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Abstract: Monitoring and understanding the development of agricultural management requires fine
information on multiple agricultural land use classes. According to the main data bulletin of China’s
third national land survey released in 2021, the proportion of arable land in China accounts for 16%
of the total land area. After excluding areas that are not suitable for development (slope greater than
25 degrees), the remaining area represents arable land affected by human activities, constituting
96.69% of the total arable land area in the country. Artificially irrigated areas are products of the
intertwined interactions between the natural environment and human society. However, the original
remote sensing image (China’s land use/cover datasets, CLUDs), which is designed to depict the land
use and cover patterns in mainland China, categorizes arable land into two main types: paddy fields
and dryland. It lacks a subdivision of artificially irrigated areas. We also found a data discrepancy of
more than 10% between the statistical data of rice and the paddy field data in CLUDs. To refine land
use data, and then improve the simulation accuracy of the hydrological model, this article proposes a
dual-source datasets fusion algorithm, learning based on big data, namely the LUCC statistical data
fusion (LUSF) algorithm for integrating the remote sensing-based cropland area dataset and statistics
dataset. The runoff simulation results show that, in the Yangtze River Basin, using LUSF datasets, the
mean absolute percentage error value of monthly simulated runoff decreased by 0.74%, and the root
mean square error value decreased by 0.22 million m3. At the basin scale, the absolute error of the
simulated runoff is reduced by an average of 433 million m3 per year, and 36 million m3 every month.
The LUSF datasets corrected the canopy interception coefficient effectively; the runoff simulation
error was reduced by 2.96 billion m3/a. In the past 40 years, the runoff variation in Dongting Lake
and Hanjiang River has been most strongly impacted by changes in the underlying surface. These
results reveal that the new data fusion method has some significant improvement over the original
method, applicable to the runoff simulation disturbed by strong human activities.

Keywords: land use; remote sensing; statistics; data fusion; Yangtze River Basin; runoff simulation

1. Introduction

Land use-induced land cover change (LUCC) is an important anthropogenic driving
force of global change that has influenced (and is still influencing) many aspects of regional
and global environments [1]; the fine LUCC dataset is very important for environmental
sustainability and food security [2]. Variations in land use types among different datasets
can impact the accuracy of classification, influencing the performance of hydrological
model simulations and predictions. China’s land use/cover datasets (CLUDs) are currently
the high-precision land use data covering the entire country; these datasets play a crucial
role in national land resource surveys, hydrological studies, and ecological research [3].
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However, the dataset categorizes arable land into only two types, paddy fields and dry
fields, which does not align with the diverse crops grown in reality. As different crops
require varying irrigation timings and amounts of water, using this dataset as input for
hydrological models results in lower accuracy.

Land use changes are closely related to hydrological processes, undergoing multilay-
ered impacts soil infiltration, land-surface evapotranspiration (ET), canopy interception,
and other hydrological parameters during rainfall events [4–8]. This redistribution of water
resources consequently affects hydrological cycles. Numerous studies have focused on
the relationship between land cover at the watershed scale and surface runoff. Existing
research has demonstrated that considering finer subcategories of land cover types, start-
ing from their impact on the hydrological process and catchment structure, enhances the
applicability of hydrological simulation models. The impacts of anthropogenic land use
changes, particularly under rapid urbanization and agricultural irrigation activities, and
the associated changes in water demand, have been found to be significantly pronounced
on hydrological processes [9–11]. The changes in the quantity and extent of agricultural
land resulting from land use significantly interfere with the hydrological connectivity
of the watershed. The alterations in the landscape structure of agricultural land impact
surface runoff [3]. The urban land use types extracted from high-resolution remote sensing
images can reveal the runoff generation and flow confluence mechanism more accurately
in urbanized regions [12]. In summary, fine-grained land use products play a crucial role in
simulating surface runoff processes and water cycles under intense human disturbances;
they play a vital role in upholding ecological security, fostering systematic development,
and ensuring the well-ordered advancement of watersheds.

Of all LUCC, 60% is associated with direct human activities and 40% with indirect
drivers, such as climate change [13]. China is one of the regions where high-intensity
human activities dramatically influenced land use patterns in the world [14]. Satellite
remote sensing monitoring and statistical yearbooks are the two representative cropland
data sources in China. Commensurate with rapid developments in computer hardware and
software, the capacity for satellite data acquisition has greatly increased [15]. The extraction
of natural resource elements based on remote sensing imagery is the most fundamental,
widely applied, resource-intensive, and technologically challenging aspect in the field
of survey and monitoring work [16]. In China, remote sensing-based human–machine
interaction interpretation technology is currently one of the widely used methods for
obtaining land use data. Currently, the primary reliance is on manpower-intensive tactics,
utilizing a combination of visual interpretation through human–machine interaction and
on-site verification through detailed field checks. With the rapid development of artificial
intelligence, adopting machine learning methods to achieve automatic, fast, and accurate
interpretation of high-resolution remote sensing imagery has become the mainstream
research direction [16–19]. For the long period and high data accuracy, CLUDs formed
by the use of human–machine interaction interpretation technology are widely applied in
hydrological studies and national land surveys [20–23]. Based on the Landsat TM/ETM+
and Landsat 8 remote sensing images, the datasets were produced at five-year intervals
from the 1980s to 2015 [24]. According to the national land use classification, land use types
have been categorized into 6 primary and 25 secondary categories [25]. The statistical data
regarding the snow-covered areas of major regional crops are used as basic data to verify
the accuracy of the area extraction of various crops [2]. Most of these data are obtained
from statistical yearbooks and reports at the regional scale. The data have better fidelity,
authority, and reliability, but the real statistics are often quite different from remote sensing
data [26].

Over the past few decades, domestic and foreign scholars have carried out research on
the fusion method of multiple sensor data to construct a high spatiotemporal resolution
image dataset [27]. Nevertheless, those mapping methods rely on the very-high spatial res-
olution of original images [28] and need to overcome formidable technological challenges.
Few studies have focused on remote sensing images and statistical fusion method develop-
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ment, e.g., the pixel-based method [2,29], fusing the multiple existing cropland products
and using statistics as thresholds. Chad et al. (2008) rasterized crop areas and generated
novel maps of major crop groups, crop net primary production, and four physiologically
based crop types [30]. They used an adaptability index to integrate two-source data from
Russia and generate a mixed land cover dataset [14]. Steffen et al. set weights to generate
consistent quantities of cultivated land close to statistical data [31]. Most of these studies
focus on mapping a single crop type. The accuracy and efficiency were limited by poor data
availability and the image-based method [27,28,32,33], or the lack of practical application.
Meanwhile, the different crop planting areas influence ET, infiltration, irrigation water, and
other parameters [34]. However, there are few land use/land cover (LUCC) datasets that
presently consider the concepts of irrigated and non-irrigated areas.

Under strong economic and social interference, the influence of uncertain factors on
the water cycle process is increasing. The hydrological model plays an important role in
water resource management [35–37], and the simulations of runoff are sensitive to land
use maps with varying accuracy [38]. The goal of this research is to minimize the runoff
simulation error caused by misclassification errors in CLUDs and address the issue of
dual-source data mismatch while maintaining consistency with the statistical data in the
Yangtze River Basin. First, based on a large number of sample data analyses, we propose a
land use data set reconstruction algorithm, combining the higher classification accuracy of
cultivated land in statistics and the large-scale spatial distribution information of remote
sensing data. Secondly, we investigate whether adding crop statistics will improve the
performance of the distributed hydrological model effectively. The LUSF algorithm was
tested on a large-scale watershed with 97 prefecture-level cities in China. Subsequently, we
will describe the algorithm in detail and discuss how to refine cropland data to improve
the accuracy of runoff simulation.

2. Introduction to the Study Area

The Yangtze River Basin (YZRB), the largest river in China, has witnessed rapid
population growth and great changes in land use and land cover (LULC) area, the change
caused by human activities is the main driving factor of LUCC [39]. At present, over
600 million people are living in the YZRB area, which accounts for about 45% of the
country’s population. The cultivated land area of the basin is about 24,600 km2, accounting
for a quarter of the country’s total cultivated land. Farmland is a crop-growing area
modified artificially, serving both ecological and production spaces.

The study area is located at 90°33′ E–122°25′ E and 24°30′ N–35°45′ N, covers an area of
1.80 million km2, and occupies 19% of the total area of China (Figure 1). Due to the vast area,
complex terrain, and typical monsoon climate, the spatiotemporal distribution of annual
precipitation and rainstorms is very uneven [40]. Through data collection, we identified a
certain level of discrepancy between the paddy field area extracted using GIS technology
in CLUDs and the local statistical yearbook data, indicating difficulties in interpretation
and misclassification problems. Using Jiangxi Province as an example, the data error is
illustrated in Figure 2.
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Figure 1. Map of Yangtze River Basin, China.

Figure 2. Analysis of non-matching dual-source data on the paddy field (rice) areas in 11 cities in
Jiangsu Province.

3. Data Introduction

The major crop snow areas were mainly acquired from provincial and prefecture-level
statistical yearbooks in China, and include rice, wheat, maize, vegetables, and other crops.
Since wheat and maize rotation is a common planting method, our study used a larger
area of wheat and maize (WM). In addition, the statistical datasets are constructed with
other materials, including China’s Rural Economic Statistical Summary by County [41],
the Statistical Yearbook of Yangtze River Economic Zone [42], the Statistical Communique
of the People’s Republic of China on National Economic and Social Development [43], and
the 1949–2019 China Agricultural Statistical Report [44]. The average missing data rate is
about 35%, mostly occurring in the 1980s. The deficiency rate in the past 20 years has been
less than 30% (Table 1). The missing values were filled by a linear interpolation algorithm,
and the outliers were corrected by the trend method.
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Table 1. Ground-level data collection status.

Year 1980 1990 1995 2000 2005 2010 2015

Missing rate 78% 58% 41% 36% 21% 36% 24%

China’s land use/cover datasets (CLUDs) were interpreted from the Landsat TM/ETM+
and Landsat 8 remote sensing images, with a spatial resolution of 1 km, for the years 1980,
1990, 1995, 2000 2005, 2010, and 2015. They were mapped by the Institute of Geographic
Sciences and Natural Resources Research, Chinese Academy of Sciences [45,46]. The dataset
producer used this method based on a vast amount of geoscientific knowledge. According
to the reports, the overall accuracy of CLUDs is up to 90%. The different data types used in
this paper are shown in Table 2.

Table 2. Datasets used in the creation of the LUSF dataset.

Dataset Data Source Years Spatial Resolution Application

China’s Land-Use/cover Datasets
(CLUDs) maps

Landsat TM/ETM+
and Landsat 8 remote sensing images 1980, 1990, 1995, 2000,

2005, 2010, and 2015

1km To extract CLUDs

Major crop-planting area Prefecture-level city
statistical Yearbook 97 regions To statistics dataset

4. Method
4.1. LUSF Classification

Most of the current land cover datasets and land-use models use a classification of land
cover based on the dominant land cover type within a distinct region, which disregards the
diversity and intensity of human influence [47]. Since dual-source datasets vary in their
classification schemes, in this study, we combine the main crops’ statistical index from the
provincial statistical yearbook and refine the cropland area of the CLUDs at a large basin
scale. This approach clarifies the meaning of farmland before data fusion.

In China’s current land use classification [48], cropland is divided into three categories:
paddy fields for aquatic crops, irrigated land for dry crops, and dry land for non-irrigated
crops. The four main crops planted are rice, wheat, maize, and vegetables. These crops
play an important role in national agricultural production [49–51]. Thus, the areas of paddy
fields and irrigated dry land are further subdivided into these four main crop areas, and
the woodland, grassland, and buffer zones of water bodies with similar characteristics in
the regional CLUDs are reconstructed. Along with dry land, built-up land, and bare land,
these ten land use types constitute the LUSF datasets (Figure 3).
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Figure 3. Flowchart of the LUSF classification.

4.2. Dual-Source Dataset Fusion Method

In this paper, limited by the collection units of statistical data, we first integrated the
crops’ statistical dataset and CLUDs at the administrative unit scale (Figure 4). The LUSF
fusion algorithm roadmap is as follows (Figure 5):

Figure 4. Flowchart of the methodology adopted in this study.
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Figure 5. Flowchart of the algorithm adopted in this study.

Based on the original data sample feature learning, the empirical threshold is set at
10%. The calculation formula is as follows:

Z1,i =


Ii −

4
∑

j=1
f cropij, Ii −

4
∑

j=1
f cropij ≥ 0

Ii −
3
∑

j=1
f cropij, others

(1)

D1,i =


D0,i, Z1,i ≥ 0

0, Z1,i < 0 and 0 ≤ WM0,i − D0,i

D0,i − WM0,i, others

(2)
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Z2,i =

{
WM0,i − D0,i, D0,i ̸= 0 and D1,i = 0

0, others
(3)

where Ii represents the paddy land area from CLUDs of the i-th prefecture-level city (km2);
f cropij represents the area of j crop types (statistical data) in the i-th prefecture-level city
(km2); D0,i, D1,i represent dry land area before and after integration (km2), respectively;
Z1,i represents the sum of the crop area difference per unit between statistics and CLUD
data (km2); Z2,i represents the dry land area difference of two datasets (km2); j = 1, 2, 3, 4
represent rice, vegetables, other crops, and wheat or maize, respectively.

When Z1 < 0, we combine the statistical data with grassland, woodland, and water
areas, which have similar features to CLUDs, using the average subtraction and maximum
value method; the calculation formula is as follows:

Max = max(W0,i, WA0,i) (4)

GR1,i =

{
GR0,i + (Z1,i + Z2,i), Z1,i ≥ 0 or (Z1,i + Z2,i) + GR0,i ≥ 0

GR0,i + (Z1,i + Z2,i) ∗
GR0,i

W0,i+WA0,i+GR0,i
∗ 100%, others

(5)

W1,i =


W0,i, GR1,i − 0.9 × GR0,i ≥ 0

W0,i + (Z1,i + Z2,i), (Z1,i + Z2,i) + GR0,i × 10% < 0 and W0,i = Max

W0,i + (Z1,i + Z2,i)×
W0,i

W0,i+WA0,i+GR0,i
∗ 100%, others

(6)

WA1,i =


WA0,i, GR1,i − 0.9 × GR0,i ≥ 0

WA0,i + (Z1,i + Z2,i), (Z1,i + Z2,i) + GR0,i × 10% < 0 and WA0,i = Max

WA0,i + (Z1,i + Z2,i)×
WA0,i

W0,i+WA0,i+GR0,i
× 100%, others

(7)

where GR1,i, W1,i, WA1,i represent the areas of grassland, woodland, and water after the
integration of the unit, respectively (km2); GR0,i, W0,i, WA0,i represent the areas of grassland,
woodland, and water before the integration of the i unit, respectively (km2).

Finally, the unit area verification of prefecture-level cities:

f lag =

 1,
∣∣∣∑ CAREAlucc−sf

(i) − ∑ CAREAlucc
(i)
∣∣∣ > 0.0000001

0,
∣∣∣∑ CAREAlucc−sf

(i) − ∑ CAREAlucc
(i)
∣∣∣ ≤ 0.0000001

(8)

where f lag indicates the judgment condition.

CLuccFi×10 = [X1, X2, X3, X4, D1, W1, GR1, WA1, In0, Ot0] (9)

where CLuccFi×10 represents the generated LUSF dataset at the prefecture-level city unit
scale; X1, X2, X3, X4 represent the areas of rice, vegetables, other crops, wheat, and maize,
respectively; D1, W1, GR1, WA1 represent the areas of dry land, forest land, grassland, and
water after fusion, respectively; In0, Ot0 represent the areas of the built-up land and the
barely land from the LUCC dataset, respectively.

Figure 6 shows the proportion of different crop types in each calculation unit.
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Figure 6. The crop area proportion in each calculating unit.

4.3. Scale Conversion

In this study, we introduced the water allocation and simulation (WAS) model to
evaluate the runoff simulation accuracy improvement of the LUSF dataset. We constructed
a natural water cycle model of the Yangtze River Basin to evaluate the spatiotemporal
responses of runoff to land use types in LUSF datasets. The study area was divided
into 225 calculation units, necessitating the conversion of the space division from an
administrative unit to a hydrologic computing unit. Using the area coefficient obtained
through the unit grid division, we weighted and reconstructed every land use type area of
the LUSF dataset at the prefecture-level scale. This process generated a LUSF dataset at
the basin scale, enabling dual-source data fusion with spatiotemporal spread. Utilizing the
codes for the administrative divisions of the People’s Republic of China [52] as an index,
the area ratio coefficient of the calculation unit is derived according to the grid division
ratio of prefecture-level cities. The formula is as follows:

aij =
Uij

area

Cij
area

(10)

aij =


a11 a12 · · · a1j
a21 a22 · · · a2j
...

...
. . .

...
ai1 ai2 · · · aij

 (11)

where i represents the serial number of the calculation unit, j represents different land use
types; aij represents the different land use area ratio coefficients of prefecture-level cities

and calculation units based on the CLUDs; Uij
area represents the area of land use type j in

the i calculation unit; Cij
area represents the area of land use type j in the prefecture-level city

unit. We allocate LUSF data at the administrative unit into each basic calculation unit to
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generate the LUSF dataset for the watershed hydrological model simulation. The formula
is as follows:

ULuccFi×10 = [X1α1, X2α1, X3α1, X4α2, D1α2, W1α3, GR1α4, WA1α5, In0α6, Ot0α7] (12)

4.4. Model Introduction

Given the intricate water network of the Yangtze River Basin, this study employs the
WAS model to construct a water cycle model for the basin. This is done to validate the
applicability and value of the proposed LUSF method. The WAS model can dually simulate
natural–artificial water cycles; it consists of two inter-operative computational modules:
SWAT and the artificial water-optimized allocation module (AWOM) [53–55]. The WAS
model has added an irrigation function that can locate more water sources for irrigation
water within the same time frame, meeting the computational requirements of the study at
hand (Figure 7).

Figure 7. The structure of the WAS model [53].

4.5. Evaluation Metrics

There are two metrics applied to evaluate the performance of the correlation coefficient
(R, Equation (13)) and the Nash–Sutcliffe efficiency (NSE, Equation (14)). The correlation
coefficient measurement range is between −1 and 1, and the Nash–Sutcliffe efficiency
measurement range is between −∞ and 1. As R and NSE values approach 1, this suggests
an enhancement in the model’s simulation effectiveness. There are three indicators used to
assess the proposed method: the mean absolute percentage error (MAPE, Equation (15)),
root mean square error (RMSE, Equation (16)), and the runoff simulation error reduction
(δ3, Equation (16)). The measurement range for MAPE is from 0% to ∞, while for RMSE,
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it is from 0 to ∞. In general, lower values of MAPE and RMSE indicate smaller errors
between simulated and observed values. The calculation process is as follows:

R =
n ∑ Qiqi − ∑ Qi ∑ qi√[

n ∑ Qi
2 − (∑ Qi)2

]√
[n ∑ qi

2 − (∑ qi)2]

(13)

NSE = 1 −

n
∑

i=1
(Qi − qi)

2

n
∑

i=1
(qi − q̄)2

(14)

MAPE =
100
n

∗
n

∑
i=1

∣∣∣∣ qi − Qi
Qi

∣∣∣∣ (15)

RMSE =

√
1
n
×

n

∑
i=1

(qi − Qi)
2 (16)

where n is a series of samples, Qi is the measured value, and qi is the simulated value; q̄ is
the average value of the measured value. R ranges from

δ1 =
f (x1)− f (y)

f (y)
(17)

δ2 =
f (x2)− f (y)

f (y)
(18)

δ3 = |δ1| − |δ2| (19)

where f (y) represents the measured runoff series, f (x1) is the simulated runoff series based
on the LUSF data, f (x2) is the simulated runoff series based on CLUDs, δ1 represents the
relative error of the runoff simulation under LUSF data, δ2 represents the relative error
of the runoff simulation under CLUD data, and δ3 represents the runoff simulation error
reduction.

We use the runoff coefficient and the dynamic attitude of land use and land cover
(LULC) to evaluate the runoff response under land use change. The calculation process is
as follows:

K =
Ub−Ua

Ua
× 1

t
× 100% (20)

α=
P
R

(21)

where K represents the dynamic attitude of a single land use type in the study area during
the study period t, Ua, Ub represent the land use type areas at the beginning and the
end of the study period, respectively. α represents the runoff coefficient, P represents the
precipitation depth, mm. R represents the runoff depth, mm.

5. Results
5.1. Correlational Analyses

We conducted a correlation analysis on a sample of 4832 data points. In the realm
of statistical indicators, the semantic interpretation of CLUDs’ land use types aligns with
the prevailing national standard for assessing current land use status. This alignment
serves as the rationale behind our selection of this dataset. The findings reveal a substantial
correlation between the statistical data of the rice planting area and the paddy field area
extracted from CLUD maps, with a correlation coefficient of 0.81. Additionally, the correla-
tion coefficients for dryland area versus irrigated dryland area and the total cultivated land
area between the two datasets are 0.77 and 0.78, respectively (Figure 8). These outcomes
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signify a high level of agreement in the dual-source data, further affirming the classification
rationality within our study.

Figure 8. Consistency of arable land area from the official statistics and remote sensing datasets,
respectively. (a) The rice planting area (statistics data), paddy land area (CLUDs), (b) irrigated crop
area (statistics data), dryland area (CLUDs); (c) the total cultivated land area.

5.2. Result of Runoff Simulation

We set the model calibration period as 1982–1991, and the validation period as
1992–2000. While using the LUSF dataset as model land use data input, the calibration
results show that the value of R is 0.927 (in the calibration period) and 0.856 (in the val-
idation period); the values of NSE are 0.921 (in the calibration period) and 0.829 (in the
validation period), indicating a great consistency between the observed runoff process and
the simulated runoff process.

We compare the runoff simulation errors between the original datasets extracted from
CLUDs and those from LUSF to further evaluate the effect of LUSF data on improving
runoff simulation accuracy. According to the research, the absolute error of the simulated
runoff at 17 hydrological stations is reduced by 433 million m3 annually (Figure 9), and the
absolute error of the monthly runoff simulation is reduced by 36 million m3.
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Moreover, the results also show that a lower runoff simulation error occurs from
March to September compared to other months, with the absolute error by an average of
70 million m3 (Figure 10).

Figure 9. The absolute error reduction in the runoff simulation using LUSF datasets, respectively.
“Green–blue” indicates the stronger reduction effect of the regional runoff simulation error.

Figure 10. The absolute error and relative error reduction in the monthly runoff simulation using the
LUSF dataset, respectively.

5.3. Simulation Effects of Hydrological Sections

From the perspective of the annual runoff simulation improvement, the MAPE value of
the monthly average simulated runoff for the 14 sections under the LUSF dataset decreased
by 0% to 0.74%, and the RMSE value decreased by 0 to 22 million m3. The simulation
effect of the LUSF dataset, which refines CLUDs, is better. Furthermore, results also
demonstrate that the reduction in the MAPE value is more significant in large grain
provinces with complete administrative boundaries (Jiangxi Province, Hunan Province,
Sichuan Province), and the decrease in error in these regions is larger than that of other
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provincial administrative regions, about 7% (Figure 11). Using the LUSF dataset, the
relative error reduction in monthly runoff simulation is generally observed during the crop
planting and growth water demand months (March to September) (Figure 12).

Figure 11. The difference in MAPE value generated from each hydrologic section using the LUSF
dataset. The green dots represent a significant decrease in the MAPE value between simulated runoff
and measured runoff from the control unit of the hydrological station.

Figure 12. The difference in relative error using the LUSF dataset. “Red–white–blue” means that
the effect of reducing the relative error between the simulated results and the measured results is
gradually enhanced.
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5.4. Coefficient Optimization Analysis

We conducted a study on the simulated runoff improvement under constant meteo-
rological conditions. To do this, we utilized the canopy interception coefficient based on
both LUSF and CLUDs, analyzing the improvement of the corrected canopy interception
coefficient. We studied the runoff simulation of the refined cropland area in the LUSF
dataset. The scene settings are as follows (Table 3).

Table 3. Scene Setting

Scenes Coefficient Matrix Land Use Dataset

F01-1 X1 LUSF
F01-2 X2 CLUDs

From the results shown in Figure 13, it is evident that the corrected canopy interception
coefficient under the LUSF dataset reduces the runoff simulation error of 2.96 billion m3,
with an average monthly decrease of 13 million m3. Among them, the simulation error of
the runoff process from March to September decreased by 274 million m3 (Figure 14).

Figure 13. The absolute error reduction in the runoff simulation using before and after corrected
canopy interception coefficients, respectively. "Green–blue" indicates the stronger reduction effect of
the regional runoff simulation error.
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Figure 14. The absolute error and relative error reduction in monthly runoff simulation using before
and after corrected canopy interception coefficients, respectively.

5.5. Spatiotemporal Land Use Change in Yangtze River Basin

Based on the simulation results of the hydrological model, we calculated the regional
runoff coefficient and the dynamic attitude of land use type to describe the runoff response
under land use spatiotemporal change in the Yangtze River Basin. The regional runoff
coefficient is a measure used to evaluate the variation of regional runoff. The analysis
conducted reveals that in the year 2015, the Mintuo River had the highest runoff coefficient,
followed by the Poyang Lake system. On the other hand, the Qingjiang River Basin
exhibited the smallest runoff coefficient of only 0.08. The runoff coefficients of the Yalong
River and Mintuo River systems have not varied significantly from 1980 to 2019. However,
the runoff coefficient of the Dongting Lake system has decreased from 0.557 to 0.545 over the
past 40 years, which suggests that the amount of water flowing into this basin has reduced.

Regarding the land use type dynamic attitude, there has been minimal variation in
the area of cultivated and forest land in the Yalong River and Mintuo River Basins, with
an increase or decrease of approximately 1%, which means that the underlying surface
disturbance is weak. The planting areas of rice and vegetables increased the most in the
Dongting Lake Basin; the built-up area increased by 1%, and the water area decreased by
0.06%. The wheat and corn planting areas increased the most in the Hanjiang River Basin
(Table 4).
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Table 4. Dynamic attitude of land use types and runoff coefficient variation in the study area during 1980–2019.

Watershed Rice Wheat or Maize Vegetables Other Crops Dry Land Woodland Grassland Built-Up Land Water Body Unused Land α1980 α2019 αchange

Dongting Lake 0.74% 0.24% 4.93% 4.80% −0.43% −5.52% −5.64% 0.92% −0.06% −0.03% 0.5573 0.5447 −0.0126
Han River −0.50% 0.94% 4.12% 4.52% −3.65% −3.48% −2.86% 0.75% 0.21% −0.07% 0.3952 0.3851 −0.0101

Jialing River −1.98% −1.32% 4.06% 3.45% −1.39% −1.68% −1.91% 0.70% −0.04% 0.04% 0.5218 0.5189 −0.0029
Mintuo River −1.45% −1.26% 2.93% 1.61% −1.13% −1.32% −0.92% 0.87% −0.01% 0.04% 0.8179 0.8168 −0.0010
Poyang Lake −0.08% −0.45% 3.15% 2.34% −0.19% −2.00% −3.75% 0.96% 0.10% −0.13% 0.6084 0.6049 −0.0035

Wujiang River −0.64% 0.22% 2.12% 1.66% 0.23% −2.93% −1.47% 0.74% 0.07% 0.00% 0.5601 0.5579 −0.0022
Qingjiang River −0.61% 0.63% 4.42% 1.65% −1.48% −5.16% −0.08% 0.51% 0.14% −0.02% 0.0827 0.0804 −0.0023

Yalong River 0.65% 0.20% 0.39% 0.15% −0.11% −0.11% −3.45% 0.06% −1.28% 0.61% 0.3780 0.3775 −0.0005
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6. Discussion
6.1. The Contribution of the LUSF Method

In this study, we assume that statistics represent actual observations, and through
extensive data collection, a dataset of four major crops for 97 prefecture-level cities was
constructed. Firstly, we analyzed the relationship between statistical yearbook indicators
and the classification system of CLUDs, finding a high degree of consistency between
paddy land and rice planting area, as well as the total cropland area in both datasets.
Secondly, we set a threshold for iterative elimination of area differences and proposed
a dual-source dataset fusion algorithm. Finally, we realized the application of the new
dataset using scale transformation. This approach includes two optimization levels: on
the one hand, the integrated land use dataset includes four irrigated crop planting areas,
facilitating spatial refinement and achieving a finer resolution in terms of water amounts
over time. It yielded an increase in the accuracy of the hydrological model simulation by
further refining the evapotranspiration and infiltration in the irrigation area. On the other
hand, the integrated method proposed has been practically applied in hydrological models,
demonstrating practical value. The merged dataset includes four major crops (rice, wheat,
maize, and vegetables) and six categories of land use area data (cultivated land, forest land,
grassland, water area, urban land, and total unused land). This dataset is more suitable for
analyzing hydrological effects under modern land cover changes, aiding hydrologists in
quantifying runoff response patterns under different land use types. Furthermore, the data
maintains high consistency with ground-level statistical data, providing researchers with
technical and database support for the sustainable development of ecological environments
and water resources.

6.2. Characteristics of the Main Crop-Planting Area in the Yangtze River Basin

Human activities directly or indirectly affect the Earth’s surface system, with land use
and cover change being the most intuitive manifestation of human land transformation.
We selected the Yangtze River Basin, which has the widest drainage area in China, as our
study area. This study found that under the rapid urbanization trend in contemporary
society, the area of construction land in each sub-basin is showing a growing trend. Among
them, Poyang Lake and Dongting Lake have the highest growth rates, followed by the
Han River and Wu River. The Han River, as China’s main grain-producing region, has
the most significant proportion of wheat and corn cultivation area, averaging 9.6% of the
basin area over the past four decades and still showing an increasing trend. At the same
time, its rice planting area is not low, with an average of 4.3%, second only to the Jialing
River and Mintuo River. In the Dongting Lake and Poyang Lake Basins located south of
the Yangtze River, with abundant water resources, the proportion of rice cultivation area is
the most significant, averaging around 11% of the basin area. The Yalong River is located
in the upper reaches of the Yangtze River. The main landform features within the basin are
mostly hilly plateau areas with complex terrain. Due to climatic conditions and topographic
restrictions, the proportion of rice and wheat (maize) planting area in the basin is lower
than that of the other seven major river systems. China’s grain production—affected by
grain policies and market prices—reached its lowest point around 1990 and continued to
decrease from 2000 to 2004, which explains the declining fluctuations in grain sown area in
our study (Figure 15).
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Figure 15. The proportion of the main crop planting area to the total area of the eight river systems in
the Yangtze River Basin in 1980, 2000, and 2015.

6.3. Uncertainties and Improvement

This study provides a new dual-source dataset fusion algorithm and analyzes the
interaction between runoff change and land use area change in the Yangtze River Basin in
the last 40 years. The proposed LUSF algorithm guarantees a high degree of consistency
with the statistical data but also depends on its accuracy. At the same time, this method is
based on the manual experience extraction of a large sample of data; it only includes the
data of four relatively major crops.

The original data are available for free on the official website (https://www.resdc.cn/
accessed on 9 November 2023) and local government websites (e.g., http://www.hunan.
gov.cn/zfsj/tjnj/tygl.html accessed on 9 November 2023 for Hunan province), making this
method more practical and versatile. The verification experiment of agricultural irrigation
water quantity will be further added in the later stage. Previous studies have shown that
the cultivated land area has a positive effect on runoff production under a constant climate,
while the irrigated area has a negative effect; the refined LUSF dataset could help us with
further research.

7. Conclusions

Improving the spatial accuracy of land use data in hydrological models could enhance
the effect of runoff simulation effectively. In this study, we propose a dual-source dataset
fusion algorithm called the LUCC statistical data fusion algorithm (LUSF), which is based
on human brain experience and big data learning and training. It integrates crop ground
survey statistical data and CLUD data extracted from remote sensing to better adapt to
changes in the underlying surface under artificial transformation. The water distribution
during the water cycle simulation process is further refined from the spatial scale and
time scale. Compared to other data fusion methods, the new proposed LUSF method is
more convenient, efficient, and has practical applications. Moreover, We quantitatively
analyzed the underlying land use characteristics of the eight main tributaries in the Yangtze
River Basin, assessed the hydrological effects under land use and land cover change
(LUCC), and conducted a preliminary attribution analysis on them, incorporating the new
integrated dataset.

https://www.resdc.cn/
http://www.hunan.gov.cn/zfsj/tjnj/tygl.html
http://www.hunan.gov.cn/zfsj/tjnj/tygl.html
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The results indicate that the new fusion method is particularly well-suited for areas
with high human disturbances. It effectively reduces runoff simulation errors in the semi-
distributed hydrological model, especially during the months of irrigation crop planting
within the year (March to September). The average runoff simulation error can be reduced
by 70 million m3, and the RMSE value can decrease by 22 million m3. Additionally, in terms
of the correction of hydrological model parameters, the LUSF method also demonstrates
some optimization effects.

The alteration of the underlying surface in the Yangtze River Basin, which serves
as the primary grain-producing region in China, is significantly influenced by human
modifications. From 1980 to 2019, major primary tributaries within the Yangtze River Basin
have all experienced a decline in runoff. The regions with a relatively large proportion of
irrigated grain crops (Han River, Dongting Lake, and Poyang Lake Basins) also exhibit a
more pronounced decrease in runoff. For nearly 40 years, the planting area of grain crops
in the Yangtze River Basin exhibited a growing trend, with a fluctuating decline around the
year 2000. In the northern region of the Yangtze River, the crop planting area in the Han
River Basin is relatively large, with wheat (corn) accounting for nearly 10% of the basin
area. In the southern region of the Yangtze River, the rice planting areas in the Poyang Lake
Basin and Dongting Lake Basin are substantial, each accounting for approximately 11%.
The research findings can provide support for the study of the evolving patterns of water
circulation under the influence of water usage in economic and social contexts.

Our study presents a method that integrates four crucial crop statistics—rice, wheat,
maize, and vegetables—with the remotely sensed CLUDs. This approach refines the the
irrigated cropland area and provides more realistic input to further improve the hydrologi-
cal model’s performance. Furthermore, this finding can support relevant departments in
optimizing land and water resource management.
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