifetime prediction (SOC) ANN, LR, and PCA The ANN predicted the cycle life
of supercapacitor accurately. [138]

Hybrid Li ion SOC prediction RLS
The RLS algorithm provides
logical outcomes in various
functioning of Li ions.

[129]

Electrochemical
capacitors Supercapacitor aging GPR The GPR algorithm predicted the

capacitance fade trend. [139]

MnO2/NiO/ZnO
trijunction electrode Energy Storage Application ANN

The ANN model is suitable for the
prediction of the CV behavior of
the supercapacitor.

[105]

Ultracapacitor RUL prediction CNN The CCN method provided the
accurate life prediction. [140]

SC State-of-health prediction NSGAIII and NSGAII NSGAIII predicted the SOH of the
supercapacitor accurately. [141]
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5.3. The Economics and Scalability of ML Models

Deploying ML models requires significant upfront expenditures in technology, infras-
tructure, and proficient personnel. The collecting and processing of big datasets of energy
storage devices, especially supercapacitors, the development of models, and the upkeep
of computing resources, incur significant expenses. Continual costs include the ongoing
surveillance, upkeep, and improvements required to ensure that the ML models remain
current and efficient. Operational expenses are influenced by regular updates, data quality
assurance, and system monitoring. The economic importance of storing and processing
vast amounts of data on a large scale cannot be emphasized enough, necessitating strong
expenditures on infrastructure [142]. Furthermore, the issue of energy consumption be-
comes relevant when dealing with intensive processing requirements, especially in the
case of deep learning models. This highlights the need to implement efficient strategies to
control energy costs in large-scale installations.

The infrastructure is crucial in determining the scalability of a system. Cloud solutions
have the benefit of scalability, enabling organizations to modify resources in accordance
with demand. Nevertheless, firms must thoroughly evaluate the cost-efficiency of ex-
panding. The intricacy of ML models impacts their scalability, and attaining scalability
without compromising on performance sometimes necessitates the simplification or distil-
lation of models. Scalability concerns also apply to the process of deploying ML models,
ensuring that they can be effectively distributed across many platforms and settings. Con-
tainerization and microservices are crucial in improving the scalability of deployment.
Ultimately, the success of ML deployment in energy storage device performance hinges
on achieving a careful equilibrium between economic considerations and scalability. Or-
ganizations should thoroughly consider the long-term expenses and advantages while
guaranteeing that their machine learning solutions can effortlessly expand to accommodate
changing requirements.

6. Recommendations and Future Work

This review has presented supercapacitors and their classification according to their
charge storage mechanism. Moreover, carbon-based supercapacitor electrodes have been
discussed in detail in terms of their charge storage mechanism. Additionally, making
composites of carbon-based material is considered as an efficient way to improve the
capacitance characteristics. In addition, various ML techniques have been discussed, which
are in practice to predict specific capacitance, energy, power density, and supercapacitor
cyclic health. The subsequent section presents our suggestions for future research based
on importance:

- Carbon-based materials possess excellent physiochemical characteristics; however,
to improve their electrochemical performances, there should be advancements in the
synthesis techniques to work on the pore structure of these materials, which helps in
storing more charges.

- The utilization of machine learning techniques to predict the materials’ properties,
including their cyclic life, specific capacitance, power, and energy density. This can
help in reducing the cost of these materials and reducing the time spent selecting the
high-performance electrode materials.

- Newly emerging 2D and 3D materials can be analyzed through ML by using their
electrical, crystallographic, and electrochemical properties to predict their performance
for supercapacitor applications. This will facilitate the researcher to discover new
materials instead of using conventional materials.

- For powering IoT devices, supercapacitor electrode materials and electrolytes should
be biosafe. Therefore, for the electrode materials and electrolytes, the green synthesis
method should be discovered with enhanced performances.

- Future research might potentially prioritize the development of interpretable machine
learning models to forecast the performance of supercapacitors. This could be achieved
by using new methodologies like artificial intelligence.
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- Morphology is an important factor that affects the transportation of electrolyte ions
into an electrode; thus, an advancement of its morphological characteristics is a
vital parameter.

- The selection of an electrolyte is important in terms of the wider working potential
window. Hence, a suitable electrolyte that is compatible with the pore size of the
electrode should be considered in the fabrication of supercapacitor devices.

- Fabrication of binary or ternary composites with carbon-based materials, because of
their highly porous structure, can help smooth the deposition of composite materials.
Combining pseudocapacitive materials can result in improvements in energy density
and capacitive performance.

- The study of the electrode/electrolyte interface is vital for the improvement of charge-
storing properties, so in situ characterization during the charging/discharging test
is important.

- For IoT devices, it is necessary to produce active electrode materials without using a
binder, as they increase the dead mass of the device.

- The choice of highly flexible and charge collectors is essential for some IoT device
applications; therefore, it is important to develop charge collectors with excellent
mechanical and electrical properties.

- The use of quantum-enhanced machine learning approaches in the field of perfor-
mance prediction accuracy for supercomputers might potentially accelerate the pro-
gression of conventional machine learning methodologies.

7. Conclusions

The growing interest in SCs for IoT devices is motivated by their remarkable character-
istics, such as their high power and energy density, long lifetime, cycling stability, and rapid
charge–discharge cycles. Accurately predicting the capacitance and lifespan is crucial for
selecting materials and scheduling replacements. Carbon-based supercapacitor electrodes
are essential for the advancement of contemporary technology, out of all the many types of
electrode materials. Accurate estimations of the lifespan of energy storage devices enhance
the control of system failures. The growing worldwide enthusiasm for using machine
learning techniques to predict the performance of energy storage materials is motivated
by ML’s benefits in terms of its prediction accuracy, time efficiency, and cost-effectiveness.
Extensive investigations have been conducted to enhance the electrochemical characteristics
of carbon materials, aiming to fulfill the growing requirement of developing carbon-based
supercapacitors commercially. This paper provides an in-depth review of carbon-based
supercapacitors, including a detailed analysis of their charge storage mechanism and a
review of the developments achieved via the use of machine learning in the research on
supercapacitor materials. The collection of a significant quantity of high-quality data is
an essential challenge in the use of machine learning for carbon material supercapacitors
since machine learning heavily relies on data-driven processes. This challenge is crucial to
overcome to ensure the accuracy and dependability of machine learning applications in
this area. The success of machine learning applications is contingent upon the process of
feature selection.

The promising capacitance performance of CNTs, which exhibit high chemical stability
under high-voltage conditions, is noteworthy. This can be attributed to the presence
of the mesoporous surface, which greatly enhances the power density of the electrode.
But due to the poor bulk density of CNTs, it does not show excellent performances as
expected. Similarly, graphene oxide has also been proven to be a good candidate for high-
performance supercapacitor device fabrication due to its excellent stability, large surface
area available for electrode/electrolyte interactions, possibility of functionalization with
different groups, and facile synthesis method. However, it suffers from poor cyclic life
and not enough conductivity; therefore, by making composites with other metal oxides,
polymers can present a valuable strategy to improve their performances. To study more
deeply the mechanisms of poor stability and lower charge storage capabilities, data-driven
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techniques can be utilized for the optimization of electrode materials to enhance the specific
capacitance of supercapacitor devices.

Furthermore, enhancing the performance of supercapacitors may be achieved by
considering the temporal dynamics of the supercapacitor parameters. Intriguing patterns
may be seen via the recognition of parameter drift. Improving the quantity and boosting the
quality of datasets pertaining to material attributes can significantly enhance the predictive
capabilities of the machine learning model. The identification of significant material
variables is essential to enhance the quality of the suggested output. The use of implicit
deep learning may lead to enhanced outcomes in predicting the remaining useful life of
SCs, resulting in reduced error rates. Various neural network-based methods, including
recurrent neural networks, neuro-fuzzy networks, deep belief networks, and artificial
neural networks, are used for the purpose of predicting the remaining lifespan and power
capacitance of supercapacitors. Many researchers in the field of computational science
have conducted experiments using accurate, efficient, and reliable techniques to estimate
the RUL and power density of supercapacitors. The LSTM-RNN model exhibits superior
performance in terms of its increased prediction accuracy and reduced error. The use of
RNN-based approaches yields improved predictive accuracy and has the added benefit of
reducing development time.
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