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Abstract: As the digital economy becomes the new engine of economic growth, China has introduced
a series of smart city policies aimed at promoting high-quality and sustainable urban development.
This paper aims to evaluate the green development effects of China’s “Smart City Pilot” policy and
to explore the heterogeneity of policy effects across different types of cities. Using panel data from
283 prefecture-level cities in China from 2006 to 2020, this study examines the relationship between
smart city construction policy and urban green development efficiency using the green total factor
productivity (GTFP). We employ the Causal Forest and mediation effect models to estimate the impact
of smart city pilot policy on GTFP and explore the underlying mechanisms. The main results are:
(1) The smart city pilot policy significantly enhances urban GTFP, a finding consistent across diverse
policy evaluation approaches. (2) The influence of the policy on green development varies among
cities, and such heterogeneity is effectively captured by the Causal Forest. (3) This varied impact
primarily stems from urban location factors and inherent characteristics. Notably, the policy effect in
Eastern China outpaces that in other regions. The policy yields greater green benefits with financial
development and medical capital rises, but excessive government public expenditure curtails its
positive influence. (4) The mediation mechanisms through which the smart city pilot policy promotes
green development exhibit certain differences between the “high-effect group” and the “low-effect
group”. The former predominantly leverages innovation-driven and agglomeration effects, while the
latter chiefly relies on industrial structural advancement and rationalization.

Keywords: smart city construction; green total factor productivity; Causal Forest; heterogeneous
treatment effects

1. Introduction

Recent global climate change issues have become increasingly severe, with dire conse-
quences for agriculture, socio-economics, and human well-being [1]. This trend threatens
the sustainable development of human society. In 2022, extreme climate events such as
the prolonged drought in East Africa, record rainfall in Pakistan, and record heatwaves
in China and Europe affected millions of people and caused billions in economic losses.
Tackling global climate challenges has become an urgent collective endeavor. As the largest
developing country and energy consumer in the world, China has established robust
targets to peak carbon emissions by 2030 and achieve carbon neutrality by 2060. This
aligns not only with China’s pursuit of sustainable development domestically but also with
its international duties and pledges to actively engage in global climate governance and
construct a shared future for humanity.

With the new wave of the global technological revolution, emerging digital technolo-
gies like the Internet, big data, and cloud computing have played vital roles in economic
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growth [2], green innovation [3], government management [4], corporate governance,
and environmental improvement [5]. The digital transformation injects new momentum
into ecological priority, green low-carbon development, and achieving carbon peaking
and neutrality on schedule [6–8]. Against this background, China’s “14th Five-Year Plan
for National Informatization” advocates for “digital-green collaborative development”
and “promoting green development with digitalization, while driving digitalization with
green development”.

Cities, as the basic carriers of socio-economic development, are both the primary
sources of carbon emissions and the central front in coordinated and enhanced pollution
reduction and carbon mitigation efforts. The smart city is a novel urban development
mode encompassing efficient production, modern public services, energy conservation,
environmental protection, and economic growth—inherently aligning with green develop-
ment. By integrating the internet, contemporary information technology, and urbanization,
smart cities establish a new framework for modern urban development and may offer a
potential solution to environmental challenges [9]. In late 2012, China formulated and
progressively implemented the smart city pilot policy. Essentially, it relies on information
technologies such as the Internet of Things, cloud computing, and big data, as well as an
urban innovation ecosystem nurtured in a knowledge environment, to achieve a leapfrog
in urban development patterns. The smart city pilot policy aims to build intelligent, in-
novative, green, and low-carbon areas as development goals. It is a sustainable policy
that requires achieving a “win–win” between the information economy and the ecological
environment. The “National Plan on New Urbanization (2014–2020)” announced in 2014
outlined the primary direction for smart city pilot construction and elevated smart city
strategies to the national strategic level. In 2021, China’s 14th Five-Year Plan (2021–2025)
proposed accelerated deployment of smart cities and new infrastructures, promoting new
technologies, and the establishment of a next-generation information infrastructure system.
Currently, the construction of China’s smart cities has achieved remarkable results. In terms
of investment scale related to smart city construction, the market size of SC in 2022 was
20 times larger than in 2016, with market capacity reaching the trillion-dollar level. Accord-
ing to the “Global New Smart City (SMILE Index)" released by the China International Fair
for Trade in Services (CIFTIS) in 2023, Beijing, Guangzhou, and Hong Kong were ranked
among the top 10 in the global smart city rankings. China’s prowess in the realm of smart
cities was brought to the forefront. Meanwhile, the current implementation of smart city
pilots faces certain problems, such as unbalanced development, unclear top-level design,
slow adoption of digital technologies, and insufficient financial support. Some cities do not
pay enough attention to their unique advantages and practical conditions in economic and
ecological development but simply copy the best practices of demonstration cities. This
greatly reduces the socioeconomic and environmental benefits that a smart city is supposed
to achieve. These issues, to varying degrees, restrict the efficiency of smart city construction
and pose obstacles to the promotion of green and sustainable urban development.

As the digital era emerges, an increasing number of developing countries have put
the construction of smart cities on the agenda, seeing it as an important path to promoting
high-quality, sustainable development. Aside from China, countries such as India, Brazil,
and South Africa are also actively exploring smart city construction plans. How does one
promote high-quality smart city construction? How does one better leverage smart city
construction to promote green urban development? These have been important issues
of concern for government administrators and research scholars. As a representative of
developing countries, China is at the forefront in terms of the pilot duration and number
of cities for smart city construction among developing countries. China’s experience can
provide important empirical data and case support to study the aforementioned issues.
Against this background, this paper takes China’s “smart city pilot” policy (hereafter SC
policy) as the research object. Based on panel data from 283 prefecture-level cities in China
from 2006 to 2020, we construct a green total factor productivity (GTFP) index and adopt
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machine learning causal inference methods to deeply discuss the effects and mechanisms
of smart cities on green development.

This study offers three primary contributions. Firstly, we employ the Causal Forest
method to assess the impact of the SC policy on GTFP, thereby expanding both theoretical
and empirical research on green development. Secondly, this study offers a granular exami-
nation of regional variances in policy outcomes. This approach illuminates commonalities
among cities with pronounced effects and facilitates a deeper understanding of their unique
trajectories and patterns, enhancing the efficacy of subsequent policy adjustments. Thirdly,
we identify the underlying mechanisms influencing GTFP through three mediating chan-
nels: innovational dynamics, industrial structure optimization, and factor aggregation. This
analysis offers referential frameworks for promoting sustainable and green development
worldwide in the digital age.

The structure of this paper is arranged as follows: Section 2 is the literature review.
Section 3 is devoted to studying the underlying mechanism and giving research hypotheses.
Section 4 outlines the methodologies and data employed. Section 5 showcases empirical
findings alongside robustness tests. Sections 6 and 7 further explore the heterogeneity
of treatment effects and mediation mechanisms, respectively. Finally, Section 8 provides
targeted recommendations and concludes the paper.

2. Literature Review

The concept of a smart city (SC) traces back to IBM’s “Smart Planet” initiative launched
in 2008, representing the integration of digital cities and emerging information technologies
like the Internet of Things [10]. As defined by Bonab et al. [11], an SC is an organic urban
system that consciously pursues sustainable development by leveraging technology to
synthesize data, resources, policies, and human capital. Ahvenniemi et al. [12] argued that
technology should enable sustainability in SCs; cities that fail to incorporate sustainability
cannot be considered truly “smart”. SC development is deemed the urban growth model
in the digital era and the trajectory of societal advancement [13]. With major countries
incorporating SCs into national development strategies, research on the influence of SCs
has proliferated.

By examining the repercussions of SC initiatives, scholars have explored economic,
societal, and environmental impacts. Liu and Peng [14] indicated that SCs reduce energy
consumption and pollution by shifting from linear to networked integration of natural
resource utilization, clean manufacturing, and waste disposal, thereby achieving cost
savings and quality improvement. Conversely, Green [15] cautioned against potential
downsides, arguing that in SCs, civic engagement might become overly reliant on technol-
ogy applications, which could marginalize citizens who are averse to or lack access to such
platforms. Concerns over discrimination, infringements on personal liberties, and privacy
also emerged in this context. The environmental impact of digital incorporation in city
planning remains a contentious issue. Lange et al. [16] pointed out that our current digital
pivot has increased energy consumption, implying that technology alone cannot uncouple
economic growth from energy demands; more comprehensive sustainability strategies are
needed. Salahuddin and Alam [17] found that in the long run, a 1% increase in internet
users in OECD nations correlated with a 0.026% rise in per capita electricity consumption.
Yet, digital technology might also bolster energy efficiency [7]. For example, Khuntia
et al. [18] studied Indian manufacturers and found that operations-oriented IT investments
effectively reduced enterprise energy use. However, Cai et al. [19] found no significant
linkage between U.S. SCs and environmental or social sustainability. While Yigitcanlar
and Kamruzzaman [20] asserted that SCs in the UK are not driving low-carbon sustain-
able development, others posited that SC policies reduce regional carbon dioxide and
pollutant emissions [21,22]. Liu et al. [8] presented evidence that the SC policy decreased
industrial SO2 emissions in central and northeastern China while significantly reducing
electricity consumption per GDP unit in eastern and western regions. The ongoing debate



Sustainability 2024, 16, 929 4 of 28

centers on whether SCs genuinely address environmental challenges and foster eco-friendly
urban growth.

Researchers have also looked at the potential environmental impacts of different sec-
tors of SCs, including housing [23], data centers [24], renewable energy, and energy use in
transport [25]. Kylili and Fokaides [23] argued that zero-energy buildings, when synergized
with urban energy networks, can be pivotal in fulfilling the European SC construction
and emission reduction targets. Zhu et al. [24] examined emission reduction technologies
across 20 notable data centers in global low-carbon smart cities. Their findings emphasized
the need to optimize IT equipment and develop advanced cooling technologies to reduce
energy usage in data centers. Anh Tuan et al. [25] analyzed the role and challenges of
integrating renewable energy into SC grids by examining both technological and economic
perspectives. Their analysis indicates that extensive renewable energy penetration is viable
for SCs of all scales. Chu et al. [21] explored the impacts of SC initiatives on China’s ecolog-
ical environment, verifying that these projects significantly reduced industrial emissions by
driving technological innovations and optimizing resource allocation in cities. Ruggieri
et al. [26] assessed transportation decarbonization across six European SCs: London, Ham-
burg, Oslo, Milan, Florence, and Bologna. They found cities promoting electric vehicle
adoption, notably Hamburg, Milan, and London, and witnessed substantial reductions in
pollutants, including PM2.5, PM10, and NO2. However, some scholars have presented con-
trasting viewpoints; for instance, Dashkevych and Portnov [27] argued that the widespread
adoption of internet technology and the number of universities in a city did not necessarily
correlate with improved air quality.

To determine whether an SC does indeed promote green urban development, the treat-
ment effects of China’s SC policy need to be examined. While previous studies employed
econometric methods like difference-in-differences to estimate the average treatment ef-
fect (ATE), they faltered in assessing heterogeneous treatment effects (HTEs). In recent
years, merging traditional machine learning with causal inference has emerged as a new
research avenue [28]. Hill [29] proposed using Bayesian Additive Regression Trees (BARTs)
to identify causal effects in non-experimental settings. Nonlinear simulations showed
BARTs produced more accurate average treatment effect estimates compared to propensity
score matching, weighting, and regression adjustment. Johansson et al. [30] presented a
counterfactual reasoning framework combining domain adaptation and representation
learning. Louizos et al. [31] estimated a latent space capturing confounders and effects
using variational autoencoders, learning individual causal effects from observational data.
Wager and Athey [32] applied random forests to estimate treatment effects, discussing the
consistency and asymptotic normality of the estimates (Causal Forest). Athey et al. [33]
extended the Causal Forest to Generalized Random Forests, demonstrating applications to
quantile regression forests and instrumental variable regression.

In summary, while numerous studies have explored the effects of SC evolution on
urban environments from diverse dimensions, discussions on green development are
still relatively lacking. In addition, China has a vast territory with certain imbalances in
economic development across regions, leading to significant differences in city-specific char-
acteristics. The current literature points out regional variations in policy implementation
throughout China, necessitating a more detailed analysis of SC policy efficacy across vari-
ous regions [34–36]. In causal inference, compared with traditional econometrics methods,
the emerging Causal Forest approach demonstrates stronger real-world interpretability,
more accurate predictive capability, and finer granularity, thus gaining increasing appli-
cation. However, applications of machine learning for policy evaluation in Chinese cities
remain scarce. Based on the Causal Forest, we examine the impact of China’s SC policy on
urban green development. This offers a nuanced understanding of both the overarching
and regional consequences of the policy. Furthermore, we seek to identify the determi-
nants underlying the heterogeneous effects of the policy, aiming to enhance sustainable
urban development.
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3. Mechanism Elaboration and Research Hypotheses

SCs represent an advanced stage in urban digitization. Their pilot initiatives primarily
focus on utilizing information technology innovations to catalyze upgrades in urban gover-
nance models. SCs extensively implement next-generation technological architectures to
empower integrated “industry–academia–research” development platforms. By sharing
information, they effectively promote synergies between specialized production factors
across domains, propel intelligent industrial clusters, and expand the ecological dimensions
of clean industry. This contributes to molding green and sustainable urban paradigms. On
one hand, SCs transform conventional municipal utilities into intelligent, digitalized coun-
terparts. The comprehensive penetration and application of digital tech-based management
platforms enable efficient data transfer, aiding enterprises in tapping into market demands
with data insights. This enhances resource distribution and energy efficiency, facilitating
an urban shift towards greener transformation [37,38]. On the other hand, SCs conduct
green upgrades on large-scale energy-intensive infrastructure and proactively integrate
and promote renewable energies. This realizes the efficient utilization of renewables like
wind and solar power, transforming urban energy structures. For instance, SCs use Internet
of Things (IoT) technologies to meticulously plan and manage electric vehicle charging
facilities. This provides convenience for harnessing clean energies. From the above analysis,
we suppose:

Hypothesis 1. The “smart city pilot” policy helps promote the green development of the pilot cities.

Disparities in locational endowments and development stages lead to considerable
differences in development levels and industrial structures across cities. The overall levels
of economic, financial, and human capital development in eastern cities are generally
higher compared to central and western cities. Meanwhile, western regions have a higher
dependence on natural resources in their economic structures. The heightened environ-
mental pressures and energy consumption could also potentially constrain green and
low-carbon transitions in these cities. According to the new economic geography proposed
by Krugman [39], locational advantages amplify enterprise clustering, propelling urban
economic growth. Cities with advanced financial development possess well-functioning
market mechanisms that provide consistent capital inflows, ensuring effective policy im-
plementation. Human capital determines the development potential and quality of cities.
High-quality human capital more effectively leverages digital technologies to catalyze
urban green innovation and diffusion [40]. Such cities generally harbor residents with
a higher environmental quality preference and a proclivity for digital integration. The
effective synergies between locational advantages, sophisticated finance, and abundant
technological talent propel the deep integration of high-tech with the traditional physical
economy. The advancement of SC policy reinforces the application of digital technologies
across diverse urban domains like management, public services, and enterprise production.
This facilitates the optimization and restructuring of entire industrial chains and corporate
processes, thereby more readily bolstering green urban production [41].

In contrast, cities heavily reliant on resource-intensive industries like heavy manu-
facturing typically have relatively singular economic structures. Such structures are more
prone to “resource curses”. Digital technologies struggle to improve existing industrial
structures, while financial underdevelopment deprives cities of environmental governance
funds and might impede the effectiveness of SC policy [42]. Therefore, this paper proposes
the following hypothesis regarding the sources of heterogeneous treatment effects (HTEs):

Hypothesis 2. The treatment effects of the “smart city pilot” policy demonstrate heterogeneity
across pilot regions. Differences in city-specific features like financial development, human capital,
and industrial development are important factors causing HTEs.
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Innovation-driven green development is an important new approach to transitioning
from pollution-intensive industries and enhancing both economic efficiency and environ-
mental quality [43]. Referencing the “quadruple helix model” [44], the construction of
SCs requires four key participants—government, academia, industry, and citizens—to be
coupled together and jointly promote SC innovation. The government provides support
for research, development, and introduction of new technologies through policy guidance,
aggregates the participants in the quadruple helix model through industry–academia–
research–integration, conducts collaborative cooperation on intelligent solutions for issues
like environmental problems, and creates huge markets for advanced green terminal prod-
ucts [45,46]. In addition, SCs established intelligent information platforms to promote
inter-industry correlative innovation spillovers of information and also provide the gov-
ernment with more precise dynamic management media. The central government clearly
stated in its top-level design that people-oriented and ecological civilization are the guid-
ing ideologies for the construction of SCs. This requires local governments to strengthen
environmental regulation to generate the “Porter Hypothesis”, which forces companies to
develop low-pollution, low-consumption, and high-value-added advanced manufacturing
technologies, thereby effectively reducing the unreasonable outputs of cities in the pollution
field and optimizing energy consumption structures [9,47]. With the simultaneous rise of
information technology and urban green technology innovation, the current situation of
fossil energy consumption is alleviated, resource misallocation and waste are avoided, and
waste recycling and reuse are achieved, which facilitates cities’ green transformation. In
view of this, this paper proposes the third hypothesis:

Hypothesis 3. The implementation of the “smart city pilot” policy can improve urban green
innovation capabilities, thus advancing green development.

The digitization of the economy is now a pivotal driver of contemporary economic
growth. The construction of SCs actively promotes the in-depth integration of next-
generation, data-centric technologies into the traditional real economy, spawning inno-
vative products, markets, and business models. This spurs effective market competition,
prompting existing enterprises to place greater emphasis on technological innovation. The
high-end manufacturing industry is leading the way in leveraging this conversion of old
and new momentum to transform traditional industries towards high-intelligence indus-
tries. Inter-sectoral differences in technological levels lead to divergences in productivity
growth, inducing industrial structure adjustments [48]. This exerts the “Baumol effect” on
other traditional small and medium-sized industries, progressively limiting high-pollution,
resource-intensive industries with low value addition. It also guides the transfer of re-
sources and factors of production from low marginal efficiency industries to high marginal
efficiency industries, thereby promoting the high-level transformation of the existing in-
dustrial structure and optimizing resource allocation across industries. Concurrently, the
modern service sector is pioneering fresh business paradigms and forming clusters of
upstream and downstream value chains in medium- and high-end industries. By consoli-
dating resources, these clusters not only facilitate large-scale economic activities but also
foster technological interchange and spillover across sectors. This inter-industry synergy
leads to a more balanced industrial layout, elevates pollution management standards, and
propels cities towards sustainable, green growth [49].

Hypothesis 4. The “smart city pilot” policy can optimize urban industrial structures, thereby
guiding greener urban development.

To better advance the construction of SCs, both national and regional governments
have proactively introduced sophisticated urbanization infrastructure and rolled out a
suite of supporting policies, including financial subsidies, tax reductions and exemptions,
preferential land use, etc. Such endeavors have created an attractive environment for
investment, business, education, and healthcare, which is effectively luring top-tier talent
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and foreign direct investments, promoting the agglomeration of low-energy-consuming
and high-value-added high-tech industries, and generating economies of scale. As pointed
out by multiple scholars, the rising ubiquity of cutting-edge information technology in SCs
aligns with Metcalfe’s Law. Specifically, as the number of Internet users swells and network
integrity heightens, the utility and value of the Internet amplify exponentially [50–52]. With
the continual expansion in the application scope of information technology, its capacity to
dissolve information gaps, enhance inter-industry communication, and foster technological
diffusion becomes more pronounced. This invariably ameliorates urban industrial excesses
and resource allocation issues, underpinning green urban progression. Simultaneously,
substantial investments from both local and international sources are revitalizing urban
production endeavors. As an advanced factor of production, information technology will
be embedded in primary factors of production like capital, which will steer the economic
landscape towards heightened efficiency and long-term sustainability. Following the above
analysis, this paper proposes the fifth hypothesis:

Hypothesis 5. The “smart city pilot” policy can facilitate the aggregation of material capital and
information technology factors, thereby increasing green development.

The theoretical mediation mechanisms of how SC policy improves GTFP are briefly
summarized in Figure 1:
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4. Methodology and Data
4.1. Model Design
4.1.1. EBM Model and GTFP

The fundamental principle of green development necessitates achieving enhanced
economic growth while emitting fewer pollutants. This is quantified using the indicator for
“green productivity”. Such productivity is further categorized into single-factor productiv-
ity and total-factor productivity. The former typically includes only two factors: pollutant
emissions and urban GDP, assessing green development by their ratio. However, it does
not incorporate the impact of other input and output elements in production activities [53].
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In contrast, green total factor productivity (GTFP) comprehensively considers various
inputs and outputs in the social production system and provides more comprehensive
and reasonable results [54]. Thus, GTFP becomes the preferred indicator for measuring
green development.

The measurement methods for GTFP mainly include the Solow Residual [55], Growth
Accounting [56], Stochastic Frontier Analysis (SFA) [57], and the DEA method, etc. Among
them, the DEA has gained widespread use due to its advantages, such as not requiring a
specific production function form and accommodating multiple inputs and outputs. The
GTFP measurement in this paper is constructed within the DEA framework. Generally,
there are two basic approaches to efficiency in the conventional DEA model: radial and
non-radial. However, both the radial measure, such as CCR, and the non-radial measure,
such as SBM, have some limitations. The main limitation of the radial model is that it
ignores non-radial slacks during efficiency score evaluations [58]. For non-radial models,
due to slacks not necessarily proportional to the inputs or outputs, their derived results
may not align proportionally with the original input or output data [59].

This paper measures GTFP using the EBM (Epsilon-Based Measure) model proposed
by Tone and Tsutsui [60], which is a hybrid model that contains both radial and non-
radial distance functions, effectively overcoming the weakness of models based on a
single distance function. The EBM model has H+1 decision-making units (DMUs), each
containing multiple inputs, desirable outputs, and undesirable outputs in the production
system. Using a linear programming model, it calculates the global optimum efficiency
score, denoted as Ψ and referred to as GTFP in this study. For the DMU0, the objective
function and constraints of the EBM model are given as follows in Equation (1).

Ψ = min
θ−εx ∑m

u=1
ω−

u s−u
xu0

ϕ+εyG ∑n
j=1

ω+
j s+j

yGj0
+εyB ∑l

z=1
ω−

z s−z
yBz0

s.t.


Xuδ + s−u = θxu0, u = 1, 2, · · · , m
YGjδ − s+j = ϕyGj0, j = 1, 2, · · · , n
YBzδ + s+z = ϕyBz0, z = 1, 2, · · · , l
δ ≥ 0, s−u , s+j , s−z ≥ 0

(1)

Here, Xu, YGj, and YBz respectively represent the H-dimensional vector sets of the uth
input, the jth desirable output, and the zth undesirable output for the remaining DMUh
(h = 1, 2, . . ., H). δ is an H-dimensional parameter vector set. The terms ω−

u , ω+
j , and ω−

z

and s−u , s+j , ands−z , respectively, denote the weights and slack variables for the uth input,
jth desirable output, and zth undesirable output. ε is a crucial parameter within the model,
ranging between 0 and 1, indicating the significance of the non-radial part in the efficiency
score measurement. ε needs to be determined based on the given data before establishing
the EBM model. For a detailed computation method, please refer to Tone and Tsutsui [60]
due to space limitations.

4.1.2. Causal Forest and Policy Treatment Effect Estimation

Within traditional econometrics, methods such as difference-in-differences (DID)
and regression discontinuity design (RDD) are commonly used to evaluate the average
treatment effect (ATE) of policies. The specific form of these regression models needs
to be specified in advance, and their matching effectiveness will significantly decrease
in situations with excessive covariates [61,62]. They may suffer from endogeneity issues
like omitted variables, measurement errors, and simultaneous causality, undermining the
consistency of parameter estimates. Moreover, due to differences in resource endowments
across cities, there can be heterogeneity in policy treatment effects. Traditional econometric
models have difficulty capturing heterogeneous treatment effects (HTEs).

Unlike traditional policy evaluation methods, data-driven machine learning models
do not require predefined model forms. They possess higher predictive accuracy when



Sustainability 2024, 16, 929 9 of 28

handling high-dimensional, complex, and nonlinear data structures and more flexibly
capture the interactions among variables. However, as the actual policy treatment effect is
latent and unobservable, it cannot be directly validated against the ground truth. Hence,
conventional machine learning approaches cannot directly identify causality or estimate
the adjustment coefficient β for Neyman-Rubin’s ATE [28]. To address this, Athey and
other scholars combined the traditional Random Forest framework with Rubin’s causal
inference and proposed a model named Causal Forest [32,33,63].

Incorporating the Potential Outcomes Framework [64], the causal effect of SC policy
on green development is evaluated based on τ = E[Yi(1)− Yi(0)]. Here, potential variables
Yi(1) and Yi(0) represent the level of green development when the policy is implemented
and not implemented, respectively, in the ith sample. Assuming observational data are
independently and identically distributed and satisfy the overlap assumption (i.e., after
controlling for covariates, the allocation of pilot cities is as good as random assignment),
e(x) = P[Wi|Xi = x] is the propensity score, representing the probability of assigning a city
to the pilot group based on its characteristics. m(x) = E[Yi|Xi = x] denotes the expected
effect of the SC policy. Assume that m̂ and ê are o

(
n−1/4

)
-consistent in root-mean-squared

error. Here, Wi is the policy treatment variable, indicating the treatment assignment (set
as 0 or 1) for i-observation, i.e., whether it belongs to a pilot city, while X represents the
covariate set of training data. According to Athey et al. [33] and Nie and Wager [65], the
objective function used by the causal tree is “R-learner” (Equation (2)), used to estimate
individual treatment effects (ITEs), i.e., τ(·). Here, γn(τ(·)) is a regularizer that controls
the complexity of the learned τ(·) function.

τ̂(·) = argminτ

{
∑n

i=1

((
Yi − m̂(−i)(Xi)

)
− τ(Xi)

(
Wi − ê(−i)(Xi)

))2
+ γn(τ(·))

}
(2)

where (−i)-superscripts denote “out-of-bag” predictions, which are estimates derived
without including the ith sample in the training set. Athey et al. [33] pointed out that
Wi − ê(−i)(Xi) equates to orthogonalized estimators, i.e., after removing the impact of Xi
from Wi, it consistently estimates the conditional average treatment effects (CATEs).

The Causal Forest grows a set of B causal trees, each assigned distinct sub-samples and
partitioned recursively using the “R-learner”. This approach integrates the adaptive kernel
from traditional Random Forests, aggregating results from each tree through a weighted
summary to derive the ATE estimate.

τ̂ =
∑n

i=1 αi(x)(Yi−m̂(−i)(Xi))(Wi−ê(−i)(Xi))

∑n
i=1 αi(x)(Wi−ê(−i)(Xi))

2

αi(x) = 1
B

B
∑

b=1

1({Xi∈Lb(x),i∈Sb})
|{i:Xi∈Lb(x),i∈Sb}|

, m̂(x) = ∑n
i=1 αi(x)Yi,

(3)

In Equation (3), Lb(x) is the set of training examples falling in the same “leaf” as
the test point x, and Sb relates to the sub-sample associated with the tree. αi(x) is a data-
adaptive kernel, akin to the weights in nearest neighbor matching. It captures the frequency
with which the ith training example falls into the same leaf as x.

Concretely, two separate regression forests are first fitted to estimate m̂(·) and ê(·).
These two first-stage forests, combined with Equation (3), are used to grow a Causal Forest
for “out-of-bag” predictions. As for tuning parameter selection, we employ cross-validation
to select those that minimize the objective function. To smooth discontinuities, the model
ensembles multiple base trees into a forest using subsampling. This approach, contrasting
with the bagging in Random Forest, results in estimates with better statistical properties.
Subsampling dedicates half of the samples to determining Causal Forest partitions and the
other half to deriving the average treatment effect estimates. The same data is not used
for both partitioning and predicting, ensuring that all base trees remain honest (uniformly
referred to as “honesty estimation” in the subsequent paper). Athey and Wager [66] showed
that using subsampling to average honesty trees for forest construction ensures that, as
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the number of samples approaches infinity, estimates possess unbiased and asymptotically
normal statistical properties. This forms a theoretical basis for constructing confidence
intervals for the ATE.

In evaluating policy effects, Athey et al. [33] also introduced clustering methods
under the Causal Forest, which cluster groups with similar characteristics, controlling for
intergroup variability effects. It addresses the pitfalls of data-driven machine learning
algorithms, particularly the issue of “overfitting”. Taking city-level clustering as an instance,
the ATE estimation is illustrated in Equation (4):

τ = 1
J

J
∑

j=1
τ̂j, τ̂j =

1
nj

∑
{i:Ai=j}

Γ̂i, σ̂2 = 1
J(J−1)

J
∑

j=1
(τ̂j − τ),

Γ̂i = τ̂(−i)(Xi) +
Wi−ê(−i)(Xi)

ê(−i)(Xi)(1−ê(−i)(Xi))

(
Yi − m̂(−i)(Xi)−

(
Wi − ê(−i)(Xi)

)
τ̂(−i)(Xi)

) (4)

where J represents the number of clustered groups (cities). The standard error estimate σ̂2

reflects the dispersion of individual treatment effects.
The Causal Forest method demonstrates greater real-world interpretability and finer

granularity in the assessment of policy effects. It not only enables the estimation of average
treatment effects but also allows for the estimation of individual treatment effects for each
city sample. This enables a more granular evaluation of the policy effects of SC policy from
a finer perspective. The most intuitive advantages of using the Causal Forest in this paper
are: Firstly, as an adaptive nearest neighbor method, the Causal Forest determines the
importance of features and further weights based on data, mitigating the challenges posed
by the “dimensionality curse” and reducing the bias of manually selecting covariates. It
effectively improves the individual selection bias in randomized controlled trials compared
with traditional policy effect evaluation methods, resulting in more objective treatment
effect outcomes [63]. Secondly, it allows for a more nuanced identification and depiction of
the heterogeneous effects of SC policy on green development across different cities. Under
this analytical framework, empirical designs and tests can be conducted to deeply explore
the manifestation of policy heterogeneity and its underlying driving factors.

4.1.3. Empirical Research Process

The aforementioned research methods (EBM and Causal Forest models) provide
technical support for the empirical analysis in this paper. On this basis, combined with the
research hypotheses, Figure 2 shows the research process of the empirical analysis.

Firstly, we select and preprocess the data for the empirical discussion and explain
the quantitative measurements of the key variables—urban green development level and
the SC policy. Next, we construct a Causal Forest for the impact of SC policy on urban
green development and conduct empirical analysis. After that, we focus on the possible
heterogeneous effects of policy across different types of cities and explore the driving
factors behind them. Finally, we conduct mechanism tests by dividing the policy treatment
effects into high and low groups. Through comparative analysis, we can more specifically
identify the issue of “which paths are more important” in the process of smart city pilots
empowering green development. The above empirical analysis process aligns with the
research purpose, that is, the impact of SC policy on green urban development and its
heterogeneous characteristics. The results of the empirical analysis in the following text
also achieve this goal very well.
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4.2. Variable Selection and Descriptive Analysis
4.2.1. Explanatory Variable

The dependent variable in this paper is green total factor productivity (GTFP). Ac-
cording to the EBM model framework, the vector space includes urban input, desirable
output, and undesirable output. Inputs are considered from four perspectives: labor, land,
capital, and energy. The labor input is measured by the total employment of the whole
society, which is the sum of the urban year-end employment by unit and the urban year-end
employment in the private and individual sectors. The land input is gauged using the
built-up area of the city. Following the method proposed by Zhang et al. [67], the perpetual
inventory method is applied to estimate the actual capital stock of prefecture-level cities in
period t to represent capital input (Kt). This is adjusted for inflation with 2006 as the base
year, using the formula Kt = It + (1 − r)Kt−1, where It represents the fixed asset invest-
ment of the prefecture-level city in period t and r stands for the fixed asset depreciation
rate, uniformly set at 9.6%. It is assumed that the initial capital stock is 10% of the fixed
asset investment.

Given that the “China City Statistical Yearbook” does not provide data on urban
energy, this paper refers to Wu et al. [68] to infer urban energy consumption based on
nighttime light data (DMSP/OLS) to characterize energy inputs. The desirable output is
denoted by the real GDP, which has been deflated based on the year 2006. The undesirable
outputs encompass the emissions of industrial sulfur dioxide, wastewater, and smoke and
dust at the prefecture-level cities.

4.2.2. Core Explanatory Variables and Control Variables

The core explanatory variable is the dummy variable “smart city pilot” policy, denoted
by W = treat × post. The variable “treat” identifies regions with the policy: treat = 1 for
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the treatment group (pilot cities) and treat = 0 for the control group. The variable “post”
is a time dummy variable, 1 for the policy’s implementation year and subsequent years,
and 0 otherwise. China’s Ministry of Housing and Urban–Rural Development (MOHURD)
announced and implemented the SC policy on 5 December 2012. The first batch of pilots
encompassed 90 areas: 37 prefecture-level cities, 50 districts (or counties), and 3 towns.
In August 2013, the MOHURD released the second batch of the National SC Pilot List
for 2013, designating an additional 103 pilots (districts, counties, and towns). Given that
our research object is prefecture-level cities, county-level areas are omitted, resulting in
103 pilot cities.

The study also considers several control variables. Urban population characteristics
are measured by population density. Financial development is gauged by the number of
financial practitioners per 10,000 residents. Human capital within cities encompasses two
primary aspects: medical and educational capital. Medical capital is represented by the
average bed count per 10,000 residents. It is computed by dividing the total number of beds
by the city’s population and then normalizing to a base of 10,000 residents. Educational
capital is represented by the proportion of teachers per 10,000 residents. This is calculated as
10,000× number of full-time teachers in (primary schools + ordinary high schools + regular
higher education institutions + secondary vocational schools)/total population. Industrial
capacity is measured by the number of industrial enterprises above the designated size
in cities. Government expenditure is indicated by the proportion of local fiscal budget
expenditure to GDP. Fiscal revenue is measured by the proportion of local government
fiscal revenue to GDP. These variables will be incorporated into the Causal Forest as
control variables. Significantly influential variables will then be isolated as moderating
variables to further analyze how the policy treatment effect changes with different observed
characteristics. The specific description of the variables involved is present in Table 1.

Table 1. Descriptive statistics results.

VarName Obs Mean P5 Median P95 SD CV

GTFP 4245 29.567 10.531 26.877 59.724 15.598 0.528
Pop 4245 464.662 61.376 332.533 1162.419 536.329 1.154
Fin 4245 1.359 0.698 1.217 2.543 0.664 0.488

Med 4245 40.703 19.675 39.795 64.658 13.840 0.340
Edu 4245 97.275 72.952 95.796 127.863 16.714 0.172
Ind 4245 1286.126 112.000 673.000 4962.000 1722.805 1.340
Gov 4245 18.389 8.126 15.781 37.383 10.246 0.557
Rev 4245 7.177 3.482 6.763 12.151 2.798 0.390

Notes: P5 and P95 are the fifth and ninety-fifth quantiles, respectively. SD is the standard deviation of each
variable. CV is the coefficient of variation. The value of GTFP has been magnified by 100 times.

The research data are from the “China City Statistical Yearbook”, “China Statistical
Yearbook for Regional Economy”, “China Energy Statistical Yearbook”, “China Statistical
Yearbook on Environment”, local statistical bureaus, the Harvard University official website,
etc. To ensure data integrity and consistency, the research samples do not include the Hong
Kong, Macao, and Taiwan regions, the Tibet Autonomous Region, or cities with severely
missing data. Finally, relevant indicators of 283 prefecture-level cities in China from 2006 to
2020 are selected as empirical research data.

5. Analysis of Empirical Results
5.1. Basic Estimation Results

Before constructing the Causal Forest, it is necessary to conduct some preliminary
tests to examine if potential confounding variables might affect the results, that is, to assess
whether the data satisfies the overlap assumption. Confounding variables are variables
that correlate with both the independent and dependent variables and may confound or
distort the relationship between them. The overlap assumption requires that there is some
overlap between the treatment and control groups such that for each value of the covariates,



Sustainability 2024, 16, 929 13 of 28

there should be a nonzero probability of receiving treatment and control. One widely used
approach to address the selection bias caused by confounding is propensity score matching.
By examining the propensity score distributions in both the treatment and control groups,
we assess whether the data align with the Causal Forest’s overlap assumption.

Based on the propensity score distribution in Figure 3, there is a significant overlap
between the treatment and control groups, with no obvious cliffs or discontinuities. This
alignment fits the Causal Forest’s overlap assumption, ensuring the validity and reliability
of subsequent model building. The high degree of overlap implies that within the range of
variable values, the probabilities are similar for both groups. The treatment and control
groups share mutual attributes and characteristics. Thus, this reduces the interference of
potential confounding factors on the treatment effect, allowing a more confident assignment
of the treatment effect to policy variables rather than the confounded effects of other
covariates. The high overlap also enables the Causal Forest to utilize more effective
information. For each set of observed covariates, matches are present in both groups,
facilitating direct comparisons between treated and untreated individuals. This direct
comparison enhances the precision and reliability of the causal effect estimation.
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The Causal Forest is part of ensemble learning methods wherein the number of base
classifiers (causal trees) significantly influences model performance. When the forest
contains a limited number of causal trees, it often results in larger estimation errors and
risks underfitting. This paper initially explores the impact of setting different numbers of
causal trees. Subsequently, these trees are clustered at the prefecture-city level to examine
the variations in the estimated ATE. The Causal Forest is constructed using the R package
“grf” (R version 3.6.3; grf version 2.2.1). Unless specified otherwise, default values are
employed for the related hyperparameters.

The constructed Causal Forest model reports the variable importance of each covariate,
i.e., the proportion of times these variables serve as splitting criteria in the branching nodes
of the Causal Forest relative to the total number of splits. All control variables exhibit
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importance exceeding 0.05, indicating relatively robust explanatory capability for the
outcome and ensuring the accuracy of the treatment effect estimation. Table 2 shows the
“out-of-bag” ATE estimates based on the Causal Forest with honesty estimation.

Table 2. ATE estimates of the SC policy on the GTFP.

Items (1)
GTFP

(2)
GTFP

(3)
GTFP

(4)
GTFP

(5)
GTFP

ATE 3.070 ***
(0.454)

3.096 ***
(0.454)

3.060 ***
(0.455)

3.063 ***
(0.975)

3.035 ***
(0.453)

95% CI [2.181, 3.960] [2.205, 3.986] [2.167, 3.952] [1.151, 4.975] [2.148, 3.922]
Clusters No No No Yes No
N trees 500 1000 2000 2000 2000

N Obs. 4245
Model: Causal Forest

Notes: *** represent statistical significance at the 1% level. Column (5) represents a Causal Forest where the data
ratio for constructing partitions is set to 0.8, and it is employed for subsequent robustness analysis in this study.

From columns (1)–(3) in Table 2, it is observed that as the number of causal trees
grows, the ATE of the SC policy on the GTFP in prefecture-level cities remains relatively
stable, hovering around 3.06. Concurrently, the standard error remains consistent. This
consistency indicates that the selected number of base causal trees satisfies precision
requirements. A comparison between columns (3) and (4) reveals that while the ATE
remains largely unchanged post-clustering, there is a notable increase in the standard
error. It is likely attributed to treatment effects across different years varying significantly
between prefecture-level cities, and clustering ignores such time differences in the policy
treatment effect, thus reducing estimate precision. The results imply that the SC policy has
a significantly positive effect on improving GTFP, with a 95% confidence interval for the
treatment effect of [3.06 − 0.89, 3.06 + 0.89].

5.2. Robustness Test

To ensure the robustness of the conclusions regarding the green development effects
in SCs, this study also applies traditional causal inference analytical methods. These
include ordinary least squares (OLS), difference-in-differences (DID), and propensity score
matching followed by difference-in-differences (PSM-DID). Additionally, we employ the
Causal Forest with non-honesty estimation for robustness analysis.

The DID model offers an advantage over OLS as it accounts for unobservable indi-
vidual factors. Incorporating propensity score matching into DID assists in mitigating
potential sample selection biases, further diminishing imbalances in covariates between the
treated and control groups. Theoretically, results from the PSM-DID model should be more
precise than those obtained from both OLS and DID. The Causal Forest approach with
non-honesty estimation establishes a data ratio for constructing partitions and estimating
ATE at a split of 0.8:0.2.

GTFPit = β0 + β1treati × postt + ρXit + δi + µt + εit (5)

In Equation (5), treati signifies the group dummy variable, postt represents the time
dummy variable, and the interaction term treati × postt indicates the net effect of the
policy’s implementation. The variable Xit is a series of control variables, while δi and µt
correspond to city and time-fixed effects, respectively. εit refers to the random disturbance.

The regression results are shown in Columns (1)–(3) in Table 3 and Column (5) in
Table 2, respectively. In these models, the coefficients of the dummy variables for SC policy
are consistently positive and significant. This indicates that SC construction has notably
promoted the urban green transformation process. The conclusions drawn from Table 2
demonstrate robustness. Analyzing the estimated ATE, there is no significant difference
between the ATE values sourced from the Causal Forest models with non-honesty and



Sustainability 2024, 16, 929 15 of 28

honesty estimations, while the estimates from traditional causal inference models are
marginally below those of the Causal Forest. Traditional linear regression models are
not particularly adept at identifying endogeneity arising from simultaneous causality.
Although theoretically, instrumental variable estimation alleviates the endogeneity issue,
the exogeneity condition of instrumental variables is highly subjective and difficult to verify
from the data. Mullainathan and Spiess [28] pointed out that machine learning algorithms
can be applied to the first-stage regression estimation of instrumental variables. This
enhances the estimation ability of the instrumental variables on the dependent variable,
thus ameliorating the weak instrumental problem. Therefore, this paper argues that
traditional linear causal inference models underestimate the green development effects of
policies.

Table 3. Robustness tests.

Items (1)
GTFP

(2)
GTFP

(3)
GTFP

treat × post 1.810 ***
(0.508)

2.526 ***
(0.430)

2.686 ***
(0.430)

Control variables Yes Yes Yes

_cons 20.422 ***
(1.335)

9.477 ***
(0.864)

0.276
(1.717)

Model OLS DID PSM-DID
Time FE No Yes Yes
City FE No Yes Yes

N Obs. 4245 4245 4240
R2 0.357 0.274 0.282

Notes: *** represent statistical significance at the 1% level. Columns (1)–(3) report estimates of the ATE for OLS,
DID, and PSM-DID, respectively.

6. Analysis of Heterogeneous Treatment Effects
6.1. Heterogeneity Test Based on the Causal Forest

China is a vast country with considerable developmental disparities between regions.
For instance, eastern cities have notably higher levels of economic and financial growth,
government efficiency, technology, and human capital compared with central and western
cities. Additionally, there are substantial differences in economic structures, energy con-
sumption, and resource dependency across different regions. The western regions, typified
by Ningxia, Inner Mongolia, Xinjiang, and Shanxi, consistently rank high nationally in per
capita energy consumption. Such differences lead to varying constraints and motivations
for green development across city regions. The above disparities can affect the implemen-
tation and outcomes of SC policy across areas, leading to potential heterogeneities in the
promoting effects of SC development on urban green growth.

Compared with traditional linear regression models, which focus on the ATE of
policies, the Causal Forest offers finer granularity. Not only does it estimate ATE, but it
also evaluates the treatment effect on each pilot city (i.e., the individual treatment effects,
ITEs). Based on the estimation results of the Causal Forest in Section 5.1, we visualize the
distribution of the individual treatment effects of the SC policy on urban green total factor
productivity through histograms, as shown in Figure 4. The policy effects across these
cities follow a bell-shaped distribution with a mean of 3.06 and a standard deviation of 2.33.
These treatment effects are dispersed, spanning from −5 to 12. Specifically, within a 90%
confidence interval, they concentrate between −0.54 and 11.35.



Sustainability 2024, 16, 929 16 of 28

Sustainability 2024, 16, x FOR PEER REVIEW 16 of 28 
 

distribution of the individual treatment effects of the SC policy on urban green total factor 
productivity through histograms, as shown in Figure 4. The policy effects across these 
cities follow a bell-shaped distribution with a mean of 3.06 and a standard deviation of 
2.33. These treatment effects are dispersed, spanning from −5 to 12. Specifically, within a 
90% confidence interval, they concentrate between −0.54 and 11.35. 

 
Figure 4. Distribution of the ITE of the SC policy on GTFP. The horizontal axis represents the esti-
mated city CATE, and the vertical axis represents the corresponding density. 

Figure 4 shows that the effects of the pilot policy implementation are markedly het-
erogeneous across different cities. However, it remains ambiguous whether this heteroge-
neity is due to intrinsic differences in city characteristics or caused by factors like sample 
selection and randomness in estimation. Drawing from Athey and Wager [66], two ap-
proaches are employed to ascertain the genuineness of this observed heterogeneity. The 
first approach divides the out-of-bag CATE estimates by the median into “high” and 
“low” groups and uses a doubly robust approach to estimate the ATE within each group. 
Comparing the differences in the averages provides a qualitative assessment of the 
strength of the heterogeneity. The second approach, based on the “best linear predictor” 
proposed by Chernozhukov et al. [69], breaks down the average treatment effect estimate �̂�( )(𝑋 )  into 𝐶   and 𝐷   components. Here, 𝐶 = 𝜏̅(𝑊 − �̂�( )(𝑋 ))  and 𝐷 = (�̂�( )(𝑋 ) −𝜏̅) (𝑊 − �̂�( )(𝑋 )), where 𝜏̅ is the sample average treatment effect. The regression is then 
formulated as (𝑌 − 𝑚( )(𝑋 ) = 𝛽 𝐶 + 𝛽 𝐷  . A significantly positive 𝛽   coefficient de-
notes real heterogeneity within the sample. Table 4 reports the results of the heterogeneity 
tests. 

From the analysis, it is evident that the ATE difference estimated by the first method 
is significantly above 0. Similarly, the key parameter 𝛽  from the second method is also 
significantly greater than 0. Results from both tests confirm the existence of genuine het-
erogeneity in policy effects at the prefectural city level. Moreover, the Causal Forest effec-
tively captures this heterogeneity. 

Table 4. Heterogeneity tests. 

Items Estimate Std. Error T-Value 
mean.forest.prediction 0.898 *** 0.155 5.802 

differential.forest.prediction 3.071 *** 0.211 14.532 
95% CI for difference in ATE: [7.142, 9.770] 

Note: *** represent statistical significance at the 1% level. 

  

Figure 4. Distribution of the ITE of the SC policy on GTFP. The horizontal axis represents the
estimated city CATE, and the vertical axis represents the corresponding density.

Figure 4 shows that the effects of the pilot policy implementation are markedly hetero-
geneous across different cities. However, it remains ambiguous whether this heterogeneity
is due to intrinsic differences in city characteristics or caused by factors like sample selection
and randomness in estimation. Drawing from Athey and Wager [66], two approaches are
employed to ascertain the genuineness of this observed heterogeneity. The first approach di-
vides the out-of-bag CATE estimates by the median into “high” and “low” groups and uses
a doubly robust approach to estimate the ATE within each group. Comparing the differ-
ences in the averages provides a qualitative assessment of the strength of the heterogeneity.
The second approach, based on the “best linear predictor” proposed by Chernozhukov
et al. [69], breaks down the average treatment effect estimate τ̂(−i)(Xi) into Ci and Di

components. Here, Ci = τ
(

Wi − ê(−i)(Xi)
)

and Di =(τ̂(−i)(Xi) − τ) (Wi − ê(−i)(Xi)),
where τ is the sample average treatment effect. The regression is then formulated as
(Yi − m̂(−i)(Xi) = β1Ci + β2Di. A significantly positive β2 coefficient denotes real hetero-
geneity within the sample. Table 4 reports the results of the heterogeneity tests.

Table 4. Heterogeneity tests.

Items Estimate Std. Error T-Value

mean.forest.prediction 0.898 *** 0.155 5.802
differential.forest.prediction 3.071 *** 0.211 14.532
95% CI for difference in ATE: [7.142, 9.770]

Note: *** represent statistical significance at the 1% level.

From the analysis, it is evident that the ATE difference estimated by the first method
is significantly above 0. Similarly, the key parameter β2 from the second method is also
significantly greater than 0. Results from both tests confirm the existence of genuine
heterogeneity in policy effects at the prefectural city level. Moreover, the Causal Forest
effectively captures this heterogeneity.
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6.2. Spatial Manifestation of Heterogeneous Treatment Effects
6.2.1. Spatial HTEs: Economic Region Perspective

Section 6.1 reveals that the pilot policy exhibits heterogeneous effects on green develop-
ment across different cities. Building on this, this section delves into the spatial performance
of this heterogeneity. Firstly, we conduct an analysis of variance (ANOVA) of the pilot
policy’s effects on green development across cities in different economic regions (Eastern,
Central, Western, and Northeast China). The geographical divisions of four regions are
based on the “China Statistical Yearbook”. As shown in Table 5, the heterogeneous effects
of the pilot policy are pronounced across regions: the within-region variation is 78.22,
contrasting with a between-region variation of 16.87, which accounts for 17.7% of the total
variation. The corresponding F-statistic is significant, revealing that the location factor is
an important cause of the HTE.

Table 5. Variance decomposition: city CATE under economic region grouping.

Variation SS df MS F p-Value

Between-Region 16.872 3 5.624 7.12 0.0002
Within-Region 78.225 99 0.790

Total 95.096 102 0.932

Expanding on this, Table 6 presents the results of Kruskal–Wallis tests for pairwise com-
parisons of the policy effects across Eastern, Central, Western, and Northeast China cities.
It shows that the regional differences in policy effects are primarily manifested between
Eastern China and non-Eastern China. However, Central, Western, and Northeast China
display less pronounced regional disparities in the policy’s green development effects.

Table 6. Kruskal–Wallis tests: pairwise comparisons by economic regions.

Null Hypothesis (H0) Critical Values Rank Means Difference

CATE (Eastern) = CATE (Central) 20.90 26.12 ***
CATE (Eastern) = CATE (Western) 20.30 30.99 ***

CATE (Eastern) = CATE (Northeast) 33.71 34.12 ***
CATE (Central) = CATE (Western) 18.76 4.87

CATE (Central) = CATE (Northeast) 32.80 8.00
CATE (Western) = CATE (Northeast) 32.42 3.13

Notes: *** represent statistical significance at the 1% level. The parameter “Rank Means Difference” indi-
cates the mean rank difference between two groups. If it surpasses the “critical value”, the difference is
statistically significant.

Table 7, incorporating the Causal Forest, further assesses policy effects in Eastern,
Central, Western, and Northeast China. The findings consistently demonstrate that the
policy’s dividend effect is notably stronger in Eastern China compared to the other regions.

Table 7. Policy effects in the Eastern, Central, Western, and Northeastern regions.

Items Eastern Central Western Northeastern

CATE 3.942 *** 2.718 *** 2.515 *** 1.322
95% CI [2.535, 5.349] [1.774, 3.662] [1.567, 3.463] [−0.410, 3.074]

Clusters No No No No
N trees 1000 1000 1000 1000
Model Causal Forest Causal Forest Causal Forest Causal Forest
N Obs. 1290 1200 1245 510

Note: *** represent statistical significance at the 1% level.

Eastern China stands out as a focal point for the socio-economic landscape, enjoying
pronounced locational advantages in transportation, trade, resource endowments, and
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socio-economic dynamism. Its developed economic foundations, robust infrastructure, and
advanced market environments enable Eastern cities to excel in nurturing and harnessing
digital transformation.

Figure 5 shows the digital economic performance between Eastern and non-Eastern
China. Specifically, Eastern China’s digitalization significantly surpasses that of its coun-
terparts. With optimal conditions for digitalization and advanced technologies, combined
with a sturdy economic foundation, Eastern cities effectively implement and deepen the
SC policy. This enables swifter policy transmission and more pronounced dividend effects.
Conversely, Northeast China, for instance, has a relatively singular industrial structure
that greatly leans towards heavy industry. Such economic patterns often face the “resource
curse”, limiting the in-depth integration of advanced technologies. As a result, policy im-
plementations find it challenging to make impactful changes to existing structures, affecting
the potential success of SC initiatives.
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Figure 5. Digital economic development in different regions, 2012–2020. Note: The regional
digital economic development is measured using the entropy method, considering multiple
digital indicators.

6.2.2. Spatial HTE: Provincial Perspective

We also explore the spatial HTE across pilot cities from a provincial perspective, with
Table 8 detailing the ANOVA results for city CATE. Notably, between-group variation
appears greater here than in Table 5. The between-province variation is 36.24, while the
within-province variation is 58.84, with the former accounting for 38% of the total variation.
In comparison to economic region divisions (Table 5), this reveals more significant between-
group differences and a more pronounced within-group clustering effect.

Table 8. Variance decomposition: city CATE under provincial grouping.

Variation SS df MS F p-Value

Between-Province 36.248 27 1.343 1.71 0.0361
Within-Province 58.848 75 0.785

Total 95.096 102 0.932

Clustering pilot cities at the provincial level, we estimated the policy effects for each
province and presented a descending order ranking in Table 9.

In Section 6.2.1, we observed pronounced policy effects in Eastern China. Most of
these provinces appear in the upper half of Table 9. Specifically, the top 10 provinces (or
municipalities) with the highest treatment effects are, in order: Hainan, Zhejiang, Beijing,
Shanghai, Liaoning, Jiangsu, Guangdong, Tianjin, Chongqing, and Guizhou. In contrast,
the five provinces with the lowest treatment effects are Yunnan, Guangxi, Henan, Shaanxi,
and Gansu.
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Table 9. The rank of provincial CATE.

PR CATE Reg. PR CATE Reg. PR CATE Reg.

Hainan 6.714 E Xinjiang 5.125 W Qinghai 4.257 W
Zhejiang 6.663 E Shanxi 5.001 C Hubei 4.233 C
Beijing 6.459 E Ningxia 4.693 W Anhui 4.214 C

Shanghai 6.052 E Heilongjiang 4.689 NE Jiangxi 4.213 C
Liaoning 5.700 NE Inner Mongolia 4.685 W Sichuan 4.082 W
Jiangsu 5.585 E Fujian 4.629 E Yunnan 4.074 W

Guangdong 5.433 E Shandong 4.574 E Guangxi 3.976 W
Tianjin 5.284 E Hebei 4.502 E Henan 3.952 C

Chongqing 5.281 W Hunan 4.296 C Shaanxi 3.941 W
Guizhou 5.196 W Jilin 4.271 NE Gansu 3.405 W

Note: E, C, W, and NE represent the Eastern, Central, Western, and Northeast regions of China, respectively.

The high-effect provinces include some economically developed Eastern provinces (or
municipalities) like Beijing, Shanghai, Guangdong, and Zhejiang. With relatively advanced
high-tech industries and financial sectors, these Eastern provinces possess inherent advan-
tages in industrial structure and technical talent, facilitating prompt implementation of SC
policy and enabling them to quickly become important drivers of GTFP growth.

Also noteworthy among the high-effectiveness provinces are Chongqing and Guizhou.
Although located in Western China, Chongqing enjoys unique geographical and economic
strengths. It is an important transportation hub connecting Western and Eastern China and a
vital node on the Yangtze River Economic Belt and the “Belt and Road” Initiative, endowing
it with a diversified industrial structure and a developed electronic information industry.
Guizhou features geological stability, a mild climate, and abundant energy resources,
making it suitable for housing large data centers. In recent years, Guizhou has actively
nurtured big data industry bases, achieving in-depth integration of digitalization with local
comparative advantages and generating strong “catch-up” effects for green growth.

Conversely, provinces with low treatment effects are generally economically lagging.
Their economic structures predominantly revolve around agriculture and resource-based
industries, with relatively small high-tech industries and service sectors. Such features
constrain the emergence and growth of new green industries and models, leading to certain
lags in SC development.

6.3. City Characteristics Underlying Heterogeneous Treatment Effects

In this section, we delve into how covariates influence the heterogeneous effects of
the pilot policy to explore the key factors driving this heterogeneity. Following Wager
and Athey (2019), we remove the top and bottom 5% of observations for each covariate to
eliminate effects from extreme values. Keeping other variables constant, we categorize the
out-of-bag CATE estimates into high and low groups. Subsequently, we conduct T-tests to
examine the difference in means between these groups.

The T-test results in Table 10 show that all control variables are statistically significant,
indicating that differences in these city characteristics cause heterogeneous green effects
of SC policy. The “Variable Importance” column displays the relative importance of input
variables in the Causal Forest model structure. During the growth of the Causal Forest in
Section 5.1, medical capital, financial level, and government expenditure emerged as the
most important three variables, jointly contributing to 60% of the weight. This denotes that
HTE is largely driven by these three factors. Figure 6 further elucidates the trajectory of
CATE against changes in urban characteristics, visually illustrating the correlation between
these features and policy treatment effects.
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Table 10. Tests of city characteristics driving HTE.

Variables Variable Importance T-Test CATE. High CATE. Low

Med 0.240 6.798 *** 3.208 1.696
Gov 0.186 −15.375 *** 1.957 4.776
Fin 0.174 5.288 *** 3.000 1.024
Pop 0.141 4.949 *** 2.154 1.371
Ind 0.088 −2.076 ** 1.646 1.822
Edu 0.085 7.010 *** 2.983 1.608
Rev 0.085 5.551 *** 2.206 1.683

Notes: ***, and ** represent statistical significance at the 1%, and 5% levels, respectively. “Variable Importance”
refers to the variable weights in the Causal Forest.
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Figure 6. Driving factors behind HTE. The changes in HTE with regards to (a) medical capital,
(b) government expenditure, (c) financial development, (d) population density, (e) industrial capabil-
ity, (f) educational capital, and (g) fiscal revenue.
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Figure 6 shows that SC policy generates stronger green development effects by increas-
ing human capital (educational and medical capital), financial development, population
density, and fiscal revenue. The positive impacts of human capital and finance on city green
development stem from cities with advanced financial systems that have well-functioning
market mechanisms, ensuring stable and sufficient capital support for policy implementa-
tions. The caliber of a city’s human capital, as affected by the standards of its education
and medical treatment, influences the quality and potential of its labor force. In more
educationally and medically advanced cities, there is a better cultivating environment for
digitized, highly skilled talents. Moreover, these citizens readily embrace technological
advancements and demonstrate heightened environmental awareness and demands. The
positive effect of population density demonstrates the agglomeration economy facilitat-
ing policy delivery. The positive effect of fiscal revenue reflects the influence of regional
economic development in promoting green development policy effects.

In contrast, reasonable government expenditure strongly facilitates urban green tran-
sition, but beyond a threshold, further expenditure will diminish the promotional effect.
This may be because large-scale spending amplifies the financial market’s dependence on
the public sector, which in turn reduces investments in private green innovations. As a con-
sequence of this shift, there might be a crowding out of financial market roles, resulting in
inefficiencies. Such heightened dependence can sometimes conflict with market efficiency
or the optimal allocation of resources. In some cases, the government might prioritize
long-term strategic projects over short-term green transition endeavors. In addition, cities
with an over-reliance on the secondary sector see diminishing returns in green benefits
from SC policy.

7. Mechanism Analysis

Drawing from the theoretical analysis and hypotheses detailed in Section 3, digital
transformation principally fosters green development by bolstering green technology
innovation, promoting industrial structure upgrading, and optimizing the aggregation
of production factors. This section further identifies and verifies these three mediation
paths through a stepwise mediation model based on Equation (5), with the general logic of
testing shown in Equation (6).

Y = ĉX + λ̂Z + e1
M = âX + λ̂Z + e2

Y = ĉ′X + b̂M + λ′Z + e3

(6)

zsobel = âb̂/
√

S2
â b̂2 + S2

b̂
â2 (7)

In Equation (6), Y, X, Z, and M represent the GTFPit, treati × postt, control variables,
and mediating variables, respectively. The verification process starts by assessing the
significance of coefficient ĉ. If it proves significant, proceed by testing the significance
of â, b̂, and ĉ

′
in three cases. When all three (â, b̂, and ĉ

′
) are significant, it indicates

partial mediation. However, if only â and b̂ are significant while ĉ
′

is not, full mediation
is implied. When at least one of â and b̂ is not significant, evaluate using the z-statistic
Sobel test, symbolized as zsobel (as seen in Equation (7)), where S2

â and S2
b̂

are the estimated
standard errors of a and b, respectively. If | zsobel | > 1.96, it is determined that M has a
mediation effect.

The specific operation is to divide the pilot cities into a “high-effect group” and a
“low-effect group” according to the mean value of city-level CATE calculated in Section 6.2.
Subsequently, construct mediation models for the two groups, respectively, to verify the
three aforementioned mediation paths.
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7.1. Innovation-Driven Effects

This section evaluates green innovation in cities by replacing the dependent variable in
Equation (5) with the total number of green patent and invention applications per 10,000 people.
The data is sourced from the China National Intellectual Property Administration.

Panel A in Table 11 shows that the regression coefficients for both green patents and
inventions are positively significant at the 1% level within the “high-effect group”. Here,
green patents display a partial mediation effect, while green inventions demonstrate a full
mediation effect. This indicates that expanding the construction of SCs indeed enhances a
city’s capacity for green technological innovation, thereby expediting the green, sustainable
development of prefecture-level cities.

Table 11. Mediation effect tests of the innovation-driven effects.

Panel A—(“High-Effect Group”)

Items (1)
GTFP

(2)
Patent

(3)
GTFP

(4)
Invention

(5)
GTFP

treat × post 3.436 ***
(0.573)

1.089 ***
(0.117)

2.779 ***
(0.577)

0.315 ***
(0.066)

0.328
(0.551)

Patent 0.604 ***
(0.086)

Invention 0.268 *
(0.146)

Results Partial Full

Panel B—(“Low-Effect Group”)

Items (1)
GTFP

(2)
Patent

(3)
GTFP

(4)
Invention

(5)
GTFP

treat × post 1.220 *
(0.643)

−0.457 ***
(0.109)

−0.485
(0.598)

−0.209 ***
(0.058)

−0.411
(0.597)

Patent 0.078
(0.100)

Invention 0.522 ***
(0.186)

Results None Partial
Note: ***, and * represent statistical significance at the 1%, and 10% levels, respectively.

Conversely, within the “low-effect group”, the green patent metric did not clear the
mediation test, and green inventions even showed a significant decline. One potential
explanation might be that the SC construction in the “high-effect group” optimized the sup-
porting environment of the cities, attracting a substantial number of high-tech professionals
and leading to a talent drain from the “low-effect group” cities. As a result, Hypothesis 3 is
solely confirmed in the “high-effect group”.

7.2. Industrial Structure Optimization Effects

This section delves into the factors that propel urban green development, considering
the perspectives of industrial structure advancement and rationalization. Industrial struc-
ture advancement refers to the trend and process wherein the general quality and efficacy
of industrial structure transition from rudimentary to advanced levels. Following Li and
Zhang [49], the labor productivity variation index is used to measure this advancement.
The calculation formula is E f f iciencyit = ∑3

m=1 m × ln
(

lpi,t,m

)
, where lpi,t,m represents

the labor productivity, that is, the added value of each industry divided by the local em-
ployed population. On the other hand, the rationalization of the industrial structure refers
to the continuous enhancement of inter-industrial coordination and interconnectedness.
The rationalization of industrial structure is perceived as a prerequisite and foundation
for advancement, and advancement without rationalization easily leads to an “inflated”
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industrial structure. The Theil index, an inverse indicator of rationalization, has been
deployed for its measurement—a lower value signifies a more reasonable urban industrial
structure. Table 12 displays the mediation effect test results of the industrial structure
optimization effects.

Table 12. Mediation effect tests of the industrial structure optimization effect.

Panel A—(“High-Effect Group”)

Items (5)
Efficiency

(6)
GTFP

(3)
Theil

(4)
GTFP

treat × post −0.153 *
(0.091)

0.491
(0.529)

−0.048
(0.750)

0.935
(0.583)

Efficiency 1.219 ***
(0.101)

Theil −0.094 ***
(0.020)

Results Full None

Panel B—(“Low-Effect Group”)

Items (5)
Efficiency

(6)
GTFP

(3)
Theil

(4)
GTFP

treat × post 0.489 ***
(0.103)

−1.244 **
(0.556)

−2.736 ***
(0.879)

−0.786
(0.567)

Efficiency 1.208 ***
(0.096)

Theil −0.048 ***
(0.012)

Results Partial Full
Note: ***, **, and * represent statistical significance at the 1%, 5%, and 10% levels, respectively.

The results show that the SC construction significantly optimized the industrial struc-
ture of the “low-effect group”, thereby further increasing GTFP. Industrial structure ad-
vancement showed a full mediation effect, while rationalization demonstrated a partial
one. In contrast, for the “high-effect group”, there is no tangible evidence to show that
SC construction optimizes the industrial structure, which may be attributed to these cities
already possessing a well-structured and mature industrial framework, whereas cities
within the “low-effect group” appear to have greater room for optimization. Consequently,
Hypothesis 4 is verified solely in the “low-effect group”.

7.3. Factor Aggregation Effects

From the perspective of production factors, this section examines and elaborates on
the mechanisms by which policy implementation fosters green development through the
aggregation of diverse factors. According to the Solow growth model, both capital accumu-
lation and technological progress make significant contributions to economic growth. The
SC policy advances high-tech industries, including big data and cloud computing, enhanc-
ing information transmission efficiency. Therefore, from the perspectives of information
technology factors (Info) and material capital factors (Capital), this paper assesses the impact
of factor agglomeration on green urban progress. The former is quantified by the number
of employees in the information transmission, computer services, and software industries
per 10,000 people, while the latter echoes the amount of annual fixed asset investment.

Table 13 shows that for the “high-effect group”, the SC policy significantly enhanced
the efficiency in allocating resources for both information technology and material capital
factors. The accelerated mobility of factors further promoted urban green transformation.
Capital factors have a full mediation effect, while information factors have a partial me-
diation effect. Conversely, in the “low-effect group”, there is no evidence that the policy
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facilitated the aggregation of either material or information factors. Therefore, Hypothesis
5 is only validated for the “high-effect group”.

Table 13. Mediation effect tests of the factor aggregation effects.

Panel A—(“High-Effect Group”)

Items (1)
Capital

(2)
GTFP

(3)
Info

(4)
GTFP

treat × post 0.652 ***
(0.082)

−0.608
(0.530)

3.840 ***
(0.939)

4.219 ***
(0.577)

Capital 1.671 ***
(0.112)

Info 0.026 ***
(0.011)

Results Full Partial

Panel B—(“Low-Effect Group”)

Items (1)
Capital

(2)
GTFP

(3)
Info

(4)
GTFP

treat × post 0.018
(0.073)

−0.603
(0.555)

0.284
(0.919)

3.868 ***
(0.620)

Capital 1.889 ***
(0.136)

Info 0.047 ***
(0.012)

Results None None
Note: *** represent statistical significance at the 1% level. All models include Time FE, City FE, and control
variables. Due to space limitations, the N. Obs, R-squared, and other items are not reported. In Panel B, total fixed
assets (Capital) are scaled by 100 billion.

8. Conclusions and Implications

The construction of smart cities is pivotal for achieving the United Nations’ 2030
Sustainable Development Agenda and promoting ecological civilization to a higher level.
The emerging Causal Forest approach demonstrates stronger real-world interpretability
and finer granularity in assessing policy effects compared to traditional econometric policy
evaluation models. This is intuitively reflected in the fact that it can not only scientifically
assess the real-world impact of policies but also capture the heterogeneity of these impacts.
This paper regards the “smart city pilot” policy as a quasi-natural experiment. Using a
dataset encompassing 283 prefecture-level cities in China from 2006 to 2020, we evaluate
the impact effect of SC construction on green development and its heterogeneity across
various types of cities employing the Causal Forest and mediation effect models. This
paper also delves into the urban characteristic factors that affect the differentiated effect.
The corresponding research conclusions are of great value for more refined guidance for dif-
ferent regions to carry out SC construction in a differentiated way over time, intensity, and
differentiation according to urban characteristics. In addition, this paper adopts sub-group
mechanism analysis rather than the full-sample mechanism analysis used in most of the
literature. The corresponding conclusions are helpful to more clearly understand the issue
of “which mediation paths are more important in enhancing urban green development”.
The main findings include:

1. As an early attempt at new infrastructure construction, the Causal Forest estimates
show that China’s SC policy has significantly promoted urban GTFP. The 95% confi-
dence interval of the ATE is [3.06 − 0.89, 3.06 + 0.89]. After a series of robustness tests,
this conclusion remains robust.

2. The SC policy has a heterogeneous impact on promoting green development across
different cities, which is captured effectively through the Causal Forest. Location
factors constitute a major source of policy heterogeneity. From the perspective of
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economic regions, the policy benefits are more pronounced in Eastern China than
in other regions. At the provincial level, the top 10 provinces ranked by highest
policy treatment effect are Hainan, Zhejiang, Beijing, Shanghai, Liaoning, Jiangsu,
Guangdong, Tianjin, Chongqing, and Guizhou. The five provinces with the lowest
treatment effects are Yunnan, Guangxi, Henan, Shaanxi, and Gansu.

3. Differences in city characteristics also significantly impact the HTE of SC policy. Fi-
nancial development, medical capital, and governmental expenditure emerge as the
primary drivers of this heterogeneity. Specifically, regions with more developed
finance and medical capital have a higher CATE. Within reasonable ranges, govern-
ment public expenditure is also associated with higher CATE, but beyond a threshold,
further expenditure lowers CATE.

4. Dividing all pilot cities into high and low groups based on CATE, mediation analysis
infers that the “high-effect group” principally exerted innovation-driven and factor
aggregation effects, while the “low-effect group” mainly exerted industrial structural
effects. Relevant policies have enhanced the green technology innovation capability
of cities, significantly increased the number of green patents and green inventions,
promoted the upgrading of industrial structures to be more advanced and rational,
and facilitated the aggregation of material capital and information technology factors,
thereby improving GTFP.

The quantitative research findings presented in this paper hold significant implications
for the Chinese government’s strategies to promote urban green development through the
construction of SCs. These implications are primarily reflected in the following aspects:
Firstly, improve top-level design for SC construction and gradually expand the scope of
pilot cities. Currently, China is at a crucial stage of economic restructuring and green
transformation. The government should continuously strengthen and refine policy support
for SC construction pilots, fully unleashing the benefits of SC development to facilitate
urban green development. Given the heterogeneous effect of SC construction on green
development across different types of cities, it would be strategic to begin in eastern cities,
which have higher levels of financial resources, human capital, and fiscal revenue. This
initial focus will maximize the green boosting effect of SC policy before gradually extending
the policy to other cities in the central and western regions.

Secondly, tailored approaches for different cities and multifaceted coordination. The
timing, policy intensity, and support for SC construction should be appropriately adjusted
according to the economic endowment and development characteristics of different cities.
This would effectively promote the implementation pace and effectiveness of SC policy.
While carrying out SC construction, cities should simultaneously enhance their financial
services and human capital levels and optimize industrial structures, leveraging the ag-
glomeration effect of urban areas and thus enhancing the green development effect of
SC construction.

Thirdly, considering the actual mechanisms of SCs in boosting green development,
more attention needs to be paid to the “innovation-driven effects” and “factor aggregation
effects” channels. That is, in the exploration and construction of SC, strengthen the functions
of SC systems in leading green innovation and factor aggregation. Different types of cities
can tailor their efforts to their development characteristics and relative advantages, focusing
on both facilitating the “innovation-driven effects" and the “factor agglomeration effects"
to boost green and high-quality development.

This study still has some limitations. As an important representative of developing
countries, China’s experience is of great reference and significance for developing coun-
tries with similar conditions. However, in developed countries with less environmental
pressure and different institutional systems for SC development, our conclusions may lack
direct applicability. What degree of green effects do the SC policies exert in developed
countries? Is there a significant difference in the influence effect and influence path of SC
construction on urban green development between developed and developing countries?
These questions need further exploration. Additionally, the study primarily addresses the
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city-level effects of SC construction on green development. Future research could delve
into more specific microscopic scenarios, such as household green activities, corporate
green production, and government green transformation, to further explore the effects and
microscopic mechanisms of SC construction on urban green activities. This will also be one
of the directions for the author’s follow-up research.
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