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Abstract: This study integrates circular economy (CE) metrics with machine learning techniques,
specifically XGBoost and Shapley additive explanations (SHAP), to forecast municipal solid waste
(MSW) in the EU, analyzing data from 2010 to 2020. It examines key economic and consumption
indicators, including GDP per capita and energy consumption, along with CE metrics such as
resource productivity, the municipal waste recycling rate, and the circular material use rate. The
model demonstrates high predictive accuracy, with an R2 of 99% for in-sample data and 75% for
out-of-sample data. The results indicate a significant correlation between a higher GDP per capita
and an increased gross municipal waste per capita (GMWp). Conversely, lower energy consumption
is associated with reduced GMWp. Notably, the circular material use rate emerges as a crucial
factor for sustainability, with increased use significantly decreasing the GMWp. In contrast, a higher
resource productivity correlates with an increased GMWp, suggesting complex implications for
waste generation. The recycling rate, while impactful, shows a more modest effect compared to
the other factors. The culminating insights from this study emphasize the need for sustainable,
integrated waste management and support the adoption of circular economy-aligned policies. They
underscore the efficacy of merging CE metrics with advanced predictive models to bolster regional
sustainability efforts.

Keywords: circular economy; municipal waste generation; machine learning; European Union

1. Introduction

Sustainable development, as defined in the Brundtland Report, addresses the inter-
connected challenges of economics, society, and the environment, striving to meet present
needs without compromising the future. Achieving this balance between economic growth,
social equity, and environmental protection remains a pressing goal, with ongoing tensions
between growth and ecological limits [1]. To promote enduring prosperity, the circular
economy model emphasizes resource-efficient strategies like reduce, reuse, and recycle,
necessitating holistic metrics and integrated policies for a sustainable transition.

While development studies have seen a shift towards contextual middle-range the-
ories, there is a continued need for broader theoretical frameworks. Classical political
economists like Smith, Mill, and Marx introduced grand theories that encompass both
middle-range theories and reveal overarching historical laws in human societies and devel-
opment. These theories distinguish between transhistorical and historical development
notions and underscore the importance of interdisciplinary approaches for comprehensive
analyses. Recognizing the influence of both historical trends and societal structures on
development, it is essential to strike a balance between theoretical generalization and
historical specificity, drawing insights from history to inform development theories and
policies. Incorporating these ideas into discussions of sustainable development enriches
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our understanding of how historical factors interplay with development dynamics, offering
valuable insights for sustainable policymaking [2].

To address the challenges of sustainable development, including its environmental
aspects, it is crucial to consider the practical implications of these theoretical frameworks.
The exponential rise in global urbanization and industrialization has fueled a significant
surge in waste production. Projections suggest that by 2050, the annual trash generation
could double, soaring from the current 2.01 billion tons to an alarming 3.4 billion tons [3,4].
This dramatic rise is attributed to the burgeoning global utilization of materials, expected to
double again by 2060 [4]. This alarming escalation poses profound threats to both human
well-being and the environment [4]. Particularly in densely populated urban centers,
effective waste management has become an urgent priority [5].

To address this pressing challenge, a paradigm shift toward a circular economic model
has become imperative. The conventional “take–make–dispose” linear system must evolve
into a “reduce, reuse, and recycle” closed-loop approach, known as the circular economy
(CE) [6]. The CE has gained prominence in recent European policy, but its roots stretch
back to the 1970s, influenced by the field of industrial ecology. This vision has been
actively pursued by the European Union (EU) since 2015, marked by the launch of the EU
Circular Economy Action Plan and, subsequently, the 2020 Circular Economy Action Plan
(CEAP) [7]. These strategic initiatives align seamlessly with the 2019 European Green Deal,
which aspires to reshape the EU into a resource-efficient, circular economy by 2050 [7].

Yet, despite the concerted efforts of EU policies, the recycling landscape presents
significant challenges. In 2020, secondary materials constituted less than 12% of all materials
used, and the recycling rates for critical elements remained stubbornly low, hovering
around 1%. However, there has been substantial growth within the circular economy
sectors, characterized by private investments surging to EUR 121.6 billion in 2021, while
employment in these sectors increased by 11%, encompassing 4.3 million jobs from 2015 to
2021 [8].

Furthermore, despite the commendable 25% reduction in greenhouse gas emissions
from production between 2008 and 2021, the EU concurrently witnessed a 4% escalation in
its consumption footprint from 2010 to 2021 [8]. These figures underscore the pressing need
for a more pronounced and accelerated transition towards circularity in Europe, essential
not only for environmental sustainability but also for economic resilience.

Achieving sustainable waste management is critical for sustainable development,
as it reduces resource use, minimizes waste, and lowers environmental impacts. In this
context, the EU’s circular economy monitoring framework emerges as a pivotal instrument,
encompassing four key dimensions: production and consumption, waste management,
secondary raw materials, and competitiveness and innovation. Notably, it delves into
significant aspects, prominently focusing on recycling rates and circular material use rates.
Recycling rates are meticulously determined by calculating the ratio of recycled materials
to the total waste generated, providing a precise gauge of recycling effectiveness. On the
other hand, circular material use rates gauge the extent to which recycled materials meet
material demands, effectively reducing dependence on primary raw materials [7].

Our research endeavors to bridge a significant gap in the existing knowledge base
by focusing on the development of predictive models for the generation of municipal
waste per capita (GMWp) across European nations. To achieve this, we plan to leverage
circular economy indicators, such as recycling rates, and apply advanced machine learning
techniques, including XGBoost and SHAP (SHapley Additive exPlanations). Our primary
objective is to not only enhance the accuracy of our predictions but also to provide a deeper
understanding of the factors influencing GMWp within the context of a circular economy.

The European Union’s Circular Economy Action Plan has established a formidable
target—halving the amount of municipal solid waste (MSW) requiring recycling or prepa-
ration for re-use by 2030 [4]. Achieving this ambitious objective necessitates precise quanti-
tative estimates of MSW generation across member states, underscoring the importance
of evidence-based, sustainable waste management policies and infrastructure develop-
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ment. Accurate forecasting of MSW generation rates, as envisioned in our study, can
significantly bolster waste legislation, comprehensively evaluate environmental impacts,
rigorously assess economic and social costs, and optimize integrated waste management
systems [9–11].

Reflecting on the importance of accurate MSW forecasting, studies by Oguz-Ekim [9]
and Abbasi et al. [10,11] have demonstrated the effective use of machine learning algo-
rithms, including neural networks and support vector regression, in predicting the MSW
generation. These methodologies are not only applicable in countries with robust data
collection methods like the EU but also in regions with limited resources, highlighting
the versatility of these approaches. The success of these algorithms in different countries
underlines the potential of our research to contribute significantly to the field of waste
management forecasting.

Our research aspires to develop predictive models of GMWp across European coun-
tries, harnessing the power of circular economy indicators alongside traditional predictors,
such as GDP per capita and domestic material consumption per capita (DMCp). Addi-
tionally, we account for country-specific socio-economic disparities by incorporating the
country as an input feature in our modeling. Through this amalgamation of circular econ-
omy metrics with data-driven forecasting employing XGBoost and SHAP methodologies,
our work aspires to generate policy-relevant insights poised to drive progress towards the
EU’s ambitious circular economy vision and sustainability targets.

The remainder of this paper is structured as follows: Section 2 provides an in-depth
analysis of prior research. Section 3 covers the data sources used and outlines the machine
learning methodology. Section 4 presents the empirical results. Section 5 summarizes the
key findings and draws conclusions for the paper.

2. Literature Review

The transition to a circular economy requires a comprehensive understanding of
sustainable strategies that promote economic growth while minimizing waste through
efficient resource utilization. Our literature review identified recent studies that delve
into the practical implementation of circular economy principles in specific sectors, such
as textiles [12] and construction [13]. These studies emphasize the need for continuous
leadership commitment, monitoring, and efforts to transform business models, ultimately
minimizing sectoral environmental impacts through circular economy strategies.

In addition to sector-specific studies, we focused on the critical role of optimizing
municipal waste management (MWM) systems in the transition to a circular economy.
Recent advancements in machine learning (ML) techniques have become pivotal tools in
enhancing MWM systems. One notable application is the use of ML to forecast municipal
waste generation, providing valuable insights for waste management policy and planning.

Our literature review highlights a variety of methods and variables employed in
forecasting MSW generation, as showcased in Table 1 [5,9,14–20]. Notably, Wu et al. (2020)
demonstrated the significance of geographic differentiation in achieving accurate predic-
tions through their regional approach in China [14]. Magazzino et al. (2020) conducted a
comparative analysis of multiple models, underscoring the importance of rigorous model
evaluation [15]. Abbasi et al. (2019) highlighted the effectiveness of the radial basis func-
tion in forecasting MSW generation in Iran. These findings shed light on the diversity of
approaches and methodologies used in MSW forecasting [16].

One key observation from Wu et al. (2020) [14] is the substantial improvement in
prediction accuracy when developing regional artificial neural network (ANN) models.
This emphasizes the importance of recognizing variations in predictor variables across
regions. Moreover, our literature review identified a departure from existing research
by incorporating panel data. Recognizing the impact of country-specific policies and
characteristics on GMWp is essential, and our methodology explicitly includes each country
as a distinct feature to capture these nuances.
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Table 1. Literature survey.

Author Period Country/
Region Method Var. Performance

Wu et al.
(2020) [14] 2010–2017 China ANN

MSW generation,
GDP, population,
income,
infrastructure
expenditure

ANN model accuracy increased
from R2 = 0.916, RMSE = 59.3 to
R2 = 0.968/0.946/0.943,
RMSE = 6.4/9.7/17.6 for
southern/northern/western
regions after dividing into
3 regions

Magazzino
et al. (2021)
[15]

2008–2017 Denmark ANN, Granger
Causality

YCGMSW
generation, GDP,
urbanization, GHG
emissions

Boost trees: R2 = 0.735; Tree
model: R2 = 0.896;Auto structure:
R2 = 0.628; Bias R2 = 0.502

Abbasi et al.
(2019) [16] 2007–2016 Iran RBF, ANN, ANFIS

Monthly and
seasonal MSW
generation, GDP,
rain, temperature,
population,
household size,
income

RBF had the best performance
(R2 = 0.68 monthly; 0.85 seasonal)
compared to ANN and ANFIS

Oguz-Ekim
(2020) [9] 2011–2016 European

countries + Turkey
BPNN, SVR,
GRNN GDP, DMC, RP

BPNN and SVR gave good results.
GRNN was less accurate.
BPNN: R2 = 0.89, SVR: R2 = 0.89
in training stage. BPNN had
lower errors than SVR in testing.

Ribic et al.
(2019) [17] 2013–2017 Zagreb, Croatia ANN Socio-economic,

waste management

ANN models predicted MSW
quantities reasonably well.
ANN1/1: R2 = 0.997; ANN1/2:
R2 = 0.710; ANN2: R2 = 0.826 in
training. Predicted waste
quantities reasonably well.

Nguyen
et al. (2021)
[18]

2015–2017 Vietnam
Machine learning
(ML) models—RF,
KNN, DNN

Population,
income,
consumption,
waste generation

RF: R2 > 0.96, MAE 121.5 (testing)
KNN: R2 > 0.96, MAE 125
(testing)

Ceylan
(2020) [5] 1994–2017 Turkey

Gaussian process
regression,
Bayesian
optimization

Population, GDP,
inflation,
unemployment

R2 = 0.9914 (training),
R2 = 0.9841 (testing)

Yang et al.
(2021) [19] 2008–2019 China DNN, RF, XGBoost GDP, population,

industry data DNN: R2 > 0.97

Kannangara
et al. (2018)
[20]

2006–2014 Canada
Artificial neural
networks, Decision
trees

Population over
45 years, income,
employment rate

R2 = 0.83 (training)
R2 = 0.72 (testing)

Furthermore, we have taken steps to enhance the generalizability of our model by
training an XGBoost model using data from the 27 EU countries. This approach makes
our model more versatile and capable of making predictions across different countries,
addressing a significant limitation in the existing literature.

Regarding the limitation of randomly splitting data for model training and testing, we
acknowledge this concern. In our proposed methodology, we have adopted a time series
split, which provides a more realistic representation of model performance in practical
settings by utilizing historical data for future event predictions.
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The literature review has highlighted the increasingly vital role of machine learning
in advancing municipal waste management within a circular economy context. We have
emphasized significant advancements, including the use of region-specific ANN models,
the incorporation of panel data, and the development of a flexible XGBoost model that
leverages data from the EU-27 countries. This methodological approach not only solidifies
the foundation of the research but also substantially contributes to the development of
more efficient and accurate waste management strategies, in line with the principles of a
circular economy.

3. Research Method and Data

In this study, we conducted an analysis of annual data spanning from 2010 to 2020 for
the EU-27 region. We incorporated various input features, including the gross domestic
product (GDP) per capita in euros, energy consumption (EC) in million tonnes of oil equiv-
alent, municipal waste recycling rate (RMW), circular material use rate (CMR), domestic
material consumption per capita (DMCp), and resource productivity (RP) in euros per
kilogram. Our primary focus was on assessing the generation of municipal waste per capita
(GMWp) in kilograms. The data used for this analysis were sourced from Eurostat for the
year 2022.

The computational aspects of this study were executed on a system equipped with
an Intel i7 10700 processor operating at 2.9 GHz, complemented by 32 GB of RAM (Intel
Corporation, Santa Clara, CA, USA). Our analysis and modeling tasks were implemented
using Python 3.10, utilizing the sklearn library, a versatile tool for machine learning and
data analysis.

3.1. Decision of Input Parameters

In this study, we meticulously analyzed annual data spanning from 2010 to 2020 for
the EU-27 region with the aim of predicting the municipal waste generation per capita
(GMWp). The input features encompass a range of economic factors and circular economy
(CE) indicators sourced from Eurostat 2022.

Our analysis was meticulously conducted using Python 3.10 in conjunction with
XGBoost v2.0.3, a robust tool suited for handling diverse and complex data. By including
the “Country” variable, we effectively accounted for national variations. The circular
economy indicators selected for our study directly evaluate waste management, material
circularity, and recycling:

1. The recycling rate of municipal waste (RMW) serves as a metric for measuring waste
management effectiveness and resource recovery, both central tenets of the circular
economy. A higher RMW value signifies enhanced recovery and circularity.

2. The circularity rate (CR) offers insights into industry dynamics, particularly in terms
of reusing, remanufacturing, and recycling materials back into the economy. An
increase in the CR signifies more efficient circular economy loops.

We anticipate an inverse relationship between these indicators and the GMWp, as
heightened recycling and circularity typically lead to reduced waste disposal. The extent of
this impact, however, hinges on factors such as waste composition and management systems.

Complementing our circular economy indicators are critical economic features, includ-
ing GDP, DMCp (domestic material consumption per capita), and RP (resource produc-
tivity). These features holistically account for consumption patterns, material flows, and
production efficiency—a trifecta of factors significantly influencing waste generation, as
underscored by Oguz-Ekim’s seminal research [9].

Furthermore, in a bid to augment the depth of our analysis, we integrated the variable
“Energy Consumption (EC).” Drawing inspiration from Sung et al.’s pioneering work in
2020, we extend our analysis to encompass energy consumption patterns within the EU-27
region [21]. This expansion is founded on the correlation observed in Taiwan, where energy
consumption intricately relates to waste generation behaviors.
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We also integrated insights from SHAP (SHapley Additive exPlanations) to shed
light on the predictive power of various features and their relative impacts. This infor-
mation informs the development of targeted waste policies within the framework of the
circular economy.

3.2. Model Development by Extreme Gradient Boosting (XGBoost)

XGBoost originated from the decision tree method proposed by Chen and Guestrin
(2016) [22]; it can form a model of the non-linear relationship between GMWp and the
input indicators. With the improvement in gradient boosting from Friedman (2002) [23], it
can show better performance. To begin with, XGBoost builds a set of Classification and
Regression Trees (CART) as the base learners. The key feature and formulas in the XGBoost
methodology are:

Iterative Tree Building and prediction accuracy: We iteratively build Classification
and Regression Trees (CART), focusing on minimizing errors and refining predictions. The
model’s predictive strength is showcased through the formula:

ŷi = ∑M
m=1 fm(Xi), fm ∈ F (1)

Here, ŷi represents the predicted output for each instance i, and fm denotes the
prediction of the m-th tree.

Objective function and regularization techniques: XGBoost’s objective function com-
bines a loss function, l, and a regularization term, Ω:

Obj(θ) = ∑k
i=1l(yi, ŷi

t) + ∑t
j=1Ω( f j) (2)

This approach, including the regularization term

Ω( f m) = γT +
1
2

λ∑T
j=1wj

2, (3)

ensures high accuracy and robustness against overfitting. The regularization term, Ω,
controls the complexity of the model, with hyperparameters γ and λ being tunable to suit
specific data requirements.

In our study, we apply the XGBoost model, drawing from its demonstrated success in
environmental forecasting as seen in referenced studies [24–26]. XGBoost’s effectiveness
in predicting municipal solid waste (MSW) generation was highlighted in Multan, Pak-
istan [24], and Northern Ireland [25], where it outperformed other models with higher R2

values and lower RMSEs. Additionally, its application in air quality assessment, specifically
in predicting PM2.5 concentrations in Tehran [26], showcased its precision in environ-
mental health scenarios. These examples underline XGBoost’s versatility and robustness
in complex environmental data analysis, qualities we leveraged in our study for MSW
generation forecasting.

Our study employs these principles and demonstrates XGBoost’s utility in environ-
mental management and policy planning. The iterative enhancement of predictions using
XGBoost allows us to effectively model the relationship between GMWp and various eco-
nomic and environmental indicators, echoing the successful applications observed in the
referenced studies.

3.3. Shapley Additive exPlanation (SHAP)

The Shapley additive explanation (SHAP) method, which was devised by Lundberg
and Lee in 2017 [27], has its roots in the principles of game theory and leverages the
notion of Shapley values to enhance the interpretability of prediction models. Shapley
values estimate the relative significance of each feature in a model through its mean
marginal feature contribution. The computation of the Shapley value for a prediction
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model necessitates the calculation of the average marginal contribution of each feature to
the model’s overall output. This is expressed in the following equation.

Φi( f , x) = ∑S⊂Hi
|S|!(|H| − |S| − 1)!

|H|! [ f (S ∪ {i} − f (S)] (4)

where S is the set of all feature subsets, and H is the set of all features. f is the trained
model, and [ f (S ∪ {i} − f (S)] is the i-th input variable’s contribution to the model [28,29].

3.4. Workflow of Developing ML Models

The flowchart (Figure 1) showcases the empirical process. In the initial stage, data
collection and preprocessing were carried out, which involved transforming the data
into appropriate data structures, eliminating outliers and missing data, and scaling input
features such as country, GDPp, EC, DMCp RP, RMW, and CMR. Throughout the project,
the Python programming language was utilized, and scripts were created to automate
the tasks of data loading, preprocessing, and integration, ensuring the consistency and
reproducibility of the results.
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After the data were preprocessed, the study conducted a descriptive statistical anal-
ysis and visualization of the data. The data were divided into training and validation
sets, covering the time frame from 2010 to 2017, using the commonly used 80:20 ratio
split, as stated by Azadi and Karimi-Jashni (2016) [30]. To optimize the XGBoost model’s
parameters, the Random Search Hyper-Parameter Optimization method was applied, as
recommended by Bergstra and Bengio (2012) [31]. The predictive performance of the
model was evaluated using three metric,: the mean-squared error (MSE), the mean absolute
percentage error (MAPE), and the coefficient of determination (R2), which were calculated
using Equations (5)–(7), respectively, as described by Hastie et al. (2009) [32].

MSE =
1
n∑n

i=1(Ŷi − Yi)
2 (5)

MAPE =
100
n ∑n

i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (6)

R2 = 1 − ∑n
i=1(Ŷi − Yi)

2

∑n
i=1(Yi − Yi)

2 (7)
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The number of observations is represented by “n”. The value predicted by the model is
represented by Ŷi, while the observed value is represented by Yi. Yi is the mean value of the
GMWp. The mean-squared error (MSE) was expressed as a percentage value by computing
its square root, which is the root-mean-squared error (RMSE), and normalizing it with the
mean of the observations (Yi). Both the training and validation (2010–2017) datasets were
used to calculate the MSE, MAPE, and R2, comparing training and testing performance.
Generally, the training error is lower than the test error as the model parameters and
structure are adjusted to fit the training dataset.

Following the hyper-parameter optimization using a random search, the XGBoost
model was configured with the set hyper-parameters. The learning curves for both the
training and test datasets were then plotted, showcasing the relationship between the
model’s predictive performance and the size of the training sample. The examination
of learning curves can reveal problems with the learning process, like underfitting or
overfitting, and assess the suitability of the training and validation datasets. Typically, the
model performance on the training dataset is superior or exhibits a lower loss than on the
validation dataset. Upon observing a stable convergence of the learning curves for both
training and validation, the final model can be employed for prediction purposes.

4. Discussion

The analysis of the 10-year Compound Annual Growth Rate (CAGR) reveals sev-
eral noteworthy trends in the European Union’s economic and environmental landscape
(Table 2). Notably, GDP per capita (GDPp), resource productivity (RP), and material con-
sumption per capita (DMCp) exhibited an increasing CAGR, signifying growth in these
areas during the analyzed period. Conversely, the declining CAGR of energy consumption
(EC) indicates a concerted effort within the European Union to prioritize environmental
sustainability without compromising economic progress.

Table 2. Summary statistics for actual data, 2010–2020.

Panel A: Indicators from the Literature

Var. GMWp
(Kilogram per Capita)

GDPp
(Euro per Capita)

EC
(Million Tonnes of Oil

Equivalent)

DMCp
(Tonnes per Capita)

Mean 490.003 25,518.247 69.606 16.557
SD 128.132 16,405.601 180.945 6.024

%CV 26.149 64.290 259.957 36.385
%5-CAGR −0.46 0.97 −1.33 −0.26

%10-CAGR 1.15 0.98 −1.22 0.24

Panel B: CE Indicators

Var. RP
(Euro per kilogram)

RMW
%

CMR
%

Mean 1.751 35.002 8.723
SD 1.036 15.513 6.251

%CV 59.191 44.322 71.656
%5-CAGR 1.69 5.57 0.57

%10-CAGR 1.48 4.52 1.98

Note: SD: standard deviation; %CV: coefficient of variation; and %10-CAGR: Compound Annual Growth Rate in
2010–2020.

The CAGR trends for the circular economy indicators (Figure 2), specifically the
recycling rate (RMW) and circular material use rate (CMR), also demonstrate positive tra-
jectories. However, to fully transition to a circular economic model, further advancements
through research and development investments and tax incentives are required.
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It is noteworthy that GMWp experienced a decline between 2010 and 2015, followed
by a subsequent rebound with an upward trend from 2016 to 2020. A similar pattern is
observed for DMCp, suggesting a potential impact of the 2015 EU Circular Economy Act
on reversing the upward trajectory of GMWp during this period.

The identified trends are in alignment with the summary statistics, with GDP per
capita, DMCp, and EC showing decreases in 2019–2020, potentially due to the impacts of
the COVID-19 pandemic. Overall, the CAGR analysis provides indicative insights into
the complex relationships between economic activities, resource utilization, and waste
generation within the European Union. The findings underscore the importance of a tighter
integration of circular economy strategies to sever the linkages between economic growth
and the rising generation of waste, fostering a more sustainable and resilient future.

4.1. XGB Forecasting Result

Objective and Methodology:

The XGBoost model was optimized for precision in predicting GMWp, with a focus
on minimizing the MAPE during hyperparameter tuning. The dataset, covering the period
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from 2010 to 2020, was divided into training/validation (2010–2017) and test (2018–2020)
sets, following an 80:20 ratio.

Model Performance:

As illustrated in Figure 3, the model demonstrated a robust learning capability, as
evidenced by the convergence of the training and validation losses with increasing itera-
tions, ensuring optimal fitting without overfitting. This convergence indicates the model’s
efficacy in capturing the trends within the training data, laying a solid foundation for
reliable predictions.
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The performance metrics, detailed in Table 3, show the model’s high predictive accu-
racy on the training and validation sets, with R2 values of 99.761% and 99.809%, respectively.
The MAE and RMSE were recorded as 4.403 and 5.733 for the training set and 3.523 and
5.541 for the validation set, respectively.

Table 3. Prediction results.

2010–2017 (Training/Validation Data)
Forecasts of GMWp (Kilograms per capita) in Training Data

RMSE 5.541
MAE 3.523

MAPE 0.779%

R2 99.809%

Forecasts of GMWp (Kilograms per capita) in Validation Data

RMSE 5.733
MAE 4.403

MAPE 0.911%

R2 99.761%
2018–2020 (Testing Data)

Forecasts of GMWp (Kilograms per capita) in Testing Data

RMSE 58.429
MAE 32.885

MAPE 6.874%
R2 75.271%
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Testing and Visualization:

On the test set, the model achieved an R2 of 75.271% with an MAE of 32.885 and an
RMSE of 58.429, indicating effective real-world applicability. Figure 4 presents a compara-
tive visualization between the actual data and model predictions, showcasing the model’s
capability to track both upward and downward trends in GMWp, albeit with slightly
reduced precision compared to the training data.
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4.2. Model Interpretability

Feature Importance Analysis:

The analysis of feature importance within the XGBoost model was conducted through
an examination of each feature’s frequency in splitting nodes across the constructed trees.
This process, depicted in Figure 5, provides a hierarchical ranking of feature importance.
Complementing this, the SHAP method was employed to dissect individual feature contri-
butions to the model’s output. A comparison of the results from both XGBoost and SHAP
reveals a consistent ranking in the relative significance of the features.
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GDPp emerged as the most influential predictor, followed by EC, CMR, and RP, which
held intermediate importance, while factors such as the country variable, DMCp, and RMW
were less influential.

Variable Impact and Study Implications:

The SHAP analysis, particularly the graphical representation in the left section of
Figure 5, uses blue and red color coding to denote lower and higher feature values, respec-
tively. This representation illuminates the impact of each variable on GMWp. Notably,
higher GDPp values correlate with an increased GMWp, highlighting the waste-intensive
nature of economic growth. In contrast, lower values of EC significantly curb GMWp,
emphasizing the interplay between economic activity and environmental impact.

This study’s in-depth exploration of MSW generation forecasting in the EU, using a
machine-learning-based XGBoost model, marks a substantial advancement in waste man-
agement strategy and operational efficiency. The model’s commendable R2 values of 99%
for in-sample data and 75% for out-of-sample data reflect its substantial predictive strength.
The incorporation of SHAP values enables a nuanced understanding of the influential
factors, particularly the preeminence of CMR, GDPp, and EC in shaping GMWp forecasts.

The observed relationship between economic growth and waste generation under-
scores the need for integrated strategies that foster sustainable growth alongside waste
reduction. Additionally, the impact of energy consumption on waste generation highlights
the potential of energy efficiency and renewable energy adoption as pathways to waste mit-
igation. The study also reveals the effectiveness of circular economy strategies, particularly
CMR, in reducing waste, advocating for a paradigm shift towards material recycling and
reuse, supported by a comprehensive approach to waste management and reduction.

5. Conclusions

Our comprehensive analysis spanning Section 4 offered pivotal insights into the
dynamics of municipal solid waste generation within the European Union. Section 4′s
examination of the 10-year CAGR unveiled significant trends in economic indicators and
environmental sustainability efforts, particularly highlighting the interconnectedness of
GDP, resource productivity, material consumption, and waste generation. The XGBoost
forecasting model in Section 4.1 provided a robust predictive framework, revealing the
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intricate relationships between economic growth, energy consumption, and waste pro-
duction. In Section 4.2, the interpretability analysis using SHAP values emphasized the
paramount role of circular economy metrics, energy consumption, and economic indicators
in shaping waste generation patterns. These findings collectively form the basis for the
following strategic implications, theoretical contributions, and acknowledgments of the
study’s limitations.

5.1. Strategic Implications for Policy

1. Economic indicators and waste generation: Reflecting on the CAGR trends and the
XGBoost model’s results (Section 4), there is a clear indication that economic growth
correlates with waste generation. This necessitates policies aimed at decoupling these
two factors, such as implementing waste reduction regulations and incentivizing
sustainable practices.

2. Circular economy as a key strategy: the positive trajectory of circular economy indica-
tors like the recycling rate and circular material use rate, coupled with their identified
impact in the model interpretability (Section 4.2), underscores the need for policies
that promote circular economy practices, including material recycling and reuse.

3. Energy efficiency and renewable energy: The decline in energy consumption and
its significant influence on waste generation, as revealed in our analysis (Section 4),
advocate for policies that support energy efficiency and renewable energy adoption.
This approach can indirectly contribute to waste reduction.

4. Holistic waste management: in light of the model’s findings (Section 4.2), while re-
cycling is crucial, it should be integrated into a broader waste management strat-
egy, encompassing enhanced recycling infrastructure and comprehensive waste
management practices.

5.2. Theoretical Implications

Enhancing circular economy metrics: our study, by incorporating circular economy
metrics in waste generation forecasting, not only improves predictive accuracy but also
deepens the understanding of the relationship between circular economy practices and
waste dynamics.

Advancing waste management forecasting: utilizing advanced machine learning tech-
niques, our research enriches the theoretical framework for waste management, showcasing
the effectiveness of data-driven approaches in forecasting GMWp.

Interdisciplinary relevance: this research bridges environmental economics, waste
management, and data science, offering insights into the interplay between economic and
consumption patterns and waste production.

5.3. Limitations of This Study

Data collection challenges: our reliance on Eurostat data, while comprehensive, may
not fully capture the granular aspects of MSW generation across different EU regions.

Modeling constraints: the XGBoost and SHAP models, despite their predictive power,
may not account for unforeseen future shifts in waste generation patterns.

Temporal scope: the study covers data from 2010 to 2020, which might not fully reflect
longer-term trends and cyclical patterns in waste generation.
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