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Abstract: Soil conservation (SC) plays a vital role in preventing soil erosion and ensuring ecological
security. While current research on SC primarily focuses on historical spatiotemporal variations, there
remains a dearth of sufficient simulation research exploring future development scenarios. In this
study, simulations were applied to the source of Yellow River (SYR), a representative ecologically
fragile area. Satellite remote sensing and product data, including precipitation, soil, land use/cover,
DEM, and SPOT/VEGETATION NDVI, were utilized. The historical and future evolutionary trends
of SC in the SYR were quantitatively assessed using the Revised Universal Soil Loss Equation
(RUSLE) and trend analysis method, and the geographical detector was employed to explore the
forces driving spatial differentiations in SC. The results demonstrated that: (1) 2000–2020, the spatial
heterogeneity of SC in the SYR was characterized by the distribution of “gradually decreasing from
Southeast to Northwest”, demonstrated a trend of “increasing, decreasing, and then increasing”.
(2) Under the diverse development scenarios, the trend of SC change in the SYR was predominantly
rising, and the natural change scenario (NCS) > ecological conservation scenario (ECS) > economic
expansion scenario (EES). (3) Slope was the most important single driver affecting the spatiotemporal
differentiation of SC, and the interaction of slope with average annual precipitation, and NDVI on
the spatiotemporal heterogeneity of SC had the strongest explanatory ability. The results can serve as
a scientific basis for regional SC and ecological protection and construction of the SYR.

Keywords: diverse development scenarios; the source of Yellow River; soil conservation; RUSLE;
trend analysis; geographical detector

1. Introduction

Soil conservation (SC) is a crucial ecosystem service that helps to prevent soil erosion
and maintain regional ecological security [1–3]. Relevant research has indicated that the
combined effects of human activities and climate change pose a global risk of significant
reduction in SC capacity [4]. The escalating issue of soil loss not only leads to soil fertility
degradation and decreased land productivity [2], but also negatively impacts habitat quality
and biodiversity [2,5], as well as increases the likelihood of geological disasters and other
security concerns [6,7]. These factors constitute a serious threat to the ecological security
of countries and regions [8]. Consequently, enhancing the SC capacity of regional ecosys-
tems and mitigating the impact of soil erosion have become focal points of international
ecological conservation research and global sustainable development goals [8,9].

Soil erosion poses one of the greatest ecological challenges in China [10]. According
to the 2020 China soil and water erosion communique, 1.12 × 106 km2 of region in China
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is disturbed by soil erosion, which has become one of the important factors restricting
sustainable socio-economic development [11]. The source of Yellow River (SYR), located in
the hinterland of the Qinghai-Tibet Plateau, serves as a crucial ecological security barrier in
China and faces persistent issues with soil erosion [12]. The complex terrain and unique
alpine geographical environment, coupled with warm and wet climate conditions, irregular
precipitation patterns, and unsustainable human activities, distribute serious threats to soil
security in the SYR [13]. Therefore, it is crucial to conduct a comprehensive and scientific
evaluation of spatiotemporal changes and driving factors related to SC service functions in
the SYR. This evaluation will play a vital role in safeguarding the ecological security of the
SYR and promoting sustainable development in the semi-arid zone.

With the continuous development of geographic information system (GIS) and remote
sensing (RS) technologies, they have been widely applied in the field of ecological environ-
ment monitoring. GIS enables spatial information analysis and processing, allowing for
spatiotemporal analysis of ecosystem processes with high spatial integration and dynamic
prediction capabilities. And RS is a spatially insensitive detection technique that can acquire
high spatiotemporal resolution images with wide coverage. Currently, relevant studies
combine the image analysis techniques of RS with the spatial analysis capabilities of GIS to
assess regional SC by obtaining and analyzing high-resolution RS images. This approach is
applied to evaluate the impact of vegetation coverage on SC [14,15], detect the distribution
and changes of SC and sedimentation [16,17], analyze the spatiotemporal correlation be-
tween SC and other environmental factors [18,19], and identify the influencing factors of
SC such as precipitation, slope, and land use changes [20,21].

Current SC research primarily employs two methods: physical process-based mea-
surements and empirically based statistical models [22,23]. The physical process-based
measurement methods, including isotope tracer [24] and regional monitoring method [25],
offer high precision at sample scale and maintain obvious advantages in soil erosion mecha-
nism research. However, due to the complexity of the measurement work and the challenge
of reflecting regional-scale situations, these methods have limitations in soil erosion assess-
ment [26]. Besides, empirically based statistical models evaluate regional-scale soil erosion
conditions by establishing statistical relationships between soil erosion and RS image pixel
values. Due to the variances in electromagnetic wave reflection characteristics caused by
diverse land features and environmental changes, alterations in soil erosion within a partic-
ular region will correspondingly induce variations in the reflectance of the corresponding
areas in remote sensing imagery. Empirically based statistical models have been widely
used in large-scale SC research [27], especially the Revised Universal Soil Loss Equation
(RUSLE) [2,28]. Due to the high applicability and stability, RUSLE has been applied to the
studies on the spatiotemporal variability characteristics of SC in watersheds [29,30], the
sensitivity of SC to diverse erosivity factors [31], and the diverse spatial scales of soil loss
estimation [32]. In China, RUSLE has been extensively applied in SC studies in diverse
regions, including the Qinghai-Tibet Plateau [33], the Loess Plateau Basin [34], the Chaohu
Basin [35], the Karst region [27], and the Three Gorges region [36], leading to improved
assessment results. However, these studies overlook the further evaluation of the driving
effects between SC services and the contributing factors.

Previous studies have highlighted that soil mobility is dominantly influenced by
natural geographical conditions (such as climate, landform, and vegetation) and human
interventions [8]. The impact of these factors varies across diverse regions [8,13,37]. Conse-
quently, a better understanding of the relationship between SC services and driving factors
is crucial for effective management and development of SC measures. Current models
for exploring the driver can be categorized into non-spatial and spatial models [38]. Non-
spatial models predominantly involve stepwise regression analysis [39] and the ordinary
least square method [40]. However, these models are limited in explaining the effects of
drivers in two dimensions. The spatial models, such as geographical detector (GD) [41],
and the geographically weighted regression [42] take into account spatial variability in the
potential effects of the drivers, leading to more accurate assessment results [43]. Among the
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spatial model, the GD offers unique advantages in analyzing the coupling effects between
drivers and driving factors, resulting in relevant studies applied to the analysis of soil
erosion drivers in diverse landscapes during historical periods [10,44,45]. However, none
of the existing studies have explored the future driving effects on SC to provide insights for
regional SC in a precautionary manner.

Considering the existing conditions and problems, this study aims to investigate the
evolutionary trend of SC services in the SYR over the past and under diverse development
scenarios (DDS), analyzing the drivers behind the phenomenon and the interactions be-
tween these drivers. The study aims to provide decision-makers with a reference for future
SC protection in the SYR and offer ideas for regional ecological preservation. The primary
objectives are as follows: (1) to quantify the spatial distribution of SC in the SYR from 2000
to 2020, (2) to simulate the SC under the DDS from 2021 to 2030, (3) to evaluate the trend
of spatiotemporal evolution of the SC, and (4) to explore the key drivers that significantly
impact SC.

2. Materials and Methods
2.1. Study Area

The SYR (95◦52′–103◦25′ E, 32◦30′–36◦34′ N, Figure 1), located in the northeast of
the Qinghai-Tibetan Plateau (QTP), with crisscrossing water systems and widespread
grasslands, has the reputation of “Yellow River Water Tower” [46]. The region encompasses
six states and eighteen counties, where the provinces of Qinghai, Sichuan, and Gansu
converge, including a watershed of approximately 1.23 × 105 km2 upstream of Tangnaihai
hydrologic station in the Yellow River Basin [47]. The topography of the SYR declines from
west to east, with an average elevation of approximately 4000 m, covered with mountains,
basins, canyons, grasslands, and swamps [48]. Alpine grasslands are vastly distributed in
the region, dominated by land use/cover (LUC) types such as alpine grasslands, alpine
meadows, alpine scrubs, and marshes [48,49]. Additionally, the SYR is part of the semi-arid
zone of China, belonging to the typical plateau continental climate. The region experiences
alternating periods of heat and cold, accompanied by distinct humid and dry seasons. It
benefits from abundant moisture, with average annual precipitation ranging from 220 to
780 mm. [50]. Due to its delicate ecological environment, the SYR is highly vulnerable
to climate and environmental fluctuations. Consequently, conducting a comprehensive
scientific investigation into the ecosystem services under the DDS in the SYR is crucial for
ecological protection and construction.
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2.2. Datasets and Processing

The major data used for this study included meteorological, vegetation, geomor-
phology, and environmental data. Specific information is shown in Table 1. To evaluate
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the past and simulate the DDS of SC, the historical and future periods of precipitation
data employed in this study, including 2000~2020 and 2021~2030 for SSP119, SSP245,
and SSP585 scenarios, respectively, based on the global 0.5◦ climate dataset released
by Climatic Research Unit (https://crudata.uea.ac.uk/cru/data/hrg/ (accessed on 18
April 2023)) and the global > 100 km climate model dataset released by the IPCC (in-
tergovernmental panel on climate change) were coupled with model intercomparison
programme phase 6 (CMIP6, https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
(accessed on 18 April 2023)), and the high-resolution climate dataset released by WorldClim
(http://www.worldclim.org/ (accessed on 18 April 2023)), generated by the delta spatial
downscaling scheme for regional downscaling in China region. Additionally, this study
extracted soil type, soil sand, silt, clay, and soil organic carbon content from the soil data,
and reclassified the LUC data according to the Chinese LUC classification method proposed
in previous research [51], combined with the actual vegetation cover in the SYR (Reclassifi-
cation as shown in Table 2). To facilitate the analysis, the spatial resolution of the data used
in this study will be uniformly resampled to 100 m, and the projection coordinates were
unified as the GCS_WGS_1984 projection.

Table 1. Description of the data.

Type Data Period Spatial Resolution Sources

Meteorological Precipitation (0.1 mm) 2000~2020 1 km

Loess Plateau Science Data
Center (LPSDC), National
Earth System Science Data

Sharing Infrastructure
(NESSDSI), and National

Science & Technology
Infrastructure of China

(NSTIC) (LNN,
http://loess.geodata.cn

(accessed on 18 April 2023))

2021~2030 1 km
LNN

(http://loess.geodata.cn
(accessed on 18 April 2023))

Vegetation
LUC 2000, 2010, and 2020 30 m

Resource and Environmental
Science and Data Center
(RESDC) of the Chinese

Academy of Sciences
(http://www.resdc.cn

(accessed on 20 April 2023))

NDVI 2000~2020 1 km
RESDC

(http://www.resdc.cn
(accessed on 20 April 2023))

2021~2030 1 km Processed

Geomorphology DEM 2009 30 m
Geospatial data cloud

(http://www.gscloud.cn
(accessed on 18 April 2023))

Soil type 1995 1 km

Chinese soil dataset (v1.1) of
the Big Data of Science in

Cold and Arid Regions (http:
//westdc.westgis.ac.cn

(accessed on 19 April 2023))

Environmental Water 2005 30 m
RESDC

(http://www.resdc.cn
(accessed on 19 April 2023))

Boundary 2015 ——
RESDC

(http://www.resdc.cn
(accessed on 19 April 2023))

https://crudata.uea.ac.uk/cru/data/hrg/
https://www.wcrp-climate.org/wgcm-cmip/wgcm-cmip6
http://www.worldclim.org/
http://loess.geodata.cn
http://loess.geodata.cn
http://www.resdc.cn
http://www.resdc.cn
http://www.gscloud.cn
http://westdc.westgis.ac.cn
http://westdc.westgis.ac.cn
http://www.resdc.cn
http://www.resdc.cn
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Table 2. LUC classification and its ecological level in the SYR.

This Study LUC Classification System of RESDC
Level LUC * Class 1 Class 2

1 WTL 4 Wetland 41 River
42 Lake

43 Reservoir pit
44 Snow

45 Mudflats
46 Shoal

64 Marshland
2 WL 2 Woodland 21 Woodland

23 Sparse woodland
24 Other woodland

3 S 2 Woodland 22 Shrub
4 HCG 3 Grassland 31 High coverage grassland
5 MCG 3 Grassland 32 Moderate coverage grassland
6 LCG 3 Grassland 33 Low coverage grassland
7 BL 6 Unused land 61 Sandy land

62 Desert
63 Saline soil

65 Bare grounds
66 Bare rocks

8 FL 1 Farmland 11 Paddy field
12 Arid lands

9 CL 5 Construction land 51 Townland
52 Rural settlements

53 Other construction land
* WTL: Wetland, WL: Woodland, S: Shrub, HCG: High coverage grassland, MCG: Moderate coverage grassland,
LCG: Low coverage grassland, BL: Bare land, FL: Farmland, CL: Construction land, LUC: land use/land cover
type, RESDC: Resource and Environmental Science and Data Center.

2.3. Research Methodology

Changes in precipitation and LUC can exert both direct and indirect influences on
SC by regional ecosystems. Therefore, exploring the response of SC to precipitation and
LUC changes (LUCC) under the DDS contributes to the establishment of appropriate SC
measures. In this study, we constructed a SC research framework based on the RUSLE-GD
model. The RUSLE model was employed to evaluate the SC from 2000 to 2020 and under
DDS from 2020 to 2030, and the GD model was utilized to explore the driving effects of
diverse drivers on SC (Figure 2).

2.3.1. Scenario Design for SC Variations

To reveal the characteristics of LUCC under the DDS, three scenarios were designed:
the natural change scenario (NCS), the ecological conservation scenario (ECS), and the
economic expansion scenario (EES). The NCS represents a development scenario that
continues to follow historical trends, with the rate of vegetation cover change remaining
consistent with the period of 2000–2020. The ECS prioritizes the prioritization of the
protection of ecological land, resulting in an increase in vegetation cover, and the EES
prioritizes economic development, with a decrease in vegetation cover. Further details are
depicted in Table 3.

2.3.2. Land Cover Change Index (LCCI)

In this study, the LCCI [52] was utilized to assess the magnitude of LUCC during a
specific period. According to the ecological contribution of diverse LUC types and taking
the changes in ecological integrated functions before and after LUCC, nine LUC types in the
SYR were classified into ecological levels (Table 2). A rank of 1 indicates a higher ecological
integrated function for a particular LUC type. When LUCC occurs, a difference in rank is
observed. A positive difference value indicates an improvement in the ecosystem, while a
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negative value reflects degradation caused by LUC. The specific computation formula is as
follows:

LCCI =
∑9

k=1[Ak × (Da − Db)]

A
× 100% (1)

When LCCI is positive, it indicates that the regional LUC and macro-ecological status
has improved, otherwise it indicates that degradation has occurred. k = 1, 2, ......, 9, for
the LUC type, Ak is the area where k has changed, and A is the total area of the analyzed
region. Da and Db denote the ecological levels of LUC before and after the occurrence of
LUC, respectively.
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Figure 2. Research framework. (Note: SSPs: diverse scenario, LUCC: land use/land cover,
NCS: Natural change scenario, ECS: Ecological conservation scenario, EES: Economic expansion
scenario, R: precipitation erosion factor, K: soil erodibility factor, LS: topographic factor, C: vegetation
cover and management factor, P: soil and water conservation measures factor, LCCI: land cover
change index, SC: soil conservation, RUSLE: revised universal soil loss equation, GD: Geographical
detector.)

Table 3. Scenario design.

Scenario Design Content

NCS
The NCS continues the trend of 2000–2020, wherein 2021–2030 NDVI is
computed year by year by linear regression from 2000–2020. The
precipitation data of future scenario SSP245 was adopted.

ECS
Since the vegetation growth trend is slightly higher in the ECS than in the
NCS, the NDVI from 2021 to 2030 in the NCS is increased by 10%. The
precipitation data of future scenario SSP119 was used.

EES

The EES is biased towards economic development, and the vegetation
growth trend under this scenario is lower than the NCS; hence, it is
reduced by 10% from the NCS 2021–2030 NDVI. And the precipitation
data of future scenario SSP585 was used.

2.3.3. Quantization of SC

In this study, diverse natural climatic conditions of the region are referred to and
comprehensively considered in the computations. Since factors K and LS are determined
by soil texture structure, distribution, and landform, their differences in time series can
be ignored.
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SC denotes the margin between potential (Ap) and actual soil erosion (Ar) that would
occur on land in the absence of vegetation cover and human management conditions. In
this study, SC is computed based on the RUSLE [53] model:

SC = Ap − Ar = R × K × LS × (1 − C × P) (2)

where SC denotes the soil conservation value (t/(km2·a), 0.01 t/(hm2·a) = 1 t/(km2·a)), R
means the precipitation erosion factor (MJ·mm/(hm2·h·a)), K denotes the soil erodibility
factor (t·ha·h/(hm2·MJ·mm)), LS denotes the topographic factor (L represents the slope
length factor and S denotes the steepness factor), C reflects the vegetation cover and
management factor, P denotes the soil and water conservation measures factor.

R represents the kinetic criterion for soil erosion caused by runoff from precipitation,
while the intensity and duration of rainfall have a significant effect on erosion. R is
computed by the Wischmeier empirical formula [54]:

R = ∑12
i=1

(
1.735 × 101.5 log10 (

p2
i
p )−0.8188

)
(3)

where pi denotes the monthly precipitation (mm) and p reflects the average annual precipi-
tation (mm).

K reflects the sensitivity of soil to the separation and transport of erosion forces,
with coefficients ranging from 0 to 1. The soil erosion sediment module of the Erosion
Productivity Impact Calculator (EPIC) model proposed by previous research [55] was used:

K =
{

0.2 + 0.3 exp(−0.0256San(1 − Sil
100 ))

}
×
(

Sil
Cal+Sil

)
×
[
1 − 0.25TOC

TOC+exp(3.72−2.95TOC)

]
×
[
1 − 0.7SN

SN+exp(−5.51+22.9SN)

]
× 0.1317

SN = 1 − San
100

(4)

where San, Sil, Cal, and TOC respectively refer to sand, silt, clay, and soil organic carbon
content (%), and 0.1317 is the international unit conversion factor.

LS is the contribution of topographic and geomorphological feature on soil loss. In
this study, DEM data with 30 m resolution and the factor computation program devel-
oped by Arc Marco Language (AML) by previous research [56] were used on the Arc
Info workstation.

C denotes the role of vegetation cover and management practices on soil loss. In this
study, the method developed by previous research [57] using NDVI and NOAA AVHRR
remote sensing data was used and the parameters α and β were set to 2.5 and 1, respectively,
to compute the factor:

C = exp
(
−α · NDVI

β − NDVI

)
(5)

P denotes the ratio of soil loss under a particular soil and water protection management
to soil erosion when planted downslope, with values in the range of 0 to 1, where 0
means that no erosion occurs after the implementation, while 1 for failure to implement
appropriate soil and water conservation measures. The value was obtained by referring to
the relevant literature, and the specific parameters as depicted in Table 4.

Table 4. The p value for the LUC.

LUC FL WL HCG MCG LCG WTL CL S BL

p 0.5 0.4 0.7 0.7 0.7 0.2 0.5 0.4 1

2.3.4. Detection of SC Dynamic Changes

To investigate the trend of SC in the SYR from 2000 to 2020, the Theil-Sen Median trend
analysis method (TSM) with Mann-Kendall test (MKT) was used [58,59]. The TSM was used



Sustainability 2024, 16, 777 8 of 22

to evaluate the dynamic variation trend from 2000 to 2020, with time as the independent
variable and SC as the dependent variable. The analysis is computed according to:

SSC = Median
(SCi − SCj

j − i

)
, ∀1 < i < j, (6)

where SSC represents the Theil-Sen median, SCj and SCi, respectively, denote the SC in the
year of j and i. If SSC is positive, then the variable consistently increases in time, a negative
value of SSC means decrease.

The MKT was used for testing the significance of trend in SC, computed as follows:

S = ∑n−1
i=1 ∑n

j=i+1 sign(SCj − SCi)

Z =


S−1√
var(S)

S > 0

0 S = 0
S+1√
var(S)

S < 0

, (7)

where n is the length of the cycle from i to j, SCi and SCj, respectively, denote the SC
corresponding to time series i and j (i < j), sign() is the sign function. The computed Z value
is the standardized test statistic, and Z_(1-α/2) is the value corresponding to the confidence
level α. In this study, the significance of the trend of SC is discussed at the confidence levels
of α = 0.05 and α = 0.01, and the trend results as depicted in Table 5.

Table 5. Classification of the SC trend inspection in the SYR.

α SSC Z SC Trend

0.01 >0 |Z| > 2.58 Significantly increase
0.05 >0 2.58 > |Z| > 1.96 Slightly increase
0.05 >0/<0 |Z| < 1.96 No significant change
0.05 <0 2.58 > |Z| > 1.96 Slightly decrease
0.01 <0 |Z| > 2.58 Significantly decrease

2.3.5. Geographical Detector (GD)

GD is a geostatistical method employed to characterize the spatial differentiation of ge-
ographic processes and to explore differences in the drivers behind the representations [41].
In this study, the factor, the interaction, and the risk detector were applied to characterize
the contribution of diverse drivers to the spatial heterogeneity of SC under the DDS. The
factor detector was employed to explore the spatial heterogeneity of SC, and to reflect the
explanatory ability of each driving factor for differences in the spatial heterogeneity of SC,
which is computed as follows:

q = 1 − ∑L
h=1 Nhσ2

h
Nσ2 (8)

where q denotes the explanatory ability of an explanatory factor X for the explained factor
Y (SC), and ranges from 0 to 1. A higher q value indicates stronger explanatory ability of
the factor X for SC spatial heterogeneity. N and σ2, respectively, are the number of samples
and the variance of the indicator. And h ranges from 1 to L and represents the number
of factors grading layers (including classification or partitioning). In this study, NDVI,
annual precipitation, DEM, slope, soil type, and LCCI were selected as the driving factors.
The annual precipitation, DEM, slope, and LCCI were discretized and homogenized into
nine grades by the natural breakpoint method, including the soil type which was classified
into ten types (respectively: black calcareous, black felted, meadow, grass felted, peat,
swampy, chilled calcareous, chilled primeval, chilled permafrost, and primrose soil) based
on soil properties.
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Subsequently, the interaction detector was employed to characterize the interactions be-
tween diverse drivers, i.e., to evaluate whether the combined contribution of two variables
(as X1 with X2) increases or decreases the explanatory ability of the spatial heterogeneity
of SC. Specifically, the assessment is based on computing the q value (q(X1) with q(X2)) of
single factor X1 and X2 for dependent variable Y, respectively, and the interaction index
(q(X1∩X2)) resulting from overlay (or interaction). The risk detector was employed to
explore whether there is a significant difference between subintervals of the two factors
(X1, X2) affecting SC, and the t statistic was applied to test whether the driving force of the
drivers was statistically significant at 95% significance level.

3. Results
3.1. SC Spatiotemporal Variations
3.1.1. SC Spatiotemporal Changes in 2000 to 2020

The spatial heterogeneity of SC services in the SYR was characterized by a gradual
decrease from southeast to northwest. The south-central part of the SYR exhibited pre-
dominantly high SC values, while the northwestern part had lower SC values (Figure 3).
Jigzhi county, located in the south of the SYR, maintained the highest average SC of
5654.75 t/(km2·a). Aba, Gade, Maqu, Maqen, and Henan Mongol counties had average SC
values greater than 3500 t/(km2·a). Besides, Qumarleb, Madoi, Chindu, and Zoige counties
were characterized by poor SC, with average values below 2000 t/(km2·a), and Qumarleb
county had the lowest average SC of approximately 796.04 t/(km2·a). The average annual
SC in the SYR from 2000 to 2020 was 2918.35 t/(km2·a), with regions above this average
level accounting for 53.18% of the SYR.

Sustainability 2024, 16, x FOR PEER REVIEW 10 of 23 
 

 
Figure 3. Spatial distribution of SC in the SYR. 

 
Figure 4. Variation and trend of total annual SC in the SYR from 2000–2020. 

Additionally, the spatial distribution of SC variation trends in the SYR from 2000 to 
2020 was dominated by an increase (Figure 5). Approximately 90% of the total area in the 
SYR maintained a trend towards SC growth. The central part of the SYR was the dominant 
area with a significant increase in SC, while the largest region with an insignificant in-
crease was mostly distributed in the southeast and west of the SYR. However, an insignif-
icant reduction trend in SC was observed in Qumarleb county in the northwest of the SYR. 

Figure 3. Spatial distribution of SC in the SYR.

From 2000 to 2020, the average annual SC in the SYR exhibited a fluctuating upward
trend, divided into three stages of increase, decrease, and subsequent increase (Figure 4). In
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terms of interannual changes, the first stage (2000–2012) showed a more pronounced enhance-
ment in SC, with an increase of 42.30%, equivalent to 16.92 × 108 t/(km2·a). The second
stage (2012–2016) witnessed a drastic reduction, with a decrease of 22.18 × 108 t/(km2·a),
corresponding to a 55.45% decrease. The third stage (2016–2020) exhibited a greater en-
hancement compared to the first stage, with a 73.91% increase from 17.82 × 108 t/(km2·a)
in 2016 to 30.99 × 108 t/(km2·a) in 2020. Overall, the SC in the SYR increased by 34.27%
from 23.08 × 108 t/(km2·a) in 2000 to 30.99 × 108 t/(km2·a) in 2020 over the two decades.
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Additionally, the spatial distribution of SC variation trends in the SYR from 2000 to
2020 was dominated by an increase (Figure 5). Approximately 90% of the total area in the
SYR maintained a trend towards SC growth. The central part of the SYR was the dominant
area with a significant increase in SC, while the largest region with an insignificant increase
was mostly distributed in the southeast and west of the SYR. However, an insignificant
reduction trend in SC was observed in Qumarleb county in the northwest of the SYR.
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3.1.2. The Simulations of SC and Its Changes in 2021–2030

The trends of SC services change under the DDS, and annual estimates for the SYR
from 2021 to 2030 revealed considerable variations in the spatiotemporal trends of SC
under the DDS (Figure 6). In the ECS, regions with increasing and decreasing trends in
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SC accounted for 80.24 and 5.86% of the total area of the SYR, respectively. The areas with
a significant increase were primarily located in the east-center region of the SYR, while
regions with an insignificant increase were distributed in the west. Areas with no significant
change and insignificant reduction were located in the southeast and south-center parts
of the SYR. Under the NCS, 33.92% of the SYR exhibited a significant increase trend in SC
with a concentrated distribution in the center, north, and northwest. Meanwhile, 4.59% of
the SYR demonstrated an insignificant reduction trend in SC, primarily distributed in the
southeast. In the EES, areas demonstrating an increase trend in SC were distributed in the
north-center part of the SYR, accounting for 76.43% of the area of the source. The regions
with a significant increase in SC accounted for 19.64% of the area, while the regions with
insignificant reduction and no significant change in SC were predominantly distributed
in the southeast and south of the SYR. Overall, the variation trends in SC under the DDS
indicated a similar distribution, with a significant increase in the center and an insignificant
reduction in the southeast. Moreover, the order of the significant increase rate of SC under
the DDS was NCS (33.92%) > ECS (21.08%) > EES (19.64%).
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Figure 6. Spatiotemporal variation trend of SC services on the SYR under the DDS during 2021–2030
(The small bar chart shows that the total annual SC, and the regression line represents the variation
trend of SC in the SYR in each scenario). (Note: ECS: Ecological conservation scenario, NCS: Natural
change scenario, EES: Economic expansion scenario.).

Regarding interannual variations (see column statistics and linear regression plots in
Figure 6), the SC services exhibited diverse levels of increase under the DDS. The ECS and
NCS showed a similar growth trend, with the SC change in the NCS slightly smaller than
that of the ECS. Compared to the total SC in 2020 (30.99 × 108 t/(km2·a), the SC in the
ECS increased by 23.32 × 108 t/(km2·a) over the next ten years, accounting for a 75.26%
increase. Similarly, the SC under the NCS increased by 21.92 × 108 t/(km2·a), reflecting an
increase of 70.72%. In contrast, the SC of the EES exhibited a steady increase trend with
weak interannual variability, resulting in an incremental increase of 18.57 × 108 t/(km2·a)
by 2030, representing an increase of about 60%. In conclusion, the largest growth trend of
SC in the SYR from 2021 to 2030 was observed under the NCS, followed by the ECS, while
the EES exhibited the smallest growth.
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3.2. The Drivers of Spatial Variability in SC
3.2.1. Single Factor Analysis

The single factor analysis (Table 6) demonstrated the q-values of the influences on SC
in descending order: slope (0.436), average annual precipitation (0.391), NDVI (0.308), soil
type (0.227), DEM (0.185), and LCCI (0.027). Both slope and average annual precipitation
exhibited higher explanatory ability for the spatial heterogeneity of SC, with values of
approximately 0.4, which were remarkably higher than the other factors. NDVI, soil
type, and elevation had weak effects on the spatial heterogeneity of SC, with moderate
explanatory ability (approximately 0.15–0.30), while LCCI had the weakest explanatory
ability for SC. Additionally, all drivers were significantly correlated with changes in SC
(p < 0.1%).

Table 6. The explanatory ability (q) of drivers for spatial differentiation of SC services from 2000
to 2020.

Factors * NDVI PRE DEM SLOPE SOIL LCCI

q 0.308 0.391 0.185 0.436 0.227 0.027
* The explanatory variables include slope (SLOPE), elevation (DEM), and soil type (SOIL), including NDVI,
average annual precipitation (PRE), and LCCI under the three scenarios.

The explanatory power of the six drivers (Figure 7), NDVI, average annual precipita-
tion, slope, DEM, soil type, and LCCI, exhibited distinct performance conditions under the
DDS. Under the ECS, the single factor explanatory ability of slope and DEM demonstrated
a decreasing trend, while the others demonstrated increases. The explanatory ability of
slope had the greatest decreasing rate of −1.4%, the explanatory ability of average annual
precipitation had an increasing rate of 0.85%, and the explanatory ability of soil type had
an increasing rate of over 0.5%. Under the NCS, slope and LCCI were the only ones that
showed relatively significant trends for single factor explanatory ability, with rates of 0.56%
and −0.42%, respectively. Except for slope, changes in all drivers tended to decrease, with
the smallest incline characterized by soil type. Under the EES, the slopes of the regression
straight line for the single factor explanatory ability of average annual precipitation, NDVI,
and DEM were greater than 0.5%, with the slopes of 1.2%, 0.64%, and 0.56%, respectively.
Overall, the single factor drivers of slope and average annual precipitation exhibited fluctu-
ations under the DDS, but remained alternately dominating the spatial variability of SC
services in the SYR. The explanatory ability of the LCCI was at the lowest level (q < 0.1)
under each scenario.
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3.2.2. Interaction Analysis

The interaction of both factors revealed a better understanding of the spatial differenti-
ation of SC compared to the single factor (Figure 8). In 2000–2020, the interaction index of
slope with average annual precipitation reaches 0.685, which was obviously higher than the
values of other interaction factors. Additionally, the interactions of slope with NDVI and
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DEM, soil type with slope and average annual precipitation, and DEM with average annual
precipitation exhibited higher explanatory ability for the spatial variability of SC, with
interaction indexes above 0.5. Furthermore, the interaction indexes of NDVI with average
annual precipitation, DEM with soil type, average annual precipitation with LCCI, DEM
with soil type, and slope with LCCI were at higher levels, surpassing 0.45. Conversely, the
interaction indexes of LCCI with DEM and soil type were relatively weaker, measuring
below 0.35.
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Under the DDS, the interaction of average annual precipitation with slope, NDVI with
slope, DEM with slope, average annual precipitation with DEM, and slope with soil type
elucidated a greater spatial variability in SC in the SYR. The interaction of average annual
precipitation with slope exhibited the higher values, measuring 0.689, 0.661, and 0.664 for
the ECS, NCS, and EES, respectively. Besides, the interaction of LCCI with soil type and
DEM exhibited the least explanatory ability for spatial variability of SC under the DDS,
approximately 0.2.

3.3. Suitable Zones Analysis

The analysis demonstrated considerable variations in the amount of SC based on
the adaption range or type of drivers (Table 7). From 2000 to 2020, the mean SC reached
its maximum values of 6156 t/(km2·a), 8849 t/(km2·a), and 9835 t/(km2·a) during the
NDVI range of 0.72–0.77, the average annual precipitation range of 763.40–928.07 mm,
and slope range of 44.86–56.08◦, respectively. The influences of NDVI, average annual
precipitation, and slope on SC under the DDS were similar to the 2000–2020 period, with
the differences in the magnitude of the effects. In the ECS, higher average SC was observed
with higher NDVI, while more abundant average annual precipitation in the ECS resulted
in significantly greater SC compared to other scenarios. The EES showed greater average
SC with steeper slope. The DEM interval of 3908–4111 m generated higher average SC
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values under the DDS, and black felt soil exhibited higher SC capacity. Additionally, the
effect of LUCC on SC is characterized by LCCI > 0, indicating high SC capacity when
ecological improvement occurs.

Table 7. Adaption ranges/types of diverse influencing factors from 2000 to 2020 and under the DDS
from 2021–2030.

Key
Factors

2000–2020 ECS NCS EES

Adaption
range/Type

Annual
Mean SC
(t/(km2·a))

Adaption
Range/Type

Annual
Mean SC
(t/(km2·a))

Adaption
Range/Type

Annual
Mean SC
(t/(km2·a))

Adaption
Range/Type

Annual
Mean SC
t/(km2·a))

NDVI 0.72–0.77 6156.48 0.91–1 4617.37 0.75–0.82 4176.26 0.72–0.87 4454.95

PRE (mm) 763.40–
928.07 8849.23 822.30–

1020.70 5624.14 946.08–
1081 5397.29 766.42–

866.17 5156.79

DEM (m) 3908–4111 7394.14 3908–4111 5391.86 3908–4111 5144.8 3908–4111 5504.33
Slope (◦) 44.86–56.08 9835.02 44.86–56.08 7152.83 44.86–56.08 6927.98 44.86–56.08 7338.02

Soil type Black felt
soil 6513.22 Black felt

soil 4646.98 Black felt
soil 4131.56 Black felt

soil 4409.63

LCCI (%) 0.052–0.16 5267.39 1.27–2.52 5450.69 0.12–0.39 5359.39 0.14–0.51 4548.03

As shown in Figure 9, the SC suitability indexes for the DDS exhibited similar distribu-
tional characteristics. Areas with high SC suitability index were primarily assigned in the
center and east parts of the SYR, with the southeastern region having the highest SC suit-
ability index. The distribution of areas with higher SC suitability index was smaller, while
the range of SC unsuitable areas was larger than the distribution of SC suitable areas. The
region of the SC unsuitable (N-value) zones under the DDS was approximately 60,000 km2,
exceeding 50% of the area of the SYR.
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4. Discussion
4.1. SpatioTemporal Variation in SC in the SYR

The spatial distribution of SC in the SYR presented a pattern of gradual decrease
from the center towards the surrounding, which corresponded to the distribution of slope
(Figure 10a). The finding demonstrates that areas with higher slopes tend to maintain
stronger SC capacity and aligns with previous research results [20]. Slope emerged as
the dominant factor driving the spatial variability of SC. As slope increases, the spatial
differentiation of SC becomes more pronounced [60,61]. The intensity of soil erosion
tends to escalate with steeper slope gradients [62], and the gravitational impact of higher
slope predisposes them to soil erosion phenomena [63]. Additionally, slope influences the
transformation of material and energy on the surface, leading to alteration in soil texture
and influencing vegetation distribution [64]. The high slope zone (31.45◦–56.06◦) in the
center of the SYR, located in the valley, is predominantly covered by woodland, scrub, and
high coverage grassland (Figure 10b). This region benefits from the strong water retention
and soil stabilization capacity of these vegetation types, while the valley area provides
sufficient water for conducive growing conditions. Consequently, the high slope area of the
SYR exhibits a strong SC capacity.

Sustainability 2024, 16, x FOR PEER REVIEW 16 of 23 
 

located in the valley, is predominantly covered by woodland, scrub, and high coverage 
grassland (Figure 10b). This region benefits from the strong water retention and soil sta-
bilization capacity of these vegetation types, while the valley area provides sufficient wa-
ter for conducive growing conditions. Consequently, the high slope area of the SYR ex-
hibits a strong SC capacity. 

 
Figure 10. Spatial distribution of slope, LUC (2020), average NDVI (2000–2020) and precipitation 
(2000–2020) in the SYR. 

In contrast, the northwest of the SYR, characterized by high altitude and inland loca-
tion, exhibits relatively weak SC capacity due to natural conditions of water scarcity and 
low vegetation cover. Research indicated that precipitation is an essential water source in 
semi-arid regions and cumulative infiltration of rainwater on the surface is critical for veg-
etation conservation, reduction of soil erosion, and sustainable regional development [65]. 
As a typical semi-arid region, the SYR experiences water scarcity in the northwest and 
relatively abundant water resources and precipitation in the southeast (Figure 10d). This 
results in a decrease in NDVI from southeast to northwest in the SYR (Figure 10c). The 
average annual SC in the northwest of the SYR (Madoi, Qumarleb, and Chindu counties) 
estimated in this study was 982 t/(km2·a), which is lower than the overall average. This 
aligns with previous research [66] that used RUSLE to estimate the average annual SC 
(920 t/(km2·a)) in the SYR national park (located in Madoi, Qumarleb, and Chindu coun-
ties) from 2000 to 2015 (Table 8Error! Reference source not found.). It is important to note 
that differences in research methods and study scales can lead to variations in the estima-
tion of SC services. In this study, the average annual SC in the SYR from 2000 to 2020 was 
estimated as 2765 t/(km2·a), slightly higher than the average annual SC (2281 t/(km2·a)) in 
the upstream region of Yellow River reported in the previous study [38] for 2000–2019. 
This difference can be attributed to the inclusion of the SYR and some parts of the Loess 
Plateau in the study area. 

Figure 10. Spatial distribution of slope, LUC (2020), average NDVI (2000–2020) and precipitation
(2000–2020) in the SYR.

In contrast, the northwest of the SYR, characterized by high altitude and inland
location, exhibits relatively weak SC capacity due to natural conditions of water scarcity
and low vegetation cover. Research indicated that precipitation is an essential water
source in semi-arid regions and cumulative infiltration of rainwater on the surface is
critical for vegetation conservation, reduction of soil erosion, and sustainable regional
development [65]. As a typical semi-arid region, the SYR experiences water scarcity in
the northwest and relatively abundant water resources and precipitation in the southeast
(Figure 10d). This results in a decrease in NDVI from southeast to northwest in the SYR
(Figure 10c). The average annual SC in the northwest of the SYR (Madoi, Qumarleb, and
Chindu counties) estimated in this study was 982 t/(km2·a), which is lower than the overall
average. This aligns with previous research [66] that used RUSLE to estimate the average
annual SC (920 t/(km2·a)) in the SYR national park (located in Madoi, Qumarleb, and
Chindu counties) from 2000 to 2015 (Table 8). It is important to note that differences in
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research methods and study scales can lead to variations in the estimation of SC services.
In this study, the average annual SC in the SYR from 2000 to 2020 was estimated as
2765 t/(km2·a), slightly higher than the average annual SC (2281 t/(km2·a)) in the upstream
region of Yellow River reported in the previous study [38] for 2000–2019. This difference
can be attributed to the inclusion of the SYR and some parts of the Loess Plateau in the
study area.

Table 8. Comparison of research results.

Research area Method Research
Period

Average Annual
Total SC/(t/a)

Average Annual
Average

SC/(t/(km2·a))
This Study

Yellow river national park
(include Madoi, Qumarleb and

Chindu) [67]
RUSLE 2000–2015 —— 920 982 t/(km2·a)

Upper Yellow River region [38] RUSLE 2000–2019 —— 2281 2765 t/(km2·a)

QTP [20] RUSLE 2000–2015 12.07 × 109 3908 28.47 × 108 t/a and
2765 t/(km2·a).

4.2. Impact of Precipitation and NDVI on SC

Due to the slow temporal changes in the topography, land use type, and soil texture of
the SYR, the erosion factors resulting from these factors are considered to be temporally
invariant. Consequently, the most influential factors affecting SC are identified as precipita-
tion and NDVI. Given the sparse vegetation cover in many regions of the SYR, precipitation
emerges as the primary determinant of SC in these areas. For instance, the northwestern
part of the SYR where NDVI values can be below 0.2 (Figure 10c). Although there exist
slight fluctuations (+10% and −10%) under extreme climate scenarios (ECS and EES), their
extent remains limited. NDVI values at lower levels essentially have negligible effects on
SC. Consequently, precipitation becomes the dominant factor influencing SC in these low
NDVI regions. Figure 11 demonstrated a significant disparity in precipitation between the
ECS and NCS scenarios. Greater precipitation has a decreasing impact on SC in low NDVI
regions, leading to the observation that the SC under the ECS scenario, characterized by
relatively high NDVI levels, is lower than that under the NCS scenario due to the influence
of increased precipitation.
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The annual precipitation and NDVI are key factors influencing SC [14]. They exhibit
similar trends, with NDVI following the same trend annually as precipitation increases or
decreases, and SC also reflecting these changes (Figure 12). Previous research demonstrated
that SC function of ecosystem is closely related to vegetation condition, and suitable precip-
itation enhances the growth of alpine vegetation [21]. The promotion of alpine vegetation
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coverage expands the area covered by surface vegetation, effectively reducing the scouring
effect of precipitation on topsoil, thus maintaining regional SC capacity [68]. In regions
with high vegetation cover, dense vegetation canopies and plant dieback significantly
reduce the kinetic energy of precipitation, prolonging the time for precipitation to infiltrate
the soil, thereby providing a strong rainwater retaining capacity [69]. High vegetation
cover can mitigate soil erosion, and reduced soil erosion can promote vegetation growth,
creating a positive feedback loop that stabilizes ecosystem development [70]. The spatial
distribution pattern and change trend of NDVI in the SYR from 2000 to 2020 align with
the SC, indicating that enhancing vegetation coverage to a certain extent contributes to
regional SC enhancement.
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4.3. Multiple Factors Influence on SC

Geographical processes are influenced by a multitude of factors [71]. A previous
study revealed that the derivation and transformation of ecosystem services result from a
combined effects of diverse components [72]. From a comparison of the effects of single
factors and double factors (Table 6 and Figure 8), it is evident that the interaction between
double factors has a stronger explanatory ability of SC than individual factors alone.
Interaction analyses demonstrated that the interaction between precipitation with slope,
which dominates the spatiotemporal variability of SC in the SYR, is significantly more
influential than other factors. Related research indicated a positive correlation between
surface runoff and slope [15]. Surface runoff occurs when precipitation flows over the
ground, and areas with steeper slopes experience faster runoff rates, leading to a higher
probability of soil loss. Moreover, this study found that the interaction between NDVI
and slope contributes to explaining SC services. Vegetation cover plays a crucial role in
mitigating soil loss and surface runoff [14]. Vegetation reduces the erosive impact of rainfall
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on the surface and facilitates the infiltration of rainwater into the soil, thereby reducing
soil loss, particularly in areas with steep slopes [73]. Additionally, the interaction between
slope and DEM, and DEM and average annual precipitation, exhibits a greater explanatory
ability for spatial variability in SC. On one hand, areas with greater topographic relief
tend to maintain greater and longer slopes, resulting in higher kinetic energy of surface
runoff and greater sediment accumulation [74]. On the other hand, the high slope area in
the center of the SYR, situated at an altitude of approximately 4000 m, receives abundant
precipitation and water, and the favorable water and heat conditions promote vegetation
growth [75]. Consequently, these areas are characterized by high suitability for SC and
possess high SC value.

4.4. Recommendations for Future SC Measures

Comparing the results of SC estimation under the DDS (Figure 6), it is observed that
the regions with a decreased trend in SC in the future are predominantly located in the
grassland and bare land areas in the southeast and south of the SYR. Interestingly, these
areas are classified as high SC suitability zones, as revealed by the results presented in
Figure 9. This phenomenon, which leads to a decline in SC function in areas with high
SC suitability, is likely attributed to excessive precipitation and high soil moisture levels.
The southeast of the SYR belongs to the plateau sub-frigid zone with a humid monsoon
climate and the largest peat mire in China. Consequently, heavy precipitation leads to
regional water accumulation, while prolonged high soil moisture content contributes to
reduced vegetation cover [76], ultimately resulting in soil erosion. The National Park in
China is situated in the northwest of the SYR, characterized by low SC and belonging to the
non-suitable (N) zone of SC. This region, located at an altitude exceeding 4000 m, lies in the
continental hinterland and is less affected by the moisture brought by the warm currents
from the Indian and Pacific Oceans, resulting in a relatively arid climate [77]. Under the
NCS, SC services in the northwest of the SYR demonstrate both increasing and decreasing
trends, depending on the specific scenario. This can be predominantly attributed to the
strong influence of topographical and climatic factors on SC. The SC capacity is restricted
by low temperatures, limited water, and poor vegetation. Alpine regions experience limited
vegetation growth due to low temperatures [78], while water deficits lead to reduced soil
moisture content [71]. Concomitantly, reduced moisture availability negatively impacts
vegetation survival [79], thereby increasing the frequency of soil erosion. Conversely, suit-
able precipitation promotes the growth of alpine vegetation [76], which, in turn, enhances
the stabilizing effect of vegetation on the soil. Furthermore, the RUSLE model exhibits a
strongly correlation with precipitation, soil, topography, and vegetation data, with the rain-
fall erosion factor showing the strongest linear relationship. However, precipitation data
contains variability depending on computation methods and spatial resolution, which con-
tributes to the uncertainty in the SC estimation results. The implementation of precipitation
monitoring in the SYR provides some indication of regional SC measures.

5. Conclusions

This study evaluated the spatiotemporal characteristics of SC services in the SYR by
employing the RUSLE model, and the spatiotemporal evolutionary trends of SC service
and their driving factors were evaluated using trend analysis and geographical detector,
respectively. The research findings indicated that:

During 2000–2020, the spatial heterogeneity of SC services in the SYR was charac-
terized by the distribution of “gradually decreasing from Southeast to Northwest”, and
demonstrated a trend of “increasing, decreasing, and then increasing”, with more than 90%
of the area demonstrating an increasing trend. Under the DDS for 2021–2030, the variation
trend of SC services in the SYR is predominantly increasing, and its growth trend is, from
highest to lowest: NCS > ECS > EES.

Slope was the most significant factor contributing to spatial heterogeneity in SC
services, followed by average annual precipitation and NDVI, with the LCCI having the
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least influence. Under the DDS, the single factor drivers of slope and average annual
precipitation are in a fluctuating state, but still alternately dominate the spatial variability
of SC services in the SYR. Overall, the interaction between double variables was stronger
than the single factor explanatory ability, and the interaction of slope with average annual
precipitation and NDVI on the spatiotemporal heterogeneity of SC in the SYR had the
strongest explanatory ability.

The average value of SC services in the SYR reached the maximum when the NDVI,
average annual precipitation, DEM, and slope were 0.72–0.77, 763.40–928.07 mm, 3908–4111
m, and 44.86–56.08◦, respectively, including when the soil type was black felted soil and
the LCCI was 0.052–0.16%.

Through scenario simulation, this study achieved improved simulation results, provid-
ing insights into the driving factors behind SC changes and their spatiotemporal variations
under different development scenarios in the SYR, both historically and in the future. The
findings hold significant guidance for ecological and environmental management, and
sustainable development, in the SYR. Furthermore, the scenarios and methodologies em-
ployed in this research serve as valuable references for investigations in other study areas
and related disciplines.
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