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Abstract

:

Public transport (PT) networks face significant challenges in achieving optimal outcomes due to the presence of risk and uncertainty. Despite the importance of optimising PT networks’ performance, limited research has applied risk management tools to tackle this issue. In response, this study presents a three-stage framework to optimise PT networks’ performance in uncertain conditions. First, we establish a PT criteria matrix using an analytic hierarchy process to develop a criteria model and calculate the criteria weightings. Second, we propose a multi-aspiration-level goal programming approach to optimise a PT network’s performance based on the weighted results. To manage uncertainty, we use Monte Carlo simulation to analyse the probability of the optimal solution. Finally, to validate our approach, we apply the three-stage framework to three case study areas in Australia. The results of this research offer significant insights into identifying the likelihood of criteria optimisation scenarios, thereby assisting decision makers in allocating resources for optimising the delivery of PT network performance solutions in accordance with government requirements.
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1. Introduction


1.1. Public Transport Networks


Public transportation is essential for the daily operation of society and is also considered a viable way to address the environmental issues that are caused by the increasing number of private vehicles. Due to its significance for sustainable development, public transport (PT) is being advocated by many countries, regions, and organisations, such as the UN-Habitat [1]. A PT network is a network formed by various types of PT, such as buses and trains, and an optimised PT network can not only provide residents easy access to PT but also help better address environmental issues and contribute to the sustainability of society. However, optimising a PT network is associated with uncertainty and risk, which can have great impacts on optimising outcomes.



The amount of recent research on PT decision making under uncertain conditions is increasing, with a focus on identifying the level of uncertainty that is associated with system input variables [2,3]. Additionally, in the PT multicriteria optimisation decision making problem, current research only considers one or two processes in terms of evaluation, optimisation, and uncertainty [3,4,5,6]. Studies about combining these three processes are limited. Therefore, this study’s integration of evaluation, optimisation, and uncertainty processes in PT performance within a novel framework provides improved performance.




1.2. Uncertainty and Risks in Public Transport Networks


The delivery of optimised results is, in practice, impacted by the uncertainty of events. Uncertainty and variation are problematic when trying to optimise PT networks’ performance. According to Altieri et al. (2017), PT is a complex system, whose quality analysis is challenging because it must consider the risks and uncertainties that are associated with human reasoning [7]. Additionally, there are numerous risks and uncertainties associated with user demand, operations, and traffic conditions that must be considered when PT performance improvement is being considered [8]. Therefore, whenever a PT optimisation model is developed to replicate a complex system, its output will always be uncertain.



Uncertainty is usually related to risk, which is defined as the influence of uncertainty on objectives or criteria [9,10,11]. Appropriate identification of major sources of risk can eliminate or at least reduce the probability of discovering new sources of uncertainty during the modelling process [4]. Thus, the uncertainty or risk identification process of the criteria is required to deliver the project results. Risk management is the tool that provides methods for mitigating project risk.



Risk management employs both qualitative and quantitative techniques. Dalmau (2022) used risk management to forecast the likelihood of airspace user rerouting, which aids the flow manager in air traffic flow management [12]. Similarly, Budzynski et al. (2021) examined PT’s response to hazards using a qualitative method, risk registers [13]. To model the likelihood of project objectives, this study employs a quantitative risk management tool.



In the PT sector, risk management models have already been used to model input and uncertainty [14,15], and recent optimisation under uncertainty problems in PT frequently employs quantitative risk management methods, which assist DMs in determining the probability of the optimal solution [16,17].




1.3. Monte Carlo Simulation for Managing Uncertainty


Uncertainty cannot be fully investigated due to limited knowledge or the randomness of some model components. Monte Carlo simulation (MCS) is a quantitative risk analysis method based on a probabilistic model that employs probability distributions to model uncertainty [18,19]. The results assist DMs in managing risk and uncertainty to complete the project.



MCS is a risk management tool that is widely used in many fields, including medicine and project management. For example, MCS is used in medicine to assess the likelihood of viral transmission [20]. Yang et al. (2020) employed MCS to model uncertainty in a project to assess the health of land ecosystems [21]. Kannan et al. (2021) used MCS to analyse the sensitivity of VIKOR and grey relational analysis in a sustainable location of a solar site selection project [22]. MCS is also used to improve the reliability of assessment results in a lake eutrophication level evaluation project [23]. In most cases, MCS is used to assess the likelihood of project outcomes.



MCS has attracted the interest of PT researchers in recent years. For instance, Manzo et al. (2015) used MCS to analyse uncertainty in a four-stage transport model [4]. This study focused on investigating how the uncertainty of model parameters and inputs influences the model outputs. Conway et al. (2018) utilised MCS to account for variation and uncertainty in accessibility metrics when planning PT sketches [24]. Furthermore, Pencheva et al. (2021) applied MCS to determine the waiting time of passenger vehicles in PT areas [25]. Research shows that despite the increased optimisation and uncertainty analysis of PT, the existing studies focus more on single aspects of PT. Consequently, an effective framework for optimising a PT network’s performance under uncertain conditions in multiple aspects is increasingly necessary to propose optimal plans and strategies while considering uncertainty.




1.4. Research Contribution


Probabilistic analysis is a commonly used technique for addressing evaluation-based issues in project management. MCS is also used in mitigating uncertainty that is related to model inputs and outputs in various application areas. Despite its effectiveness in addressing project management issues, little research has used MCS to address the problem of optimising PT network performance. This study only examines one aspect of physical performance. In PT network performance optimisation problems, the probability of a scenario (scenario analysis) is thus required.



Multiple-criteria decision making (MCDM) and goal programming (GP) methods provide a variety of frameworks, and a few MCDM and GP methods have been used to optimise PT performance to meet the goals and requirements of DMs [5,26,27]. To solve multicriteria optimisation problems, the analytic hierarchy process (AHP) is an MCDM method that is frequently combined with the GP approach [5,27].



Previous research proposed the public transport criteria matrix (PTCM)-AHP-Multi-Aspiration-Level Goal Programming (MALGP) model for optimising PT networks’ performance [27,28]. The model considers the basic PT infrastructure level, sustainable development level, PT service level, and economic benefit level for optimisation. In some cases, due to uncertainty occurring during the optimisation process, it is difficult for DMs to deliver an optimal solution. Previous research lacks an analysis of uncertainty that is related to criteria uncertainty.



Despite the current literature, a multicriteria optimisation method that combines these three processes in PT optimisation under uncertain conditions is still lacking. In the pursuit of creating a comprehensive tool to optimise PT performance under ambiguous circumstances at various levels of aspiration, several important aspects of enhancing PT performance have been overlooked [5,16]. To bridge this gap, this study proposes a three-stage approach for optimising PT networks’ performance under uncertain conditions. The models optimise four levels of criteria with uncertainty to achieve the DMs’ PT network optimisation goals. The primary goal of this study is to determine the level of criteria uncertainty, and a sensitivity analysis is performed to guide the optimisation process. MCS results can be used to assist DMs in making PT network optimisation decisions, as well as to precisely indicate the probability of the uncertainty rate when delivering criteria outcomes.



Compared with the current research, this study introduces the following novel contributions: 1. The three-stage model framework considers multiple aspects of PT network criteria. 2. The three-stage model framework is developed to evaluate and optimise PT networks’ performance under uncertain conditions. 3. The validity of optimal solutions is examined in the case study areas.



The remainder of this paper is organised as follows: Section 2 explains the framework of the proposed three-stage PT network performance optimisation under uncertain conditions. Section 3 presents the input data of the three case study areas. Section 4 discusses the analysis results of the three case study areas, and the conclusions and future directions of the research are presented in Section 5.





2. Materials and Methods


In this study, we combine the PTCM-AHP, MALGP, and MCS models into a three-stage framework to optimise PT networks’ performance under uncertain conditions. PT networks face significant challenges in achieving optimal outcomes due to the presence of risk and uncertainty. Despite the importance of optimising PT networks’ performance, there has been limited research that applies risk management tools to tackle this issue. In response, this research presents a three-stage framework to optimise PT networks’ performance under uncertain conditions. First, we use the established PT network criteria matrix. Second, we propose a MALGP approach to optimise PT networks’ performance based on the weighted results. To manage uncertainty, we use MCS to analyse the probability of the optimal solution. The results of this research offer significant insights into identifying the likelihood of criteria optimisation scenarios, thereby assisting DMs in allocating resources for optimising the delivery of PT network performance solutions in accordance with government requirements.



Figure 1 depicts the three-stage approach for optimising the uncertain PT network performance, which includes an AHP process, a MALGP process, and an MCS process. The following sections review the specifics of each stage.



2.1. AHP Process


AHP is a structured model for analysing and solving complex decision issues [29,30]. To implement AHP to solve problems, there are three steps: criteria priority weight calculation, issue decomposition, and criteria comparison analysis [31]. In this study, first, the model decomposes the PT network performance evaluation problem into numerous levels. Second, to obtain the weight of each criterion, the model uses pairwise comparisons that assign the relative importance between two criteria [29,30,32]. Based on the AHP process, the PTCM-AHP model was proposed to evaluate a PT network’s performance [28]. The following subsections review the specifics of the AHP process.



2.1.1. PTCM-AHP Model Structure


The decision variables of the AHP model have been described by Lin et al. (2021) [28]. Additional details of the PT network performance criteria can be found in Lin et al. (2021) [28]. The criteria were selected from existing PT evaluation assessments and indices [33,34,35,36,37]. These criteria are used to determine the PTCM-AHP model structure.



The PTCM-AHP model is based on four levels: the basic PT infrastructure level, the PT service level, the economic benefit level, and the sustainable development level [28]. Figure 2 presents the hierarchy of the PT network performance criteria of the PTCM-AHP model. The model includes 4 levels of criteria and 15 subcriteria.



	
The PT infrastructure level includes the harbour-type bus stop setting ratio, PT coverage ratio, PT priority lane setting ratio, and PT network ratio.



	
The PT service level contains four subcriteria: passenger freight rate, PT on-time ratio, PT driving accident rate, and peak hours intersection blocking rate.



	
The economic benefit level contains the intact car rate, coverage ratio, and bus ownership rate.



	
The level of sustainable development considers the PT utilisation rate, PT energy intensity, PT land area per capita, and green PT vehicle rate.






Once the PTCM-AHP model structure was established, the process of determining criteria weights was undertaken to test and calculate the results of the weightings. The details of the weighting process are shown in the following section.




2.1.2. Criteria Weight Determination


The major steps for determining the weights of criteria are described below [28].



	(1)

	
Construct the problem in a hierarchical structure and determine the criteria and subcriteria.




	(2)

	
Create the decision matrix   C   =   (   C   i g   )   and perform pairwise comparison between criteria and subcriteria.     C   i g     indicates the importance values for criteria   ( i )   and     g    , which are between 1 and 9, provided by experts.




	(3)

	
Normalise the decision matrix   C   to be matrix   D   =   (   d   i g   )  :


    d   i g     =       c   i g       ∑  i = 1   n      C   i g        












	(4)

	
Calculate the arithmetic mean of matrix   D   rows to obtain the prioritisation vector (  w  ):


  w =     ∑  g = 1   n      d   i g       n    












	(5)

	
Fulfil the calculation result of the highest matrix eigenvalue     T   m a x    :


   C w   =     T   m a x   w     and     T   m a x   ≈ T   =         ∑  i = 1   n      T   i       n    .  












	(6)

	
Verify the consistency of the results. Hence, the consistency ratio (CR) must be calculated. RI is the random index. The formulations of the consistency index (CI) and CR for each matrix   C   are shown below:


  C I   =       T   m a x   − n   n − 1    










  C R   =     C I   R I    












	(7)

	
Repeat steps 2–6 until   C R ≤ 10 %  . When   C R ≤ 10 %  , the model result is deemed internally coherent.







Hence, we can eventually identify the weight of the PTCM-AHP model criteria and subcriteria, which are used as coefficient values in the MALGP process. The case study area’s performance report is also created to identify the city’s PT network’s performance score and show each criterion’s performance score, which are calculated based on the case study areas’ criteria actual value. The results of the city performance report will be used to determine the criteria aspiration level used in the calculation of criteria goal values in the MALGP process. The criteria weights and performance results of the case study areas’ PTCM-AHP model results can be found in Lin et al. (2021) [28].





2.2. Multi-Aspiration-Level Goal Programming (MALGP) Process


GP is often combined with AHP to assist DMs, which can address MCDM problems and identify optimal solutions [38,39]. The outputs of the AHP process are used to define the objective function criteria priority of GP [5]. The model minimises the objective function by selecting the criteria aspiration level from numerous criterion input values [5]. Based on GP, MCGP further develops a model that allows DMs to address multiple goals or aspiration levels per criterion [40,41,42,43]. However, MCGP does not consider the selection of a criterion goal level among various aspiration-level cases. Hence, the establishment of MALGP helps DMs choose different aspiration levels to solve the PT network performance optimisation problem [27]. The model takes the selection of the criteria aspiration level into consideration to help DMs in performance optimisation. The MALGP process is shown below.



2.2.1. Criteria Aspiration Level Case Selection


The MALGP model includes the criterion case selection process. The aspiration level criterion is selected based on the actual value of the criteria. The details of the criteria-level grades can be found in Lin et al. (2021) [28]. According to Figure 3, the process contains three cases [27].



Case 1: The actual value is the aspiration value for the ith criterion when the ith criterion’s actual value is greater than     d   i    ,max.



Case 2: The aspiration value of the   i  th criterion is less than     d   i    ,max but greater than the actual value when the actual value for the   i  th criterion is less than     d   i    ,max but greater than     d   i , 4    .



Case 3: The aspiration value of the   i  th criterion is the   ( i + 1 )  th aspiration level when the actual value level for the   i  th criterion is level 1, 2, 3, or 4.



Then, the criteria aspiration-level case of the model can be identified. In the calculation step, the conditions of the objective function formulation are based on the criteria aspiration-level selection results.




2.2.2. Objective Function Formulation


After the case selection process for the criteria aspiration level, we establish the objective function formulation for the PT network performance optimisation process. The MALGP model uses criteria weights as coefficients in the model’s objective function [5]. The notations and formulation for the MALGP objective function are shown as follows [27]:



Notations:



  s  : criteria number,   s = 1 , 2 , … e  ;



  i  : goal number,   i = 1 , 2 , … n  ;



    R   i    : weight assigned for   i  th priority;



    x   s    :   s  th decision variable;



    b   i s    : coefficient of the   s  th criteria for the   i  th goal;



    p   i    : positive deviation;



    q   i    : negative deviation;



    d   i    : aspiration grade level for goal   i  ,   i = 1 , 2 … 5  .


  Min   ∑  i = 1   n      R   i     (   p   i   +   q   i   )  








subject to


     ∑  s = 1   e      b   i s       x   s     −   p   i   +   q   i       =     d   i    ,  










     p   i     ,     q   i     ,     x   s     ≥ 0 ,   











Case 1: If the constraint of     d   i     is the actual value of the criterion,


    d   i   ≥   d   i ,max    











Case 2: If the constraint of     d   i     is chosen between the criterion’s actual value and     d   i    ,max,


     d   i , 4       ≤     d   i       ≤     d   i ,max     











Case 3: If the criterion’s actual value is less than     d   i , 4     and the criterion’s goal value is less than     d   i    ,max,


     d   i ,min       ≤       d   i       ≤       d   i ,max     











During the MALGP model process, the constraint functions are based on the selected grade for the criteria aspiration level and considering the relation of the criteria. The details of the case study areas’ objective functions and constraints can be found in Lin et al. (2022) [27].





2.3. Monte Carlo Simulation (MCS) Process


In this process, we used MCS to model the probability of optimal scenario delivery. The proposed method was used to calculate the possibility of an optimal solution. MCS performs calculations, allowing for multiple simulations of a project. The process was used to quantitatively analyse project risk and identify the probability of the best solution by randomly selecting criteria values [44,45]. MCS analyses risk and uncertainty using a probability distribution. This study assumed that the DMs must control each criterion’s performance and that the criteria probability was within a range of −5%/+10%. The model outcomes were analysed to identify the probability of and confidence level for achieving the goals. The results are obtained using @risk software Version 8.3. The details of the MCS process are shown below.



2.3.1. Criteria Probability Distribution Identification


Before we begin simulating the optimisation results, we must first determine the probability of the criteria. The types of criteria probability distributions must be chosen during the identification process. According to Figure 4, the criteria sampling process uses a triangular probability distribution because the minimum, most likely, and maximum values can be estimated. The MALGP process outputs are used as the most likely value of criteria in the MCS process. Table 1 shows the criteria ratings for the uncertainty level, which can be used to calculate the minimum and maximum values of the criteria. The level of uncertainty is divided into five categories: very high, high, medium, low, and very low.



Thus, the criteria’s risk and uncertainty levels need to be identified. To determine the input of the criteria, the uncertainty and risk level of a criterion are selected based on the risk rating recommendation and existing risk ratings for the criteria. The current PT risk assessment shows that the risk level of PT driving accident rates is high [47]. Based on existing risk ratings, the uncertainty level of the intersection blocking rate during peak hours, coverage rate, PT land area per capita, and PT utilisation rate are medium [48]. Other criteria’s uncertainty levels are very low, since the optimisation process can be controlled under the government implementation plan. After the criteria uncertainty levels have been identified, the results are utilised in the sampling process. During the criteria sampling, the sampling model needs to be selected. The details of the sampling model selection are shown in the following subsection.




2.3.2. Sample Selection


MCS uses a random sampling process. Monte Carlo (MC) sampling can recreate the full input distribution by making random selections across the entire probability distribution with large iterations [49]. With high iteration, the model results are closer to the actual situation. Hence, this study used MCS performed by means of MC sampling. The details of the model input for the criteria are described in Section 3.






3. Case Study


The analysis was implemented in three study areas in Australia, including the City of Bayswater, the City of Cockburn, and the City of Stonnington. Stonnington and Bayswater are suburbs close to Melbourne and Perth Central Business District, respectively. Cockburn is a suburb in the south of Perth. In these cities, trains and buses are the major means of public transport, and the main land use type is residential. The details of the case studies can be found in Lin et al. (2021) [28]. The locations and areas of these three cities are shown in Figure 5.



The MCS was conducted to analyse the likelihood of achieving PT network performance optimisation goals. The input data for the three case study areas were derived from AHP and MALGP outputs. As demonstrated in Section 2.1, the PTCM-AHP model calculates the criteria weights that are later utilised in MALGP for the optimisation process [27,28]. The criteria weights are presented in Lin et al. (2021) [27]. The mean value of the criteria for MCS was extracted from the MALGP criteria optimising results, and the details can be found in Lin et al. (2022) [28].



The sources of uncertainty for the optimisation process of public transport networks’ performance have not been fully investigated. Thus, the degree of uncertainty for each criterion is defined based on the existing risk rating, which is discussed in Section 2.3.1. This analysis focuses on the uncertainty of the implementation criteria of the optimisation results. The risk level of criteria is defined based on an existing risk assessment of the uncertainty level.



According to the risk rating description, the uncertainty level is medium for the intersection blocking rate during peak hours, coverage rate, PT land area per capita, and PT utilisation rate. Based on existing PT risk assessments, the uncertainty level of the PT driving accident rate is high. The criteria’s mean values are each criterion’s optimal value. The remaining criteria have very low uncertainty levels. Thus, the minimum and maximum values for the criteria were calculated.



The type of probability distribution for all criteria sampling was assumed to be triangularly distributed, since the minimum, most likely, and maximum values can be estimated. The model input list of the three cities for MCS is shown in Table A1, Table A2 and Table A3. The sampling result is more likely to display the distribution accurately with a high number of draws. Thus, the criteria used 5000 draws by applying MC sampling.



Sensitivity analyses on the three case study areas were implemented. Each PT criteria performance was calculated on 5000 model runs. To explore the criteria model outputs’ uncertainty, criteria uncertainty was investigated via the criteria coefficient value, criteria optimising value’s impacts on the model output, and the criteria’s probability of reaching the DMs’ optimisation goals. The details of the model’s results and sensitivity analyses are shown in the next section.




4. Results and Discussion


Sensitivity analyses were implemented in the three case study areas. The most likely values for the criteria during the optimisation process were also determined. Finally, the results reveal the critical sensitive criteria that governments must take into account to manage uncertainty for future optimisation plans and strategies for the case study areas. Section 4.1 identifies the most sensitive criteria and the criteria’s most likely values during the optimisation process. Section 4.2 shows the most important criteria of the MCS model’s output for the study areas. Section 4.3 determines the probability of sensitive criteria to achieve the government requirements.



4.1. Sensitivity Analysis


According to Table A4, Table A5 and Table A6, all cities’ outputs are influenced by the on-time rate. Based on the output of the probability distribution for the case study areas, three cities have a 50th percentile chance of achieving the performance optimisation goals for each criterion. Except for the on-time rate, other criteria have at least a 60% likelihood of achieving the optimal solution.



Figure 6, Figure 7 and Figure 8 show the coefficient values of the criteria for the three case study areas. The y-axis displays the names of the criteria from top to bottom in an order of sensitive influence to the criteria. The x-axis indicates the coefficient values of the associated criteria.



According to the results, the most sensitive criterion for all cities is the coverage rate. This criterion’s coefficient value is over 0.9 for the three cities. According to Table A7, Bayswater and Cockburn’s most likely values are both 103.33%. The two cities’ minimum and maximum values are 85.08% and 124.5%, respectively. Table A7 suggests that the most likely value for Stonnington is 155%. The Stonnington minimum and maximum values are 127.76% and 186.52%, respectively. To control and minimise the uncertainty of this most sensitive criterion’s optimisation process, the DMs should consider improving the PT service’s commercial revenue and reducing the operating expenses for all cities’ optimisation scenarios.



Figure 6, Figure 7 and Figure 8 effectively offer an overall interpretation of the model based on each criterion. However, the relative importance of the criteria on the model output has not been discovered. For this reason, Figure 9, Figure 10 and Figure 11 show the criteria for optimising the impacts of the input on MCS output.




4.2. Permutation Feature Importance


Figure 9, Figure 10 and Figure 11 show the impacts of the three cities’ criteria for optimising the value on the model results. The y-axis demonstrates the name of the criteria, based on importance magnitude, from top to bottom. The x-axis indicates the criteria’s impact on the model output. The line colour shows the impact of the criteria on the model output, which supports the DMs in analysing the criteria’s impact on the city optimisation solution.



The figures show that the coverage rate has the highest impact on the model output of the three case study areas. Furthermore, the higher the coverage rate value is, the greater the influence on the model output is. However, this criterion suggests a baseline result when the coverage rate input is low.



For Bayswater, other criteria, such as the PT on-time rate, the PT network ratio, and the PT coverage ratio, also have a high impact on the output (as shown in Figure 9).



Similarly, Figure 10 demonstrates that these three criteria have a high influence on the model output for Cockburn. The results of the coverage rate also apply to these three criteria.



Finally, Figure 11 suggests that the higher the PT on-time rate requirement is, the higher the impact on the model optimisation results for Stonnington is. Except for the criteria mentioned above, a higher other criteria requirement has a low influence on the model optimisation output for the three cities. The figure results also validate the criteria weighting results of the PTCM-AHP model. The PT network ratio and PT coverage ratio, PT on-time rate, and coverage rate are the most important variables for the basic PT infrastructure level, PT service level, and economic benefit level, respectively [28].



Figure 9, Figure 10 and Figure 11 provide a method to analyse the effect of each criterion on the model outputs. However, DMs are often subject to government requirements to control the optimisation process. Therefore, it is necessary to identify the probability of criteria that meet the government requirements.




4.3. Test Accuracy


Finally, we determined the criteria’s probability distribution in the PT network performance optimisation process. The following section identifies the probability of the criterion that meets the DMs’ requirements. DMs require the criteria probability to be within a range of −5%/+10%. Figure 12 and Figure 13 show the probability of the criteria reaching the requirements for the three cities. The y-axis displays the probability of achieving the criterion-optimising values. The x-axis indicates the input values of the associated criteria.



Since the uncertainty levels of most criteria are very low, most criteria have a 100% probability of meeting the government requirements. For Bayswater and Cockburn, there are four criteria uncertainty levels that are higher than very low, including the coverage rate, intersection blocking rate during peak hours, PT utilisation rate, and PT driving accident rate. The details of the criteria’s probability distribution for Bayswater and Cockburn are shown in Figure 12. Five criteria for Stonnington have an uncertainty level that is higher than the ‘very low’ level. Figure 13 shows the probability distribution of these five criteria, namely, the PT land area per capita, coverage rate, intersection blocking rate during peak hours, PT utilisation rate, and PT driving accident rate.



For Bayswater and Cockburn, Figure 12a shows that a coverage rate of 60.8% reaches the government goal. According to Lin et al. (2021), this criterion has the highest weight in the economic benefit level [28]. Hence, when cities implement the optimisation scenario for economic benefit level, DMs are advised to plan ahead, which requires the implementation of a management plan during the optimisation process to mitigate the uncertainty.



Figure 12b,c demonstrate that both cities have a probability of 60.8% of achieving the requirement for intersection blocking rate during peak hours and PT utilisation rate. Lin et al. (2021) show that these two criteria have low priority to achieve the optimal goal [28]. Hence, DMs just need to effectively monitor and control the process to deliver optimisation scenarios.



Figure 12d shows that the PT driving accident rate has a low probability, i.e., 36%, of achieving the government requirement. According to Table A1, although the priority of this criterion is low, the government still requires a management plan for the optimisation scenario. Since this criterion has a high uncertainty level, the delivery of the optimal solution will be influenced.



For Stonnington, Figure 13a,b show that both criteria have a probability of 60.8% of fulfilling the government’s requirements. The criterion of PT land area per capita is not of the highest importance at the sustainable development level, but its weight is higher than that of the coverage rate. The coverage rate is the most important criterion in the economic benefit level, for which the government needs to apply management plans to optimise PT network performance. Hence, DMs are also advised to implement management action to achieve an optimal solution.



According to Figure 13c, although Stonnington has only a probability of 19% of achieving the DMs’ requirements for the criterion of the intersection blocking rate during peak hours, the evaluation results show that the actual value achieved the highest level, which is level A in Lin et al. (2021) [28]. Since it is difficult to further improve and achieve optimising results in the criterion performance, the DMs can instead focus on maintaining the current performance while controlling and optimising the criterion performance.



Figure 13d shows that there is a probability of 61.1% of achieving the government requirement for the PT utilisation rate. Since the weight of this criterion is low, the DMs are advised to implement monitoring and control during the optimisation process.



According to Figure 13e, the probability of Stonnington’s PT driving accident rate is similar to the other two case study areas, which is 35.9%. The criterion uncertainty level is high. Thus, Stonnington also suggests implementing actions to mitigate the risks during the optimisation process.



Figure 12 and Figure 13 are useful for analysing the probability distribution of each criterion to fulfil the governments’ requirements. This approach helps governments allocate resources for delivering case study area optimisation solutions.



This research establishes a solid framework for optimising PT networks’ performance in the face of uncertainty. The combination of the PTCM-AHP model, the MALGP model, and MCS enables DMs to make informed decisions based on criteria weights while optimising the PT network and accounting for uncertainty. The findings of this study help advance PT network optimisation methodologies and provide practical advice for improving urban transportation systems. DMs gain insights into the relative importance of criteria, propose optimal solutions, and assess the probability of criteria optimisation in uncertain environments by integrating the PTCM-AHP model, the MALGP model, and MCS.





5. Conclusions


To mitigate the criteria uncertainty involved in the process of optimising PT networks’ performance, this paper proposes a three-stage optimisation model for optimising public transport networks’ performance under uncertain conditions. First, the PTCM-AHP model was used to identify the weights of the model criteria and evaluate the case study areas’ PT networks’ performance. The obtained weights were then used by the second model, MALGP, to propose the three cases’ PT network performance optimisation solutions. Finally, MCS was implemented to analyse the sensitive criteria, discover the optimal solution under criteria uncertainty, and identify the likelihood of criteria optimisation based on DMs’ requirements for the three case study areas. The research results indicate that the coverage rate is the most sensitive criterion for these three cities. Furthermore, a higher coverage rate and PT on-time rate requirement will lead to a higher impact on the model optimising result for all cities. Last, although the PT driving accident rate has a low priority and probability of achieving the DMs’ requirements, this criterion has a high level of risk. Governments still need to implement management plans to achieve optimised solutions.



The model proposed in this paper can be used in the following areas: First, the DMs can use the model to evaluate the performance of a PT network. The model also provides the weights of criteria for the optimisation process. Second, the model is based on criteria weights and the governments’ goal for the criteria performance to propose an optimisation solution for the case study areas. Third, the model results identify the sensitive criteria and the criteria’s optimising value’s impact on the delivery of a PT network’s performance optimisation solution. Fourth, the outcome of this research can be used to identify the likelihood of a criteria optimisation scenario. Based on government requirements, the MCS results were combined with weighted results, which provide a reference for DMs to allocate resources for optimising the delivery of PT network performance solutions.



Despite innovations in the three-stage optimisation framework design, the models and theories used in this study still have scope for improvement. Future research should consider overcoming the relevant limitations. In terms of calculating city performance scores and the optimisation processes, the processes of conducting results necessitate collaboration with statistical programming software to enhance efficiency.



This model, however, did not consider the actual risk events and their corresponding risk treatments. Hence, the framework can provide qualitative risk management methods for the proposed associated risk treatments. Further work should go beyond the risk analysis to achieve performance optimisation. Moreover, future research should consider risk information that is received from other subject sources.
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Table A1. Bayswater model inputs.






Table A1. Bayswater model inputs.













	Variable
	Risk Level
	Min
	Mean Value
	Max
	Shape





	PT network ratio
	Very low
	47.5
	50
	55
	Triangular



	PT coverage ratio
	Very low
	47.5
	50
	55
	Triangular



	Harbour-type bus stop setting ratio
	Very low
	23.75
	25
	27.5
	Triangular



	Public transportation priority lane setting ratio
	Very low
	9.5
	10
	11
	Triangular



	PT on-time rate
	Very low
	90.25
	95
	100
	Triangular



	Intersection blocking rate during peak hours
	Medium
	6.8
	8
	10
	Triangular



	Passenger freight rate
	
	
	1.75
	
	



	PT driving accident rate
	High
	1.125
	1.5
	2.25
	Triangular



	Coverage rate
	Medium
	85
	100
	125
	Triangular



	Bus ownership rate
	Very low
	17.1
	18
	19.8
	Triangular



	Intact car rate
	
	
	100
	
	



	PT land area per capita
	
	
	20.47
	
	



	PT utilisation rate
	Medium
	0.68
	0.8
	1
	Triangular



	Green public transport vehicle rate
	
	
	100
	
	



	PT energy intensity
	Very low
	0
	0
	3
	Triangular










 





Table A2. Cockburn model inputs.






Table A2. Cockburn model inputs.













	Variable
	Risk Level
	Min
	Mean Value
	Max
	Shape





	PT network ratio
	Very low
	47.5
	50
	55
	Triangular



	PT coverage ratio
	Very low
	47.5
	55
	55
	Triangular



	Harbour-type bus stop setting ratio
	Very low
	14.25
	15
	16.5
	Triangular



	Public transportation priority lane setting ratio
	Very low
	9.5
	10
	11
	Triangular



	PT on-time rate
	Very low
	90.25
	95
	100
	Triangular



	Intersection blocking rate during peak hours
	Medium
	6.8
	8
	10
	Triangular



	Passenger freight rate
	
	
	1.75
	
	



	PT driving accident rate
	High
	1.125
	1.5
	2.25
	Triangular



	Coverage rate
	Medium
	85
	100
	125
	Triangular



	Bus ownership rate
	Very low
	17.1
	18
	19.8
	Triangular



	Intact car rate
	
	
	100
	
	



	PT land area per capita
	
	
	26.23
	
	



	PT utilisation rate
	Medium
	0.68
	0.8
	1
	Triangular



	Green public transport vehicle rate
	
	
	100
	
	



	PT energy intensity
	Very low
	0
	0
	3
	Triangular










 





Table A3. Stonnington model inputs.






Table A3. Stonnington model inputs.













	Variable
	Risk Level
	Min
	Mean Value
	Max
	Shape





	PT network ratio
	Very low
	57.74
	60.78
	66.86
	Triangular



	PT coverage ratio
	
	
	83.72
	
	



	Harbour-type bus stop setting ratio
	Very low
	33.25
	35
	38.5
	Triangular



	Public transportation priority lane setting ratio
	Very low
	24.11
	25.38
	27.92
	Triangular



	PT on-time rate
	Very low
	80.75
	85
	93.5
	Triangular



	Intersection blocking rate during peak hours
	Medium
	0
	0
	0.5
	Triangular



	Passenger freight rate
	
	
	2.33
	
	



	PT driving accident rate
	High
	1.87
	2.5
	3.75
	Triangular



	Coverage rate
	Medium
	127.5
	150
	187.5
	Triangular



	Bus ownership rate
	Very low
	17.1
	18
	19.8
	Triangular



	Intact car rate
	
	
	100
	
	



	PT land area per capita
	Medium
	9.35
	11
	13.75
	Triangular



	PT utilisation rate
	Medium
	0.66
	0.78
	0.97
	Triangular



	Green public transport vehicle rate
	
	
	100
	
	



	PT energy intensity
	Very low
	28.5
	30
	33
	Triangular










 





Table A4. Bayswater summary statistics in total.






Table A4. Bayswater summary statistics in total.





	
Name

Description Cell Function

	
Public Transport Network Ratio Input B1

	
Public Transport

Coverage Ratio Input B2

	
Harbour-Type Bus Stop Setting Input B3

	
Public

Transportation Priority Lane Setting Ratio Input B4

	
Public Transport on-Time Rate Input B5

	
Intersection Blocking Rate during Peak Hours Input B6

	
Public Transport Driving

Accident Rate Input B7

	
Coverage Rate Input B8

	
Bus

Ownership Rate Input B9

	
Public Transport

Utilisation Rate Input B10

	
Public Transport

Energy

Intensity Input B11






	
Percentiles

	




	
1%

	
47.9423

	
52.6870

	
14.3888

	
9.5849

	
90.8506

	
6.9989

	
1.18211

	
87.248

	
17.2467

	
0.70310

	
0.0160




	
10%

	
48.8639

	
53.7908

	
14.6576

	
9.7764

	
92.3835

	
7.4063

	
1.32963

	
92.678

	
17.5913

	
0.74373

	
0.1488




	
20%

	
49.3899

	
54.3977

	
14.8250

	
9.8893

	
93.2820

	
7.6744

	
1.41561

	
95.884

	
17.7949

	
0.76918

	
0.3182




	
25%

	
49.6484

	
54.6520

	
14.8904

	
9.9343

	
93.6105

	
7.7776

	
1.44542

	
97.148

	
17.8787

	
0.77872

	
0.4051




	
30%

	
49.8488

	
54.8737

	
14.9565

	
9.9764

	
93.8986

	
7.8663

	
1.47927

	
98.335

	
17.9534

	
0.78834

	
0.4959




	
35%

	
50.0314

	
55.0881

	
15.0156

	
10.0128

	
94.2359

	
7.9576

	
1.50881

	
99.338

	
18.0208

	
0.79696

	
0.5847




	
40%

	
50.2108

	
55.3207

	
15.0798

	
10.0493

	
94.5160

	
8.0470

	
1.54068

	
100.347

	
18.0893

	
0.80540

	
0.6768




	
45%

	
50.4319

	
55.5341

	
15.1414

	
10.0921

	
94.7778

	
8.1328

	
1.57329

	
101.406

	
18.1637

	
0.81324

	
0.7787




	
50%

	
50.6512

	
55.7906

	
15.2022

	
10.1350

	
95.0402

	
8.2244

	
1.60420

	
102.528

	
18.2412

	
0.82232

	
0.8829




	
55%

	
50.8657

	
56.0201

	
15.2677

	
10.1778

	
95.3043

	
8.3087

	
1.63717

	
103.779

	
18.3266

	
0.83136

	
0.9869




	
60%

	
51.0791

	
56.2985

	
15.3355

	
10.2232

	
95.5614

	
8.4048

	
1.67112

	
104.954

	
18.3989

	
0.84100

	
1.0974




	
65%

	
51.3197

	
56.5476

	
15.4093

	
10.2753

	
95.8875

	
8.5046

	
1.70788

	
106.238

	
18.4950

	
0.85092

	
1.2179




	
70%

	
51.5816

	
56.8067

	
15.4895

	
10.3302

	
96.1834

	
8.6281

	
1.75044

	
107.614

	
18.5947

	
0.86190

	
1.3509




	
75%

	
51.9094

	
57.1131

	
15.5744

	
10.3941

	
96.5048

	
8.7509

	
1.79612

	
109.069

	
18.6995

	
0.87317

	
1.4920




	
80%

	
52.2371

	
57.4395

	
15.6634

	
10.4586

	
96.8769

	
8.8751

	
1.83853

	
110.589

	
18.8310

	
0.88616

	
1.6728




	
90%

	
53.0088

	
58.3971

	
15.9010

	
10.6244

	
97.7727

	
9.1921

	
1.96308

	
114.884

	
19.1074

	
0.91765

	
2.0782




	
99%

	
54.4025

	
59.7433

	
16.3227

	
10.8925

	
99.2561

	
9.7271

	
2.14651

	
121.810

	
19.5711

	
0.97468

	
2.6878











 





Table A5. Cockburn summary statistics in total.






Table A5. Cockburn summary statistics in total.





	
Name

Description Cell

Function

	
Public Transport Network

Ratio Input B1

	
Public Transport

Coverage Ratio Input B2

	
Harbour-Type Bus Stop Setting Input B3

	
Public

Transportation Priority Lane Setting Ratio Input B4

	
Public Transport on-Time Rate Input B5

	
Intersection Blocking Rate during Peak Hours Input B6

	
Public Transport Driving

Accident Rate Input B7

	
Coverage Rate Input B8

	
Bus

Ownership Rate Input B9

	
Public Transport

Utilisation Rate Input B10

	
Public Transport

Energy

Intensity Input B11






	
Percentiles

	




	
1%

	
47.9423

	
47.8973

	
23.7617

	
9.5849

	
90.8506

	
6.9989

	
1.18211

	
87.248

	
17.2467

	
0.70310

	
0.0160




	
10%

	
48.8639

	
48.9007

	
24.2686

	
9.7764

	
92.3835

	
7.4063

	
1.32963

	
92.678

	
17.5913

	
0.74373

	
0.1488




	
20%

	
49.3899

	
49.4525

	
24.5842

	
9.8893

	
93.2820

	
7.6744

	
1.41561

	
95.884

	
17.7949

	
0.76918

	
0.3182




	
25%

	
49.6484

	
49.6836

	
24.7076

	
9.9343

	
93.6105

	
7.7776

	
1.44542

	
97.148

	
17.8787

	
0.77872

	
0.4051




	
30%

	
49.8488

	
49.8851

	
24.8322

	
9.9764

	
93.8986

	
7.8663

	
1.47927

	
98.335

	
17.9534

	
0.78834

	
0.4959




	
35%

	
50.0314

	
50.0801

	
24.9431

	
10.0128

	
94.2359

	
7.9576

	
1.50881

	
99.338

	
18.0208

	
0.79696

	
0.5847




	
40%

	
50.2108

	
50.2916

	
25.0554

	
10.0493

	
94.5160

	
8.0470

	
1.54068

	
100.347

	
18.0893

	
0.80540

	
0.6768




	
45%

	
50.4319

	
50.4856

	
25.1615

	
10.0921

	
94.7778

	
8.1328

	
1.57329

	
101.406

	
18.1637

	
0.81324

	
0.7787




	
50%

	
50.6512

	
50.7187

	
25.2660

	
10.1350

	
95.0402

	
8.2244

	
1.60420

	
102.528

	
18.2412

	
0.82232

	
0.8829




	
55%

	
50.8657

	
50.9273

	
25.3788

	
10.1778

	
95.3043

	
8.3087

	
1.63717

	
103.779

	
18.3266

	
0.83136

	
0.9869




	
60%

	
51.0791

	
51.1805

	
25.4955

	
10.2232

	
95.5614

	
8.4048

	
1.67112

	
104.954

	
18.3989

	
0.84100

	
1.0974




	
65%

	
51.3197

	
51.4069

	
25.6226

	
10.2753

	
95.8875

	
8.5046

	
1.70788

	
106.238

	
18.4950

	
0.85092

	
1.2179




	
70%

	
51.5816

	
51.6424

	
25.7606

	
10.3302

	
96.1834

	
8.6281

	
1.75044

	
107.614

	
18.5947

	
0.86190

	
1.3509




	
75%

	
51.9094

	
51.9210

	
25.9067

	
10.3941

	
96.5048

	
8.7509

	
1.79612

	
109.069

	
18.6995

	
0.87317

	
1.4920




	
80%

	
52.2371

	
52.2177

	
26.0600

	
10.4586

	
96.8769

	
8.8751

	
1.83853

	
110.589

	
18.8310

	
0.88616

	
1.6728




	
90%

	
53.0088

	
53.0883

	
26.4690

	
10.6244

	
97.7727

	
9.1921

	
1.96308

	
114.884

	
19.1074

	
0.91765

	
2.0782




	
99%

	
54.4025

	
54.3121

	
27.1947

	
10.8925

	
99.2561

	
9.7271

	
2.14651

	
121.810

	
19.5711

	
0.97468

	
2.6878











 





Table A6. Stonnington summary statistics in total.






Table A6. Stonnington summary statistics in total.





	
Name

Description Cell

Function

	
Public Transport Network

Ratio Input B1

	
Harbour-Type Bus Stop Setting Input B2

	
Public

Transportation Priority Lane Setting Ratio Input B3

	
Public Transport on-Time Rate Input B4

	
Intersection Blocking Rate during Peak Hours Input B5

	
Public Transport Driving

Accident Rate Input B6

	
Coverage Rate Input B7

	
Bus

Ownership Rate Input B8

	
Public Transport Land Area per Capita Input B9

	
Public Transport

Utilisation Rate Input B10

	
Public Transport

Energy

Intensity Input B11






	
Percentiles

	




	
1%

	
58.2778

	
33.5281

	
24.3450

	
81.471

	
0.00195

	
1.9805

	
130.731

	
17.2430

	
9.6035

	
0.68273

	
28.7683




	
10%

	
59.3986

	
34.2305

	
24.8002

	
83.100

	
0.02521

	
2.2067

	
139.076

	
17.5887

	
10.1992

	
0.72272

	
29.3080




	
20%

	
60.0381

	
34.6167

	
25.0836

	
84.059

	
0.05237

	
2.3556

	
143.939

	
17.7927

	
10.5512

	
0.74777

	
29.6645




	
25%

	
60.3525

	
34.7785

	
25.1945

	
84.441

	
0.06522

	
2.4130

	
145.626

	
17.8731

	
10.6959

	
0.75717

	
29.8038




	
30%

	
60.5962

	
34.9196

	
25.3064

	
84.800

	
0.07794

	
2.4622

	
147.540

	
17.9486

	
10.8251

	
0.76664

	
29.9308




	
35%

	
60.8182

	
35.0561

	
25.4064

	
85.108

	
0.09474

	
2.5131

	
149.203

	
18.0126

	
10.9410

	
0.77512

	
30.0418




	
40%

	
61.0363

	
35.2041

	
25.5152

	
85.419

	
0.11044

	
2.5666

	
150.871

	
18.0813

	
11.0507

	
0.78331

	
30.1546




	
45%

	
61.3052

	
35.3399

	
25.6195

	
85.783

	
0.12673

	
2.6185

	
152.555

	
18.1552

	
11.1681

	
0.79084

	
30.2794




	
50%

	
61.5718

	
35.5031

	
25.7224

	
86.148

	
0.14482

	
2.6740

	
154.151

	
18.2334

	
11.2904

	
0.79954

	
30.4072




	
55%

	
61.8327

	
35.6491

	
25.8333

	
86.511

	
0.16374

	
2.7251

	
155.854

	
18.3206

	
11.4251

	
0.80822

	
30.5345




	
60%

	
62.0922

	
35.8263

	
25.9481

	
86.898

	
0.18214

	
2.7834

	
157.607

	
18.4025

	
11.5393

	
0.81747

	
30.6699




	
65%

	
62.3847

	
35.9849

	
26.0731

	
87.340

	
0.20550

	
2.8438

	
159.505

	
18.4920

	
11.6908

	
0.82698

	
30.8174




	
70%

	
62.7032

	
36.1497

	
26.2089

	
87.807

	
0.22669

	
2.9187

	
161.703

	
18.5880

	
11.8482

	
0.83752

	
30.9803




	
75%

	
63.1019

	
36.3447

	
26.3526

	
88.350

	
0.24970

	
2.9931

	
164.062

	
18.6894

	
12.0135

	
0.84833

	
31.1531




	
80%

	
63.5003

	
36.5524

	
26.5034

	
88.898

	
0.27635

	
3.0683

	
166.252

	
18.7954

	
12.2210

	
0.86079

	
31.3745




	
90%

	
64.4387

	
37.1618

	
26.9058

	
90.308

	
0.34050

	
3.2604

	
172.684

	
19.0948

	
12.6572

	
0.89100

	
31.8711




	
99%

	
66.1334

	
38.0184

	
27.6197

	
92.586

	
0.44673

	
3.5847

	
182.156

	
19.5776

	
13.3888

	
0.94571

	
32.6177











 





Table A7. Case study areas’ MCS model results.






Table A7. Case study areas’ MCS model results.





	
Criteria

	
Most Likely Value




	
Bayswater

	
Cockburn

	
Stonnington






	
PT network ratio

	
50.83

	
50.83

	
61.79




	
PT coverage ratio

	
50.83

	
55.91

	
-




	
Harbour-type bus stop setting ratio

	
25.33

	
25.33

	
35.58




	
Public transportation priority lane setting ratio

	
10.16

	
10.16

	
25.8




	
PT on-time rate

	
95.08

	
95.08

	
86.41




	
Intersection blocking rate during peak hours

	
8.26

	
8.26

	
0.16




	
PT driving accident rate

	
1.62

	
1.62

	
2.7




	
Coverage rate

	
103.33

	
103.33

	
155




	
Bus ownership rate

	
18.3

	
18.3

	
18.3




	
PT land area per capita

	
-

	
-

	
11.36




	
PT utilisation rate

	
0.83

	
0.83

	
0.8




	
PT energy intensity

	
1

	
1

	
30.5
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Figure 1. The proposed three-stage process for optimising public transport networks’ performance under an uncertain process. 
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Figure 2. Hierarchy structure of public transport network performance criteria. 
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Figure 3. Grade level scale for subcriteria [27]. 
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Figure 4. Triangular distribution of criteria for public transport network performance optimisation. 
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Figure 5. (a) City boundary of Stonnington; (b) city boundary of Bayswater; (c) city boundary of Cockburn [28]. 
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Figure 6. Bayswater PT network’s performance criteria’s coefficient values. 
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Figure 7. Cockburn PT network’s performance criteria’s coefficient values. 
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Figure 8. Stonnington PT performance criteria’s coefficient values. 
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Figure 9. Bayswater: criteria’s optimising value’s impact on model output. 
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Figure 10. Cockburn: criteria’s optimising value’s impact on model output. 
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Figure 11. Stonnington: criteria’s optimising value’s impact on model output. 
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Figure 12. Bayswater and Cockburn criterion probability distribution for reaching DMs’ optimising goals. (a) Coverage rate probability distribution. (b) Intersection blocking rate during peak hours probability distribution. (c) PT utilisation rate probability distribution. (d) PT driving accident rate probability distribution. 
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Figure 13. Stonnington: criteria’s probability distribution for reaching the DMs’ goals. (a) PT land area per capita probability distribution. (b) Coverage rate probability distribution. (c) Intersection blocking rate during peak hours probability distribution. (d) PT utilisation rate probability distribution. (e) PT driving accident rate probability distribution. 
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Table 1. Uncertainty level [46].
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	Uncertainty Level
	Min
	Most Likely
	Max





	Very high
	50%
	100%
	200%



	High
	75%
	100%
	150%



	Medium
	85%
	100%
	125%



	Low
	90%
	100%
	115%



	Very low
	95%
	100%
	110%
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