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Abstract: Quantification of shading effects from complex terrain on solar radiation is essential
to obtain precise data on incident solar radiation in mountainous areas. In this study, a machine
learning (ML) approach is proposed to rapidly estimate the shading effects of complex terrain on solar
radiation. Based on two different ML algorithms, namely, Ordinary Least Squares (OLS) and Gradient
Boosting Decision Tree (GBDT), this approach uses terrain-related factors as input variables to model
and analyze direct and diffuse solar radiation shading rates. In a case study of western Sichuan,
the annual direct and diffuse radiation shading rates were most correlated with the average terrain
shading angle within the solar azimuth range, with Pearson correlation coefficients of 0.901 and 0.97.
The GBDT-based models achieved higher accuracy in predicting direct and diffuse radiation shading
rates, with R2 values of 0.982 and 0.989, respectively, surpassing the OLS-based models by 0.081 and
0.023. In comparisons between ML models and classic curve-fitting models, the GBDT-based models
consistently performed better in predicting both the direct radiation shading rate and the diffuse
radiation shading rate, with a standard deviation of residuals of 0.330% and 0.336%. The OLS-based
models also showed better performance compared to the curve-fitting models.

Keywords: solar radiation; shading rate; estimation; mountainous area

1. Introduction

With the rapid development of society and the economy, energy issues have become
increasingly severe. The development and utilization of renewable energy have emerged
as paramount concerns for nations across the world. Solar energy, characterized by its
abundance, sustainability, and reliability, has assumed a significant role as a renewable
energy source capable of replacing conventional energy sources. Solar energy can be applied
in many fields, including architectural design, solar power generation, heat collection
system design, and plant growth monitoring.

The utilization of solar energy heavily relies on the availability of precise data on
incident radiation. The incident solar radiation is typically influenced by various factors,
such as cloud cover, air penetration, and rugged topography [1]. In mountainous regions
with complex terrain, the shading caused by the surrounding topography is a key factor
affecting the spatial and temporal distribution of solar radiation on the ground. To promote
the utilization of solar energy in mountainous areas, it is essential to obtain precise data on
incident solar radiation in these areas.

The conventional approach to gathering solar radiation data for a specific region in-
volves the installation of a sufficient number of solar radiation meters in the area. However,
in mountainous areas with varied topography, the geographical and economic constraints
often severely limit the number of solar radiation monitoring stations. Consequently, rely-
ing on ground-based measurements to obtain incident solar radiation data for the entire
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mountainous region proves unfeasible. An inadequate supply of measured solar radiation
data significantly impedes the utilization of solar energy in these areas [2]. Therefore, solar
radiation estimation models have become a vital approach to acquire accurate data on
incident solar radiation in mountainous regions.

There are many solar radiation estimation models, broadly categorized into three
classes based on their calculation principles: analytical models [3–5], empirical models [6–8],
and statistical models [9–11]. Analytical models are mathematical models based on physical
assumptions, considering the influence of atmospheric components on solar radiation [3];
such models include the work of Threlkeld and Jordan [4] and that of Thevenard and
Gueymard [5]. Empirical models establish solar radiation estimation models based on the
correlation between meteorological parameters and solar radiation [6]; examples include
the models by Iqbal [7] and Bahle et al. [8]. Statistical models iteratively adjust parameter
combinations and values between the input variable and the output result to find the opti-
mal parameters based on existing datasets, as in the models by Pang et al. [9], Ozoegwu [10],
and Mghouchi et al. [11]. However, these conventional solar radiation estimation models
do not consider the shading effects of tall mountains on solar radiation and cannot be
directly applied to estimate solar radiation in mountainous areas.

To accurately estimate data on incident solar radiation in mountainous regions, a
comprehensive analysis of the shading effects of complex terrain on solar radiation is
imperative. The sky-view factor (SVF) is a common parameter used to quantify terrain
shading effects on solar radiation [12–16]. SVF is defined as the ratio of the unobstructed
surface area to the entire surface area of the hemispherical sky [17]. For mountainous
areas with complex terrain, Zhang et al. [18] conducted an in-depth analysis of the terrain
shading effects on solar radiation by using SVF, based on high-resolution digital elevation
models (DEMs) and atmospheric data products from the Moderate-resolution Imaging
Spectroradiometer. This algorithm demonstrated satisfactory performance in validation on
the Heihe River Basin, with both the mean bias error percentage (MBE%; −6.2%) and the
root mean square difference percentage (RMSD%; 7.5%) below 10% [18]. Vartholomaios [15]
developed an efficient machine learning (ML)-based model for urban solar radiation
estimation considering terrain shading effects by using the Monte Carlo method to generate
30,000 samples and calculating the SVF and solar radiation data of each sample. This
model can achieve near-instant calculation, but the accuracy of its calculation is limited in
geometrically complex environments. Although there is a strong correlation between SVF
and terrain shading [16,19–23], their relationship is non-linear [24]. This is primarily due
to SVF reflecting the percentage of the unobstructed sky hemisphere area relative to the
total area, exhibiting a stronger correlation with diffuse radiation shading than with direct
radiation shading [15]. Consequently, in heavily shaded areas, estimating solar radiation
with SVF would result in a large error.

Using DEM and geographic information system (GIS) platforms to extract terrain
data is a common method to quantify mountain shading effects on solar radiation [25–29].
Previously, Dubayah and Rich [30] developed a GIS-based solar radiation estimation
model (SolarFlux) after considering the shading effects of mountainous terrain. Because
of its simple and convenient operation, this model can be effectively applied in planning,
conservation, microclimate, and basic ecology studies. However, this model simplifies the
diffuse radiation to isotropic, leading to diminished calculation accuracy of solar radiation.
Subsequently, Fu and Rich [31] proposed the concept of the viewshed to quantify the visible
and invisible areas of the sky affected by terrain, and they developed the Solar Analyst
model. This model assumes diffuse radiation to be anisotropic radiation, leading to more
precise calculation results compared to the SolarFlux model. Despite enhancements in
model accuracy, the Solar Analyst model is limited to calculating solar radiation within
a defined time span. When dealing with small time intervals, the issue of overlapping
solar trajectories can arise, resulting in imprecise calculations [32]. In subsequent studies,
many scholars have adopted the viewshed concept to develop models for estimating solar
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radiation shading levels in diverse environments [28,29], but the limited quantity of raster
data continues to pose a challenge in achieving high accuracy.

Although several relevant studies have addressed terrain shading effects on solar
radiation, current methods suffer from high computational complexity and limited accuracy,
particularly when applied in regions with severe terrain shading. Achieving precise and
rapid quantification of terrain shading effects on solar radiation remains a challenging task.
Hence, this study proposed an ML-based approach to quickly estimate terrain shading
effects on solar radiation in mountainous areas. By using this method to rapidly obtain
solar radiation shading rates, one can accurately correct the data calculated by conventional
models, allowing the precise acquisition of solar radiation data under mountain terrain
shading. It could provide essential foundational data for urban site selection and the
assessment of rooftop solar potential in mountainous regions.

The study is structured in six sections. Section 1 is the introduction. Section 2 outlines
the steps taken to develop the ML model, presenting an analytical approach for assessing
terrain shading effects on solar radiation in complex mountainous terrain. Section 3 applies
this approach through a case study of western Sichuan, with complex and diverse terrain.
The primary results and discussion are presented in Sections 4 and 5 to demonstrate the
significance of the research. Finally, Section 6 draws conclusions from the research.

2. Methodology

The methodology for rapidly predicting complex terrain shading effects on solar
radiation mainly consists of two parts: the acquisition of training and test sets and the
establishment of an ML model. The dataset primarily included terrain factors and solar
radiation shading rates. First, based on DEMs, this study used ArcGIS to obtain the terrain
factors of the study sites in mountainous areas. Then, the model proposed by Xu et al. [33]
was used to predict the solar radiation received by the study sites under terrain shading
effects and calculate the solar radiation shading rates. Subsequently, based on the training
and test sets, a suitable ML algorithm was chosen to achieve the rapid estimation of direct
solar radiation shading rates and diffuse solar radiation shading rates.

2.1. Acquisition of ML Training and Test Sets
2.1.1. Terrain Factors

To accurately describe the spatial relationships between the shading points cast by the
surrounding mountains and the study sites, this study introduces the concept of the terrain
shading angle, utilizing it as an input parameter of training samples. For a given azimuth
around a research point in a mountainous area, the terrain shading angle is defined as the
angle between the line connecting the research point to the shading point of the mountain
at that azimuth and the horizontal ground, as illustrated in Figure 1. The shading point
of the mountain is a point that has shading effects on the solar radiation received by the
research point. Based on the geometric relationship between the mountain shading point
and the research point, the terrain shading angle (Si) at a particular azimuth direction of
the research point can be calculated by using a trigonometric function. The expression is
as follows:

ArctanSi = Hi/Li (1)

where Hi is the difference in elevation between the research point and the terrain shading
point at the specific azimuth angle, while Li is the horizontal distance between the research
point and the terrain shading point.

Based on DEM, with a 1◦ azimuth interval, this study utilized ESRI ArcGIS 10.2 soft-
ware’s skyline tool to obtain terrain the shading angles for the full 360◦ around the research
point. In this study, it was assumed that all terrain shading angles within a 1◦ azimuthal
interval were identical. Subsequently, average terrain shading angles from the four cardinal
directions (east, west, south, and north) and the average terrain shading angle within the
annual range of solar azimuth angles were extracted. The summer solstice is the day of the
year with the largest range of solar azimuth angles. Therefore, the range of solar azimuth
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angles throughout the year extends from the azimuth angle of the sun at sunrise on this
day to the azimuth angle of the sun at sunset on the same day. The annual range of solar
azimuth angles can be calculated using the formula for the solar azimuth angle [34], as
shown below:

αrange = arc cos(− sin δ

cos la
) (2)

where δ is the solar declination on the summer solstice and la is the local latitude.
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2.1.2. Solar Radiation Shading Rates

To further analyze the terrain shading effects on solar radiation, this study introduces
the concept of the solar radiation shading rate and uses it as an output parameter of training
samples in ML model training. To obtain the solar radiation shading rates, this study uses
the model proposed by Xu et al. [33] to calculate the direct solar radiation and diffuse
solar radiation received by study sites under terrain shading. Subsequently, the study
introduces the concept of the shading rate to quantify the terrain shading effects on direct
and diffuse solar radiation. The annual direct solar radiation shading rate is defined as the
difference between the annual direct solar radiation received without shading and that with
shading, divided by the annual direct radiation received without shading. According to
the definition, the expression for the annual direct solar radiation shading rate as proposed
in the study is as follows:

ηdirect =
Edirect−0 − Edirect

Edirect−0
× 100% (3)

where Edirect−0 is the annual direct solar radiation received without shading and Edirect is
the annual direct solar radiation received under shading.

Similarly, the concept of diffuse solar radiation shading rate is introduced. The annual
diffuse solar radiation shading rate refers to the difference between the annual diffuse
solar radiation received without shading and that with shading, divided by the annual
diffuse radiation without shading. According to the definition, the study also proposes an
expression for the annual diffuse solar radiation shading rate:

ηdi f f use =
Edi f f use−0 − Edi f f use

Edi f f use−0
× 100% (4)

where Ediffuse−0 is the annual diffuse solar radiation received without shading and Ediffuse is
the annual diffuse solar radiation received with shading.

2.2. Selection of ML Algorithm

It has been found that the accuracy of a regression model with multiple independent
variables is generally higher than that of a regression model with a single independent
variable, and using ML methods to train regression models is an effective solution to
multivariate regression problems [35,36]. Therefore, this study sets various terrain factors
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as independent variables and selects the direct radiation shading rate and diffuse radiation
shading rate as dependent variables. The ML method is used for multivariate regression
analysis to deeply investigate the relationships between terrain factors and solar radiation
shading rates.

For model training and testing, this study utilized Scikit-learn, a Python-based open-
source ML library. Two different algorithms, namely, Ordinary Least Squares (OLS) and
Gradient Boosting Decision Tree (GBDT), were chosen for simulation analysis to establish
regression models. By comparing the accuracy of the regression models, an appropriate
algorithm was selected to develop an ML model that could efficiently quantify the terrain
shading effects on solar radiation in mountainous areas.

The Ordinary Least Squares (OLS) algorithm is a linear regression algorithm commonly
employed in ML. Its training process is relatively simple, and the resulting model can be
expressed directly using a mathematical formula. When the relationship between variables
is linear or nearly linear, the prediction results are accurate. However, when the relationship
between variables is non-linear, the prediction results might not be accurate. Due to the
simple calculation logic of the OLS model, its prediction accuracy is often lower than that
of models fitted by more complex regression algorithms, such as ensemble algorithms.

To ensure the prediction accuracy of the model, the study also uses an ensemble
algorithm, Gradient Boosting Decision Tree (GBDT). GBDT combines multiple regression
decision tree estimators through gradient boosting, increasing the robustness and accuracy
of the overall model. It is considered to be one of the best-performing ML methods [37].

3. Case Implementation

In this study, the Western Sichuan Plateau was chosen as a representative case to apply
and evaluate the method proposed above. Situated in the transition area between the
Qinghai-Tibet Plateau and the Sichuan Basin, the Western Sichuan Plateau is characterized
by high altitude and abundant solar energy resources. However, the terrain there is
complex and varied. In western Sichuan, the solar radiation received by the towns scattered
among the mountains is significantly affected by the shading effects of the surrounding
terrain (Figure 2).
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3.1. Terrain Factors of Western Sichuan

Based on the distribution of towns on the Western Sichuan Plateau, this study selected
139 town study sites and extracted terrain factors as inputs for training samples. First,
based on DEM, ArcGIS was used to extract the terrain shading angles around the study
sites at 1◦ interval. Taking Jianshe Town in western Sichuan as an example, the terrain
shading angles around the research point are shown in Figure 3. In the diagram, the angular
coordinate represents the position of the mountains relative to the town (−180◦ to 180◦),
where 0◦ signifies that the mountain is to the south of the town, while ±180◦ indicates
that the mountain is to the north of the town. The radial axis represents the slope of the
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mountain (0◦ to 40◦), and the length of the line segment denotes the terrain shading angle
at that direction. A longer line segment implies a greater the terrain shading angle at the
azimuth angle. Subsequently, based on the terrain shading angles around the 139 town
study sites, the average terrain shading angle within the range of solar azimuth angles and
the terrain shading angles in the four different directions are calculated.
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3.2. Solar Radiation Shading Rates

In rugged mountain areas, varying mountain shapes result in different degrees of
shading effects on solar radiation. According to the topographical characteristics of western
Sichuan, the direct radiation shading rates and diffuse radiation shading rates of the study
sites in 139 towns were calculated by using the solar radiation model of Xu et al. [33]. These
shading rates were considered output variables of training samples, as depicted in Figure 4.
The average annual direct radiation shading rate of the 139 towns in western Sichuan was
4.6%, and the average annual diffuse radiation shading rate was 8.3%. Among these, the
direct radiation shading rates of 57 urban study sites exceeded 5%, and the diffuse radiation
shading rates of 95 urban study sites exceed 5%.
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3.3. Selection of Input-Parameter Combinations

To determine the optimal combination of input variables for ML, the correlations
between various terrain factors and solar radiation shading rates were analyzed. Five
terrain factors of the 139 towns were used as input variables, with the annual direct
radiation shading rates and diffuse radiation shading rates as output variables. The
correlations between the five terrain factors and the annual direct radiation shading rates
and diffuse radiation shading rates were analyzed.

Figure 5 illustrates the distribution of solar radiation shading rates in western Sichuan
under the influence of the five terrain factors and the Pearson correlation coefficients (P)
between shading rates and terrain factors. This figure demonstrates that there were linear
relationships between the five terrain factors and the annual solar radiation shading rates.
Obviously, the annual direct radiation shading rate and the diffuse radiation shading rate
exhibited the strongest correlation with the average terrain shading angle within the solar
azimuth range, with Pearson correlation coefficients of 0.901 and 0.971, respectively. The
annual direct radiation shading rate and the diffuse solar radiation shading rate had the
lowest correlation with the average shading angle in the northerly direction, with Pearson
correlation coefficients of 0.517 and 0.786, respectively.
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According to the results of the correlation analysis, selecting appropriate input vari-
ables for model training could enhance the model calculation accuracy. During the model
training process, an excessive number of input variables may lead to model overfitting,
compromising simulation accuracy. Therefore, to mitigate overfitting, the number of input
variables was increased in turn based on the degree of correlation between the five terrain
factors and solar radiation shading rates during model training. The input variables were
added in the following order: the average terrain shading angle within the solar azimuth
range, the terrain shading angle in the east, the terrain shading angle in the west, and the
terrain shading angles in the south and north. Throughout the training process, the input
variables were divided into five combinations, as shown in Table 1.

Table 1. Different combination groups of input variables.

Ssolar Seast Swest Ssouth Snorth

Group 1
√

Group 2
√ √

Group 3
√ √ √

Group 4
√ √ √ √

Group 5
√ √ √ √ √



Sustainability 2024, 16, 931 8 of 16

3.4. GBDT Algorithm Hyperparameter Optimization

When using the GBDT algorithm for model training, it is crucial to adjust and optimize
the hyperparameters, including the n-estimators and learning rate. Among them, the n-
estimators represent the number of iterations for decision tree models. Generally, if the
parameter is too small, it may lead to underfitting, and if it is too large, it might result in
overfitting. Thus, selecting a moderate value is imperative, taking the learning rate into
consideration. In this study, after multiple adjustments and careful consideration of the
simulation accuracy, 200 was selected as the n-estimator. The learning rate is the weight-
shrinking coefficient for each decision tree model, ranging from 0 to 1. Although a smaller
learning rate can reduce overfitting, it requires more iterations of the decision tree model for
overall training. After multiple parameter adjustment tests, 0.1 was chosen as the learning
rate for training in this study. The “subsample” refers to the proportion of subsampling
during training. A small subsample value can prevent overfitting but may increase the
sample bias. In this study, subsampling was not used, and the subsample value was set to 1.
The parameter Loss was used to select the loss function, encompassing mean squared error
(“ls”), absolute loss (“lad”), Huber loss (“huber”), and quantile loss (“quantile”). Due to the
small sample size in this study, the “ls” parameter was used to improve the training.

Apart from the hyperparameters of the boosting frameworks, several hyperparameters
of each individual decision tree estimator also need to be adjusted to establish the GBDT
model. The “max depth” represents the maximum depth of the decision tree. After testing,
a value of 2 was chosen as the max depth to optimize the model accuracy. The parameter
“min-sample-split” denotes the minimum number of samples required for internal node
splitting. If the number of the node samples is less than this parameter, no attempt is
made to split the node further. Owing to the limited number of samples in this study, this
parameter was set to 2. The parameter “min-sample-leaf” signifies the minimum number of
samples for a leaf node. If the number of leaf nodes is smaller than the number of samples,
it may be pruned along with the sibling nodes. To improve the precision of the model, the
value was set to 1.

4. Results
4.1. OLS Algorithm

Based on various terrain shading factors, the OLS algorithm was used to fit the annual
direct solar radiation shading rates and the annual diffuse solar radiation shading rates. To
verify the model accuracy, the 139 samples were divided into training and test sets in a 5:1
ratio. The best model was selected through comparative analysis of computational errors
of models obtained using five different input-variable combinations.

Figure 6 displays comparisons between the simulated values obtained from the OLS
algorithm using five different input-variable combinations and the reference values. For
the annual direct radiation shading rate, the model’s accuracy was highest when utilizing
the variables of group 4 as inputs, with an R2 of 0.900. This group includes the average
terrain shading angle within the solar azimuth range and the terrain shading angles to the
east, west, and south. The optimal formula for calculating the annual direct solar radiation
shading rate (Rdirect) as obtained by the OLS algorithm is as follows:

Rdirect = 0.014433Ssolar − 0.00186Seast − 0.00217Swest − Ssouth (5)

where Ssolar is the average terrain shading angle within the solar azimuth range, while Seast,
Swest, and Ssouth are the shading angles to the east, west, and south, respectively.

For the annual diffuse solar radiation shading rate, when using the variables of group
5 as inputs, the model’s accuracy was highest with an R2 of 0.967. This group includes
the average terrain shading angle within the solar azimuth range and the terrain shading
angles in the four different directions. Therefore, the optimal formula for calculating the
annual diffuse solar radiation shading rate (Rdiffuse) as obtained by the OLS algorithm is
as follows:
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Rdi f f use = 0.006468Ssolar + 0.00087Seast + 0.000165Swest − 0.00076Ssouth + 0.001675Snorth (6)

where Snorth represents the shading angle in the northerly direction.
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4.2. GBDT Algorithm

Based on various terrain shading factors, the GBDT algorithm was used to fit the
annual direct solar radiation shading rate and the annual diffuse solar radiation shading
rate. As with the OLS algorithm, to validate the accuracy of the GBDT-based models, the
139 samples were also divided into training and test sets in a 5:1 ratio.
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Figure 7 demonstrates comparisons between simulated values obtained from GBDT-
based models trained with the five groups of input variables and the reference values. For
the annual direct solar radiation shading rate, the model achieved the highest accuracy
using group 4 variables as inputs; these variables included the average terrain shading
angle within the solar azimuth range and the shading angles to the east, west, and south,
with an R2 of 0.982. Similarly, for the annual diffuse solar radiation shading rate, the model
attained the highest accuracy using group 5 variables, encompassing the average terrain
shading angle within the solar azimuth range and the shading angles in all four cardinal
directions, with an R2 of 0.989.

Sustainability 2024, 16, x FOR PEER REVIEW 11 of 17 
 

angle within the solar azimuth range and the shading angles to the east, west, and south, 
with an R2 of 0.982. Similarly, for the annual diffuse solar radiation shading rate, the model 
attained the highest accuracy using group 5 variables, encompassing the average terrain 
shading angle within the solar azimuth range and the shading angles in all four cardinal 
directions, with an R2 of 0.989. 

 
Figure 7. The GBDT-based models’ simulation values calculated by using 5 groups of input varia-
bles vs. reference values. 

Figure 7. The GBDT-based models’ simulation values calculated by using 5 groups of input variables
vs. reference values.



Sustainability 2024, 16, 931 11 of 16

5. Discussion

In order to further investigate the intrinsic relationship between the solar radiation
shading rates and the terrain shading factor, this study conducted a comparison between
ML models and traditional curve-fitting models. Based on the analysis results in the form of
Pearson correlation coefficients, it was evident that the direct and diffuse radiation shading
rates were most closely related to Ssolar. Thus, this study set Ssolar as the independent
variable to perform univariate curve fitting. During the fitting process, eight different
curve equations were selected, and error statistics were calculated, with the analysis results
shown in Table 2. From the table, it is evident that for the estimation of the annual direct
and diffuse radiation shading rates, the power-function equation performed the best, with
R2 values of 0.887 and 0.961, respectively. The power-function equations of the annual
direct solar radiation shading rate (Rdirect) and the annual diffuse solar radiation shading
rate (Rdirect) are as follows:

Rdirect = 0.00001332Ssolar
2.894 (7)

Rdi f f use = 0.000524Ssolar
1.84 (8)

Table 2. Comparison of the estimation errors for solar radiation shading rates based on different
curve-fitting models.

Functions
Direct Shading Diffuse Shading

R2 R2

Logarithmic curve 0.562 0.767
Inverse function 0.281 0.46
Quadratic curve 0.829 0.944

Cubic curve 0.829 0.946
Composite curve 0.763 0.863
Power function 0.887 0.961

S-curve 0.792 0.826
Logistic 0.765 0.862

After that analysis, a residual comparison analysis was conducted. By comparing
the residuals of the solar radiation shading rate models trained by the curve-fitting, OLS,
and GBDT algorithms, a comprehensive analysis was conducted to assess the accuracy
of the models. The residual comparison of the direct radiation shading rate simulated by
models using these three algorithms is illustrated in Figure 8. For the direct solar radiation
shading rate, the R2 of the GBDT-based model exceeded that of the OLS-based model by
0.081 and exceeded that of the curve-fitting model by 0.094. The standard deviations of
the residuals (SD) for the curve-fitting model, OLS model, and GBDT model were 1.317%,
1.260%, and 0.330%. The residual comparison indicated that the predictions of the GBDT-
based model were more stable than those of the other two models. The residual values of
the GBDT model consistently remained no greater than 1%, with only a few above 1%. The
predicted results of the OLS-based models were influenced by the reference values. When
the reference value exceeded 12%, the absolute value of the residual might also exceed
2%. For the curve-fitting model, the error was relatively even across the entire range of
reference values, and the number of residual values greater than 2% was higher with this
model than with the other two types of ML models.
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Figure 9 displays a residual comparison of the diffuse radiation shading rates sim-
ulated by models using the curve-fitting, OLS, and GBDT algorithms. For the diffuse
radiation shading rates, the GBDT-based model outperformed the OLS-based model and
the curve-fitting model, presenting a higher R2 value by 0.023 and 0.028, respectively.
The difference in accuracy among the three algorithms for predicting the diffuse radia-
tion shading rate was smaller than that for predicting the direct solar radiation shading
rate. The standard deviations of the residuals for the curve-fitting model, OLS model,
and GBDT model were 1.313%, 1.000%, and 0.336%. The SD of the GBDT-based model
was still below 0.5%, and the SDs of the OLS and curve fitting models were larger than
1%. The residual values of the predicted diffuse solar radiation shading rates using the
GBDT-based model consistently remained no greater than 1%, with only a few above 1%.
The predicted diffuse radiation shading rate of the OLS-based models was also affected by
the reference values. When the reference value was greater than 15% or close to 0%, the
absolute value of the residuals could be greater than 2%. For the curve-fitting model, the
error was similarly uniform across the entire range of reference values, and the quantity of
residual values exceeding 2% for this model was more numerous than for the other two
types of ML models.
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From the aforementioned error comparisons, it can be seen that the direct and diffuse
radiation shading rate models based on the GBDT algorithm perform best. The computa-
tional precision of the direct and diffuse radiation shading rate models based on the OLS
algorithm is only slightly higher than that of the curve fitting equation. Thus, in practical
applications, an appropriate algorithm for estimating solar radiation shading rates can be
selected according to the actual precision requirement.

Although using the SVF concept to analyze the shading effects on solar radiation is a
commonly used method, it only contains information regarding the shading percentage,
without giving the precise shading location details [17]. In instances of severe shading, the
calculation of solar radiation shading using SVF would cause great errors [15]. Based on the
calculation principle of radiance [38] or the concept of the viewshed [31], shading effects
can also be quantitatively analyzed. In order to estimate the solar radiation data of the
research point under shading, Rutten [39] developed a Grasshopper plugin in Rhinoceros3D
7.5 software based on the principle of radiance calculation. Subsequently, Roudsari and
Pak [40] further developed the related complementary plugins for Grasshopper. When
calculating the shading effects on solar radiation by the Grasshopper plugin, the sky
hemisphere was divided into 145 parts [41]. Zhang et al. [42] developed a model for
calculating instantaneous solar radiation under mountainous terrain shading based on the
viewshed by dividing the viewshed grid resolution into 16 azimuth and altitude angle parts.
However, the finite number of sky hemisphere divisions restricts the calculation accuracy.

The solar radiation shading rate of the training set of this study is calculated based
on the model of Xu et al. [33]. It divides the viewshed grid resolution into 360 parts in the
azimuth and 90 parts in the altitude angle. The calculation of diffuse solar radiation data
under shading effects takes place through double integration on the unblocked surface of
the sky dome [33]. Compared with the typical measured annual meteorological data, the
R2 of the hourly solar radiation calculation errors of the model of Xu et al. [33] exceeds
0.97. Therefore, the method presented in this study is not only precise in the ML process
but also has accurate training and test sets. In summary, the solar radiation shading rate
estimation model proposed by the research not only has a fast calculation speed but also
has satisfactory calculation accuracy compared with the existing shading quantification
analysis models.

However, there are also some limitations to this study. Specifically, the focus was only
on the annual solar radiation shading rates, without considering variations across different
seasons. In addition, the solar radiation shading rates of surfaces with varying orientations
have not been involved. In future work, the solar radiation shading rates of surfaces with
varying orientations during different time periods need to be further studied.

6. Conclusions

Based on mountainous terrain factors, this study proposed an ML method for solar
radiation shading rate prediction in mountainous areas with complex terrain by using the
OLS and GBDT algorithms. Error analysis was conducted to select the optimal models,
enabling accurate and rapid predictions of both the direct radiation shading rate and the
diffuse radiation shading rate.

The Western Sichuan Plateau was chosen as a representative case to establish a rapid
estimation model of solar radiation shading rates. The complex terrain in western Sichuan
has an obvious shading impact on solar radiation, and the average direct radiation shading
rate of the 139 towns in western Sichuan is 4.6%, while the average diffuse radiation shading
rate is 8.3%. According to the correlation analysis between various terrain factors and
solar radiation shading rates, it was revealed that the annual direct and diffuse radiation
shading rates in the western Sichuan are most correlated with the average terrain shading
angle within the solar azimuth range, with Pearson correlation coefficients of 0.901 and
0.971, respectively. The annual direct radiation shading rate and the diffuse solar radiation
shading rate have the lowest correlation with the average shading angle in the north
direction, with Pearson coefficients of 0.517 and 0.786, respectively.
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During the model development process, a comparative analysis was performed us-
ing five sets of input variables. For western Sichuan, the R2 values of the optimal OLS-
based models for direct solar radiation shading rate and diffuse radiation shading rate are
0.900 and 0.967, respectively. However, the R2 values for the optimal GBDT-based models
are higher, at 0.982 and 0.989, respectively. Furthermore, the study made a comparison
between the classic curve-fitting model and the ML model. Since the direct and diffuse
radiation shading rates are most closely related to Ssolar, this study set Ssolar as the inde-
pendent variable and conducted a single-factor curve fitting. The resulting equations for
the annual shading rates of direct and diffuse radiation yielded R2 values of 0.887 and
0.961, respectively. It is found that for the direct solar radiation shading rate prediction, the
standard deviations of residuals for the curve-fitting model, OLS model, and GBDT model
are 1.317%, 1.260%, and 0.330%. And for the diffuse solar radiation shading rate prediction,
the standard deviations of residuals for the curve-fitting model, OLS model, and GBDT
model are 1.313%, 1.000%, and 0.336%. Therefore, no matter whether it is used for the direct
radiation shading rate prediction or the diffuse radiation shading rate prediction, the GBDT-
based models always perform best, and the OLS-based models perform slightly better than
the curve-fitting models. In practical applications, an appropriate algorithm for estimating
solar radiation shading rates can be selected according to the actual precision requirements.

In summary, the solar radiation shading rate estimation model proposed by the re-
search not only has a fast calculation speed but also has satisfactory calculation accuracy
compared with the existing shading quantification analysis models. Based on the solar
radiation shading rates predicted by this method, solar radiation data obtained by conven-
tional models that do not consider terrain shading effects can be corrected to obtain precise
solar radiation data in mountainous areas. This study could effectively address the issue
of the insufficient solar radiation data in mountainous areas, thereby providing crucial
fundamental data for the field of urban site selection and rooftop solar energy utilization.
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