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Abstract: As a significant symbol of human civilization advancement, earth construction not only
inherits traditional architectural culture but also enjoys worldwide popularity and widespread
usage throughout China due to its economic and environmentally friendly nature, as well as its
moisture absorption and heat storage advantages. Consequently, earth construction has garnered
considerable attention from international scholars. This paper compiles relevant data to review
the developmental trajectory of earth construction, while conducting an in-depth analysis of the
performance characteristics of earthen materials. Furthermore, it provides a comprehensive overview
of the impact of three modification methods on the mechanical and durability properties of earthen
materials, along with a discussion on the research concerning the thermal and moisture performance
of these materials. Simultaneously, discussions were held on the relevant research findings and
potential directions for the development of earthen materials. Finally, conclusions were drawn,
suggesting a comprehensive utilization of their thermal and moisture performance, emphasizing the
enhancement of their mechanical and durability performance. Additionally, attention was urged
towards the economic and ecological aspects during the construction and maintenance phases of earth
construction. These recommendations aim to facilitate the sustainable development and widespread
application of earthen materials in the future.

Keywords: earth construction; earthen materials; material modification; thermal and moisture
performance; mechanical property

1. Introduction

Earth construction, prevalent across various regions worldwide, stands as a signif-
icant component of traditional architecture [1]. It manifests in various forms, primarily
categorized as cave dwellings, adobe buildings, and rammed earth construction [2–4]. As a
traditional dwelling form, earth constructions possess multiple advantages. They capitalize
on local resources, allowing for swift and efficient construction processes with relatively
lower costs. Additionally, these constructions exhibit exceptional thermal performance, con-
tributing to reduced energy consumption during both construction and operation phases.
Meanwhile, the waste generated from earth constructions can be effectively recycled and
reused, aligning with contemporary pursuits of sustainability and ecological equilibrium.
Consequently, amid the escalating environmental and resource concerns, earth construc-
tions play a proactive role [5–10]. Statistics show that more than 1 billion people still
inhabit structures made from earthen materials around the world, a phenomenon that is
particularly pronounced in regions such as the Middle East, North Africa, and Central Asia.
The relatively slow development of these regions has contributed to earth construction
being the only viable option for housing for many people [11,12]. In the context of China,
earth construction finds concentrated manifestation within economically disadvantaged
rural locales, spanning the expanse of the Loess Plateau, Southwest China, East China, the
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elevated terrain of the Tibetan Plateau, Xinjiang, Central China, and the southern reaches of
the nation [13,14]. Despite misconceptions associating earth constructions with backward-
ness during the industrial civilization era, these structures, rooted in history, now exhibit
increasingly prominent advantages in the context of heightened ecological awareness and
emphasis on sustainable development [15,16].

However, traditional earthen materials, the primary component in earth construction,
mainly comprise untreated natural soil, also known as raw soil materials. They are typically
used in constructing walls, floors, and other architectural components. Furthermore, in road
construction and dam engineering, earthen materials are extensively utilized as roadbed
and embankment materials. They provide support and filling in roadbeds and embank-
ments, enhancing engineering stability and increasing load-bearing capacity [17–19]. In
contrast, conventional building materials, such as concrete, usually consist of cement, aggre-
gate, and sand, with the aggregate typically sourced from quarries, presenting significant
differences from earthen materials. The mechanical properties and durability of earthen
materials are relatively poor, often leading to issues like wall cracks, which adversely affect
the safety and thermal performance of earthen architectural structures. Consequently, the
widespread adoption of earth construction faces severe constraints [20,21]. At present,
a multitude of scholars from both international and domestic spheres are exerting their
full efforts to enhance the mechanical characteristics and endurance of earthen materials.
Through in-depth exploration of various modified materials, researchers have achieved a
series of noteworthy outcomes in this field. Meanwhile, as energy-efficient construction
gains increasing attention, experts in the field are progressively shifting their research focus
towards the thermal and moisture performance of earthen materials. This performance
has emerged as a focal point of considerable interest in recent years within the forefront of
research aiming to enhance earthen materials [22,23]. Figures 1 and 2 show the distribution
map of earth construction around the world and in China, where the highlighted areas
represent the distribution of earth construction.
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Hence, this paper offers a comprehensive overview of earth construction materials.
Firstly, it traces the historical development of earth constructions and thoroughly ana-
lyzes the performance characteristics of earthen materials. Subsequently, it highlights
the current state of research on earthen material modification, encompassing chemical
modification, component optimization, and composite modification methods employed by
scholars globally, aimed at enhancing the mechanical and durability properties of earthen
materials. Lastly, this paper presents an overview of the thermal and moisture perfor-
mance of earthen materials, offering valuable reference points for future research and
development endeavors.
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2. Development History of Earth Construction
2.1. Ancient and Glorious History

Earth constructions symbolize a pivotal characteristic of humanity’s transition from
primitive times to civilization [18,26]. As an original architectural form, the history of earth
constructions is deeply rooted [27]. The development of earth constructions can be cate-
gorized into three distinct stages: subterranean structures (such as cave dwellings and pit
houses), rammed earth systems, and adobe systems. Among these, one of the earliest forms
was subterranean structures. Even in the Stone Age, ancient communities constructed
semi-subterranean dwellings or pit houses using locally sourced soil and natural resources.
These dwellings were covered with soil, forming subterranean structures. Archaeological
sites from cultures like Majiayao, Peiligang, and Dadiwan, dating back approximately
7000 years, revealed circular and square semi-subterranean structures, showcasing the
defining features of this construction method [28]. These early earth constructions pro-
vided fundamental living and shelter needs, emphasizing simplicity and integration with
the natural environment. With the advancement of civilization, subterranean structures
gradually evolved into rammed earth structures. During the Roman era, rammed earth
techniques were extensively employed, supported by historical records from that time. The
Roman historian Pliny recorded in “Natural History” that rammed earth techniques were
in use during the first century BC in ancient Rome [29]. To this day, remnants of structures
constructed with rammed earth during the time of Hannibal exist in Spain, including
watchtowers and ridge turrets. These ancient constructions showcase human mastery and
application of rammed earth techniques. Adobe systems represent a significant phase
in the development of earth constructions due to their exceptional insulation properties,
environmental adaptability, and relatively straightforward construction processes. The
term “adobe” originates from the Egyptian word for “mud,” translated as “at-tob” in Arabic
and evolved into “adobe” in Spanish [30]. Adobe systems were extensively utilized in
places like ancient Egypt, establishing them as a crucial form of earth construction. Adobe
structures not only met human dependency on the natural environment but also achieved
a certain level of aesthetic appeal. In many traditional regions such as Asia, Africa, and the
American Southwest, adobe houses have been used consistently for hundreds of years [8].
In the developmental history of earth construction, various commonly used techniques for
earthen materials have emerged. These techniques include fiber reinforcement, which in-
volves adding local animal or plant fibers to enhance the material’s crack resistance [31,32].
Additionally, there is the preparation of earthen-based composite materials, involving the
addition of substances like lime, cement, and gypsum to enhance the material’s characteris-
tics [33,34]. Another technique involves the use of binders such as natural resins and starch
to strengthen soil structures [35,36]. These techniques have played pivotal roles in different
historical periods and regions, continually evolving with technological advancements to
meet diverse environmental and architectural requirements.
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2.2. Challenges Posed by Industrialization

The Industrial Revolution marked a significant turning point in human history, pro-
foundly impacting the development of earth constructions. In 18th-century Britain, the
Industrial Revolution sparked a wave of extensive industrial production and technologi-
cal innovation, significantly propelling the processes of urbanization and modernization.
During this era, earth constructions encountered unprecedented challenges and trans-
formations. Firstly, the Industrial Revolution introduced new building materials and
technologies, such as steel, cast iron, and concrete, offering higher strength and durabil-
ity. These materials could meet the rapidly growing demands of urban construction at
the time [37]. In comparison, the soil and natural materials used in earth construction
have limitations in terms of structural strength and resistance to wind and seismic forces,
making it challenging to compete with industrialized construction methods. Additionally,
the Industrial Revolution brought about urbanization, with a significant population shift
from rural to urban areas, demanding extensive residential and infrastructure development.
The traditional construction methods and manual labor involved in earth construction
could not meet the demands for large-scale efficient construction, whereas industrialized
building techniques offered quicker standardized solutions. Consequently, driven by the
Industrial Revolution, earth construction gradually became marginalized and deemed an
outdated and backward architectural form [38,39]. Furthermore, the Industrial Revolu-
tion introduced new concepts and value systems, with the emergence of the modernist
architectural movement in the early 20th century. Modernism emphasized functionality
and technological progress, advocating for the use of industrially produced new materials
and technologies. However, earth construction relies on natural materials and traditional
construction techniques, emphasizing integration with the natural environment and sus-
tainability. As a result, earth construction stands in contrast to the ideals of modernism,
perceived as a symbol of tradition and conservatism.

2.3. Revival in the Era of Ecological Civilization

Amid rapid urbanization, excessive cement and reinforced concrete structures gave
rise to urban heat island effects and environmental degradation. Gradually, people be-
gan to recognize that environmental protection and economic development should not
be divorced, as such separation would lead to catastrophic consequences for the planet
and human society [40]. In this social context, the concept of sustainable development
emerged and gained widespread traction, prompting a reevaluation of earth constructions
and an acknowledgment of their potential in environmental conservation and sustainability.
Earth constructions, with their excellent insulation and moisture-regulation capabilities,
contribute to improving indoor and outdoor temperature and humidity conditions, mit-
igating urban heat island effects, and promoting urban ecological balance. Today, as the
era of ecological civilization dawns, the resurgence of earth constructions has taken on
an almost unavoidable trajectory. Governments, scholars, and designers have intensified
their research and promotional endeavors related to earth constructions. They have in-
troduced corresponding standards and guidelines while fostering their integration into
urban planning and architectural design practices. Several regions are presently reviving
traditional construction methods to investigate the integration of earth constructions with
contemporary lifestyle requirements, thereby pioneering advancements in sustainable ar-
chitecture. Measures such as improving earthen materials, utilizing advanced compaction
equipment and molds to produce high-quality adobe blocks, and applying new coatings
and protective layers to enhance weather resistance have significantly elevated the quality
and performance of earth constructions. Additionally, digital technology and advanced
modeling tools have made the design and construction of earth constructions more precise
and efficient. In developed nations such as France and the United States, earth construc-
tions have found extensive application across diverse building typologies, encompassing
both private residences and public structures [41]. Due to their alignment with the natural
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environment and intrinsic sustainability, earth constructions emerge as an optimal selection
in the quest for a natural equilibrium and ecological harmony.

In summation, the developmental history of earth construction dates back to primitive
societies, representing humanity’s adaptation to the natural environment and the culmina-
tion of wisdom. It also showcases diverse architectural styles and cultural heritage. Despite
being marginalized during the wave of modern industrialization, with the arrival of the
ecological civilization era, earth construction is undergoing a revival. Driven by the forces
of innovation and progress, earth constructions hold the potential to assume a pivotal role
in the forthcoming landscape of architectural evolution, thereby making a substantial and
affirmative contribution to the sustainable advancement of human society.

3. Performance Characteristics of Earth Construction Materials
3.1. Economy and Environmental Protection

The cost of earthen materials is significantly lower than conventional building ma-
terials such as fired bricks and concrete. Earthen materials derive directly from the sur-
rounding natural environment, thereby obviating the necessity for costly firing procedures
and energy-intensive manufacturing stages. Research indicates that the cost of the main
structural materials of earth construction can be reduced by over 50% compared with con-
ventional materials when considering raw materials, processing, and transportation [42,43].
A typical example is the “Mao Si Ecological Experimental Elementary School” project in
Qingyang, Gansu Province, as shown in Figure 3. Initiated in 2004, the project cost only a
little over CNY 600 per square meter, which is only two-thirds of the cost of equivalent seis-
mic and insulating conventional brick–concrete houses [44,45]. Moreover, Wang et al. [46],
based on structural models and architectural forms of representative earth residential
structures, conducted an economic cost analysis of such dwellings, encompassing material
expenses, labor costs, and mechanical charges. Through their calculations, the cost of con-
structing an earth structure residence amounted to CNY 63,057.00, and after incorporating
seismic-resistant measures, the cost increased to CNY 67,350.64, significantly lower than the
cost of masonry and concrete buildings. This analysis underscores the distinct economic
advantage of traditional earthen materials over conventional construction materials.
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The environmental performance of earthen materials is another notable characteristic.
Earthen materials require no firing or chemical processing, resulting in energy consumption
and carbon emissions that are, on average, only 6% of those of concrete and 3% of ordinary
fired bricks [47]. Meanwhile, earthen materials possess excellent biodegradability [48].
After the demolition of a structure made from earthen materials, the materials can return to
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the land or be reused in constructing new buildings. Moreover, earthen materials interact
with the natural environment, aiding in maintaining ecological balance. As depicted in
Figure 4, the wall of an earth construction, after serving its purpose, can transform into fer-
tile soil that reintegrates into the ecological cycle. This process is akin to nitrogen fertilizers,
facilitating interactions with ions such as oxygen and nitrogen in the air, thereby enhancing
soil fertility [49]. Certain comparative studies on carbon emissions [50] have additionally
highlighted that earthen materials exhibit the lowest carbon emissions, underscoring their
remarkable environmental performance, as illustrated in Figure 5. Against the backdrop of
today’s emphasis on sustainable development, earthen materials, serving as an eco-friendly
and cost-effective architectural option, harbor substantial potential and promotional value.
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3.2. Moisture Absorption and Heat Storage

Earthen materials are often referred to as “breathing” materials due to their unique
characteristics, making them a rare porous heavy material with high moisture-absorbing
capacity. Extensive research [53–56] has indicated that earthen materials, utilized as a con-
struction material, offer substantial capabilities in regulating indoor thermal and humidity
conditions. According to humidity absorption experiments conducted by the Building
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Research Experimental Center of the University of Kassel in Germany [57], at specific tem-
peratures, and increasing relative humidity from 50% to 80%, the moisture absorption of
concrete and fired bricks reaches saturation within two days. In contrast, earthen materials
consistently maintain higher moisture absorption. At 16 days, the moisture absorbed by
earth is 15 times that of concrete and 10 times that of fired bricks, as shown in Figure 6a,b.
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Studies also demonstrate that soil blocks can absorb 10 times the weight of moisture
compared with ceramic tiles, as illustrated in Figure 6c. This is due to the equilibrium
maintained between the relative humidity of the external environment and the relative
humidity within the wall pores of earth structures [60,61]. Hence, the remarkable moisture
absorption capability of earthen materials can effectively balance day–night indoor tem-
peratures, enabling dehumidification in summer and insulation in winter, and creating a
comfortable thermal and humidity environment.

Owing to its porous characteristics, the earthen wall becomes a heavy material with rel-
atively balanced insulation and heat storage capabilities, as illustrated in Figure 7 [62–64].
This characteristic endows the earthen wall with the function of a “heat reservoir” in
maintaining indoor temperatures. During the day, when ambient temperatures exceed the
temperature of the earthen wall, it absorbs and stores a substantial amount of heat, prevent-
ing excessively high indoor temperatures. At night, as ambient temperatures decrease, the
earthen wall gradually releases the stored heat from the day, preventing excessively low
indoor temperatures. This unique heat performance of earthen walls contributes to energy
conservation, providing a comfortable living environment and reducing the amplitude of
indoor temperature fluctuations. This advantage enables earth constructions to effectively
maintain indoor temperature stability under various climate conditions, aligning with the
concepts of today’s sustainable architecture.
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3.3. Mechanics and Durability Performance

The mechanical and durability shortcomings of earthen materials have been a persis-
tent limitation in their development and application. Hence, residential earth constructions
for civilian use typically do not exceed 6 m in height. Several research data have highlighted
these issues. According to a national survey on rural dilapidated houses conducted by the
Ministry of Housing and Urban-Rural Development of China from 2009 to 2011, the dilap-
idated house rate in rural areas remained around 30%. In regions such as the northwest
and southwest, this high rate was mainly attributed to earth constructions. Compressive
strength is an important parameter for evaluating the mechanical properties of earthen
materials. However, due to variations in traditional earth construction techniques in China,
the compressive strength of walls built using different techniques can differ significantly.
Based on recent research by domestic and international scholars [65–76], the compressive
strength of traditional rammed earth walls generally ranges from 0.3 MPa to 1.8 MPa, while
that of traditional adobe bricks is around 1–1.2 MPa. Compared with conventional wall
materials such as sintered brick and concrete, there is still a large gap in the compressive
strength of raw soil materials, as shown in Figure 8.
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Furthermore, the durability performance of earthen walls is also an inherent issue. Bui
et al. [77] assessed the durability performance of 104 stabilized and unstabilized rammed
earth blocks exposed to natural weathering conditions for 20 years, as shown in Figure 9.
The findings indicated that unstabilized rammed earth blocks exhibited the least favorable
durability performance. Durability concerns of earthen walls manifest through various
factors, encompassing diminished strength when exposed to moisture, susceptibility to
shrinkage cracks, vulnerability to wind erosion and flaking, along with alkali corrosion
observed at the base of walls. Despite the good moisture-absorbing property of earthen
walls, their strength can be affected when exposed to water. This type of damage often
occurs due to the effects of liquid water on the wall’s surface, which causes weakening of
the wall’s strength through wetting and drying cycles and erosion [78,79].
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4. Research Status of Modification of Earthen Materials

Traditional earth constructions have been impacted by external environmental factors
such as rainwater erosion and freeze–thaw cycles, resulting in reduced mechanical and
durability properties. This has led to issues like wall cracking, significantly impeding both
the structural safety and thermal performance of earth constructions, thereby restricting
their widespread application [80,81]. Therefore, research into the modification of earthen
materials holds great significance for the development of earth constructions. Scholars both
domestically and internationally have extensively explored various modification methods
for earthen materials, including component optimization and chemical and composite
modifications. The goal is to develop a range of new environmentally friendly earthen
materials to address the deficiencies in strength and durability of traditional earthen
materials [82–84]. Research into soil modification began earlier abroad, particularly in the
field of soil stabilization, dating back to the early 20th century [85]. In China, research on the
modification of earthen materials emerged in the 1980s, primarily focusing on applications
in highway and railway subgrades, hydraulic engineering, and other areas. Initial research
primarily concentrated on the modification of cohesive soils, yet substantial strides have
been achieved in recent years [86].

4.1. Chemical Modification

Researchers from around the world have conducted extensive chemical modification
studies on earthen materials. These methods involve combining chemically modified
materials, either in a singular or mixed form, with earthen materials to create new products
through chemical reactions, thereby enhancing the mechanical properties and durability of
earthen materials [25]. Chemically modified materials commonly fall into two main groups:
traditional binder materials like lime, cement, and gypsum [87], and industrial byproducts
such as slag, fly ash, phosphogypsum, and rice husk ash [88].
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4.1.1. Impact of Chemical Modification on Strength

Lime, as one of the oldest cementitious materials, has been widely used for the
modification of earthen materials, with the historical heritage of European architecture
demonstrating its effectiveness [89–92]. Several studies have indicated that adding lime to
soil increases the concentrations of Ca2+ and OH−1 ions due to lime’s hydration reactions.
This prompts flocculation of soil particles, affecting soil plasticity and raising the pH of
the soil. It also results in the dissolution of silicon dioxide and aluminum oxide in the
soil, which then react with calcium to form calcium silicate (or aluminate) hydrates. These
compounds act as binders, significantly enhancing the mechanical properties of earth
constructions [93–96]. As early as 1802, a mixture of lime, clay, and stones known as
“terre pise” was used in France, which laid the foundation for France’s leading role in
earthen material research [97,98]. Yang [99] and Ke [100] found that lime, as a modifier,
yielded positive effects. With increasing curing time, the influence of lime becomes more
evident, gradually raising the compressive strength. However, excessive use of lime is not
necessarily better. Ke [100] demonstrated that the optimal improvement occurred when
lime content reached 10%, and further increases did not significantly enhance strength.
Similarly, Ávila et al. [101] indicated that optimal compressive strength and stiffness levels
were achieved with a lime content of 12% during the modification of earth in southern
Spain. These studies showcased the beneficial effects of lime modification in enhancing the
performance of earth constructions.

Gypsum, due to its rapid setting and hardening properties, has been widely used in the
modification of earthen materials, enabling quick solidification, and achieving high early
strength. This aids in faster demolding and increased construction efficiency. Yin [102] and
Isik et al. [103] observed that gypsum can accelerate the setting time of earthen materials
and enhance their strength. Specifically, when gypsum is mixed with water, it rapidly forms
dihydrate gypsum crystals, creating an overall framework that provides early strength.
However, similar to lime modification, relying solely on gypsum modification also has
limitations. Excessive gypsum content might not significantly enhance strength and could
even increase costs, making it challenging to meet the requirements of modern construction.
Chen [104] found that the optimal mechanical performance of earthen specimens was
achieved when the gypsum content was 20%, with further increases showing minimal
impact on compressive strength.

Currently, cement is the most important additive to improve the properties of earthen
materials, and the use of cement modification can effectively reduce the shrinkage and
cracking problem and improve the strength of earthen materials. According to existing
research, the cement content in modification usually ranges from 4% to 20% [105–109].
Reddy et al. [110] studied the influence of different cement content on the compressive
strength of earthen materials. Particularly, when the cement content increased from 5%
to 12%, a significant increase in strength was observed. Additionally, Liu et al. [111]
proposed an innovative method, that is, using metakaolin as the main raw material to
prepare earth–polymer cement for modification. The results showed that after modification,
the compressive strength of earthen materials reached 18 MPa within 28 days, and the
softening coefficient was as high as 0.9. This achievement indicated the promising potential
of this novel modification method in meeting the performance requirements of modern
wall materials.

Figure 10 collects experimental test data related to the compressive strength of earthen
materials modified by various types of cementitious materials. From the graph, it is evident
that, with an increase in the content of cementitious materials, there is an upward trend in
the compressive strength of earthen materials. Noteworthy is the fact that cement exhibits
a more pronounced impact on enhancing the strength of earthen materials compared with
traditional binders such as lime and gypsum, with lime’s modifying effect ranking second.
However, relying solely on cement addition is not a perfect solution. Under the situation
of pure cement modification, the primary hydration product is fibrous calcium silicate
hydrate (CSH). While this adheres to the pores of the soil, providing the modified soil with
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some strength, it does not sufficiently fill the soil pores, limiting the further enhancement
of the soil’s strength. Moreover, excessive cement content exceeding 20% can diminish soil
fertility essential for agriculture, hindering waste soil reuse. From an economic standpoint,
simply increasing cement content to enhance soil strength is not a wise approach.
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Consequently, in recent years, scholars have actively explored the composite blending
of traditional binder materials with industrial byproducts like slag, fly ash, and phospho-
gypsum to enhance the performance of earthen materials. This approach yields substantial
economic and societal benefits. Figure 11 compares the effects of single and compound
blending methods on the compressive strength of earthen materials. It is noteworthy that
the composite blending method significantly improves the strength of earthen materials.
Liu et al. [115] indicated that the strength of modified earthen materials could increase by
3.6 times by adding phosphogypsum alongside a single addition of 10% cement. However,
the strength enhancement effect from a single addition of 20% cement was slightly inferior.
Nevertheless, some studies have indicated that excessive industrial byproduct content
could lead to strength reduction. For example, Chen et al. [116] found that adding 5%
phosphogypsum on the basis of 10% cement content resulted in a 49% increase in uncon-
fined compressive strength at 28 days. However, beyond 5% phosphogypsum content, the
compressive strength of the modified earth began to decrease. Islam et al. [117] also found
that incorporating fly ash into cement can enhance strength, but beyond a certain threshold,
strength begins to decline. This phenomenon is attributed to excessive industrial byprod-
uct content possibly reducing particle-to-particle bonding and binding effects, leading to
increased porosity and affecting strength.
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Additionally, scholars have explored utilizing industrial byproducts as aluminosilicate
materials and employing alkali activators to enhance the mechanical properties of earthen
materials. Du et al. [119] observed that, under the same binder content, the unconfined
compressive strength of earth modified by alkali-activated slag increased by over 2 to
3.5 times compared with cement-modified earth samples. Singhi et al. [120] documented
that, under similar binding conditions, the 28-day strength of earth modified with alkali-
activated slag surpassed that of cement-modified earth by over 600%. These findings
demonstrated that employing industrial byproducts along with alkali activation techniques
can significantly enhance the mechanical properties of earthen materials, offering potential
avenues for the development of sustainable construction materials.

4.1.2. Impact of Chemical Modification on Durability

Traditional earthen materials often display fragility and susceptibility to structural
damage when exposed to rainwater erosion, particularly concerning their water resistance.
To enhance this property, a common approach involves stabilizing the soil by adding
lime or cement at a content equivalent to between 5% and 12% of the dry mass [17]. For
instance, the treatment with cement stabilizer significantly reduces the water absorption and
erosion rate of earthen materials, as demonstrated by Kariyawasam and Jayansinghe [121].
However, Shang et al. [122] and Wang et al. [123] suggested that adding gypsum alone
does not effectively improve the water resistance of earthen materials. This phenomenon
can be explained by gypsum being an air-hardening cementitious material that rapidly
undergoes hydration reactions upon contact with water, resulting in the formation of
a gypsum slurry. Conversely, adding cement, finely ground slag, or a mixture of lime
and cement can significantly enhance the water resistance of earthen materials. This is
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because, in systems where cement, finely ground slag, fly ash, and hydrated lime are added,
interactions occur between gypsum and hydrated lime or cement components, resulting
in a more stable structure. Nurhayat Degirment et al. [124,125] proposed the addition of
natural gypsum and phosphogypsum to earthen materials, and their research found that
the water resistance of specimens was moderately improved, providing new insights for
the engineering application of earthen materials.

Freeze–thaw damage is another significant factor contributing to earth degradation,
particularly prevalent in regions with significant temperature fluctuations. Soils are suscep-
tible to damage through repeated cycles of freezing and thawing. Figure 12 compares the
effects of various modification materials on the freeze–thaw resistance of earthen materials.
To mitigate this type of damage, Zhang et al. [126] added modification materials such as
cement and slag-blended materials, which reduced the rate of compressive strength loss
of earthen materials after freeze–thaw cycles, as shown in Figure 12a. This modification
creates a stable internal structure, reduces internally generated stress, and subsequently re-
duces crack formation. This results in the material maintaining good compressive strength
after freeze–thaw cycles. Assia et al. [127] found that the compressive strength loss rate
of stabilized soil using white cement and industrial lime was negligible, as shown in
Figure 12c. This indicates the excellent performance of this modification material in resist-
ing freeze–thaw damage.
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To sum up, scholars worldwide have opted for a diverse array of modification materi-
als and have conducted extensive experimental research to develop various modification
techniques and formulations. Among these modification methods, chemical additives
such as lime and cement are deemed primary modifiers [22]. Through these modification
approaches, significant enhancements have been achieved in the mechanical properties,
durability, and other pertinent physical attributes of earthen materials. These extensive
research outcomes furnish valuable references for practical engineering applications and
thereby open new possibilities for the application of earthen materials.

4.2. Component Optimization

Component optimization primarily involves adjusting the composition and structure
of earthen materials. This method encompasses two main approaches: the addition of ag-
gregate to alter the particle composition and gradation, thereby controlling the compressive
strength of earthen materials, and the introduction of fiber materials into earthen substances.
This utilizes the binding force between fibers and soil to restrain the soil and consequently
enhance the strength and deformation capabilities of the earthen materials [130–132].

4.2.1. Effect of Component Optimization on Strength

Aggregates, including stones and sand, are widely used in component optimization.
A typical example is the Fujian Tulou in China, where traces of manually added stones
of different sizes are visible on the walls. Such modification aims to utilize the particle
grading characteristics of aggregates to achieve closer compaction of the earth, thereby
enhancing the overall strength, seismic performance, and durability of the soil structure.
However, when using aggregates to improve the strength of earthen materials, it is im-
portant to consider the selection, content, and distribution of aggregates, as they play a
pivotal role in strength enhancement. Optimal strength results can be achieved by judi-
ciously choosing and incorporating appropriate amounts of aggregates. For example, Wang
et al. [133] discovered that incorporating gravel into earthen materials can maintain the
overall integrity and cohesion of the specimens at a moderate dosage. However, excessive
gravel content might compromise cohesion and integrity, consequently leading to reduced
strength. Additionally, Liu et al. [134] discovered that adding sand and gravel can enhance
the compressive performance and deformability of earth, but the total content of sand and
gravel should not exceed 32% of the total mass of the soil.

Another common component optimization method involves adding fiber materials,
including plant fibers and synthetic fibers. Plant fibers include jute, sisal, straw, rice straw,
weeds, pine needles, hemp, bamboo fibers, etc., while synthetic fibers encompass waste
tire textile fibers, glass fibers, polyvinyl alcohol fibers, and polypropylene fibers, among
others. Numerous studies show that the presence of fibers increases the surface area
of the soil matrix, providing more interfaces for interaction between the soil and fibers,
thereby enhancing compressive strength [135–137]. Recent trends indicate an upsurge
in utilizing synthetic fibers for modifying earthen materials, demonstrating their efficacy
in enhancing mechanical performance [138–140]. For instance, Kim et al. from South
Korea [141] used discarded polyethylene fishing nets to modify lightweight soil. The
results showed that adding an appropriate amount of discarded fishing nets significantly
increased the unconfined compressive strength of the lightweight soil, with the maximum
strength enhancement observed at a content of around 0.25%. This effect was attributed to
the increased bonding strength between the fibers and the soil matrix and the friction at the
fiber–soil interface. Another study by Winsley B et al. [142] involved the use of glass fibers
to modify earthen materials, and the results demonstrated that the addition of glass fibers
could improve the strength and crack resistance of the earthen materials. However, when
compared with synthetic fibers, natural fibers offer a more pronounced effect in improving
the strength of earth. This can be attributed to the higher surface roughness of natural fibers
compared with smoother synthetic counterparts [143], as depicted in Figure 13. Figure 14
presents a comparative analysis of the impact of various fiber additions on compressive
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strength, vividly illustrating the superiority of jute fibers in enhancing the compressive
strength of earthen materials, while discarded rubber showcases the least effective outcome.
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4.2.2. Effect of Component Optimization on Deformability

Numerous studies have indicated that employing fiber-modified earthen materials can
not only enhance their strength but can also effectively augment their deformability [143,151].
These enhancements arise from the bridging action of fibers when cracks form, redirecting
loads to the cracks and impeding their propagation, thus ensuring material ductility [152].
Figure 15 presents the influence of different natural and synthetic fibers on the ductility
of earthen materials, clearly indicating the notable effectiveness of discarded tire textile
fibers in enhancing ductility. This phenomenon is attributed to the twisting of rubber
sheets and fibers, resulting in the formation of grooves and protrusions on the fiber sur-
face. Consequently, this surface texture enhances the interaction between the soil and
fibers [153]. Additionally, studies by Prabakar J, Pullen QM, and others [154–156] involved
the modification of earth with plant fibers such as sisal, corn husks, and coconut fibers,
and the analysis revealed that fibers inhibited crack propagation before specimen cracking,
resulting in good ductility. Yang et al. [157] proposed adding bamboo reinforcement to wall
structures and placing wooden pads under rafters to enhance overall mechanical perfor-
mance. The results showed that adding bamboo reinforcement reduced the tensile stress of
the soil, slowed down soil deformation, and thus improved overall performance. Pitthaya
et al. [158] investigated the effects of seven different fibers as modification materials on the
flexural performance of compacted cement-fibered sand (CCFS) at varying content levels
(0.5%, 1%, 1.5%, and 2%), while analyzing the interaction mechanism between fibers and
cement–sand interfaces through microanalysis. The results showed that 50 mm steel fibers
exhibited the best flexural performance, while relatively short 12 mm polypropylene fibers
exhibited poorer flexural performance. M. Mar Barbero-Barrera et al. from Spain [159]
studied the effect of using three types of pine needles commonly found on the Iberian
Peninsula as plant fibers added to adobe. The results demonstrated that these plant fibers
not only controlled crack formation during drying but also provided good resistance and
deformability to the adobe.
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In summary, component optimization shows positive effects on earthen materials.
While its effects might not be as immediately noticeable as those of chemical modification,
the long-term benefits and environmentally friendly nature of component optimization
make it a highly regarded improvement choice for enhancing the performance of earthen
materials. This trend not only reflects the pursuit of more sustainable and environmen-
tally friendly building materials but also brings new opportunities and prospects for the
application of component optimization methods in both academic and practical fields.
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4.3. Composite Modification

To fully enhance the performance of earthen materials, researchers often use com-
posite modification in practical research and applications, combining both component
optimization and chemical modification methods. This approach is realized through di-
verse combinations, including “inorganic binder + organic fiber,” “inorganic binder +
modifier,” and “inorganic binder + organic fiber + modifier,” among other variations [25].

Zhang et al. [160] used cement, lime, sand, and rice straw as modification admixtures
to conduct compression tests on 120 samples of earth and modified earth. The results
showed that the composite modification significantly improved the compressive strength
and ductility of earthen materials, and lime was not suitable to be added to the soil as
an additive alone. In a similar study, Kong et al. [161] employed native soil from the
Chongqing region as the base material and utilized rice straw and slag as modification
materials to create various proportions of earthen specimens. The study revealed that
adding an appropriate amount of rice straw and slag both effectively enhanced the strength
of earth. Notably, the chemical modification effect of slag outperformed the component
optimization effect of rice straw. Li et al. [162] introduced modification materials such
as hay reinforcement, fly ash, and cement into earth. Through orthogonal experiments
and other methods, they systematically studied the variation of block strength under
different dosages of each modification material and proposed the optimal mix design for
modified earthen materials. Gomes, M.I. et al. [163] undertook experimental investigations
employing binding agents (lime, cement) and plant fibers (hemp, flax) as soil modification
agents. The results of the tests revealed that the inclusion of fibers exhibited favorable
adhesion to the soil, mitigating crack propagation and thereby enhancing its mechanical
attributes. Nevertheless, the introduction of fibers resulted in a decelerated drying process
of the mortar, potentially posing a detrimental effect on the enduring durability of the earth
structure. Shen et al. [164] employed desulfurized gypsum, lime, fly ash, and plant fibers
as supplementary materials for modification experiments. They investigated the impact
of these admixtures on the strength and durability of earthen materials and conducted an
analysis of the micro-mechanisms of earthen materials using scanning electron microscopy.
Their findings indicated that alterations in pore structure were the underlying cause for the
improved shrinkage performance of earthen materials. Additionally, they identified the
reinforcement of clay bonding strength as the fundamental factor behind the enhancement
of both strength and erosion resistance. Additionally, the reinforcement of clay bonding
strength contributed to improved strength and erosion resistance. Liu et al. [134] found
a notable enhancement in compressive strength when combining cement and gravel,
emphasizing the advantage of composite mixing for earthen material modification.

To summarize, given the constraints of singular modification approaches, composite
modification has gained widespread acceptance in practical applications. This approach
integrates the benefits of both chemical modification and component optimization, optimiz-
ing the pore structure of earthen materials and enhancing the bonding between particles,
thereby improving the mechanical and durability properties of the material. This meets the
performance requirements of modern construction for earthen materials.

5. Research on Thermal and Moisture Performance

Modern architecture demands not only favorable mechanical properties in building
materials but also excellent thermal and moisture performance in accordance with green
building principles. Ignoring the thermal and moisture characteristics and focusing only on
the mechanical properties and durability of earthen materials will greatly limit the further
development and application of these materials [165]. Thus, to ensure the enhanced utility
of earthen materials, there is a pressing need for intensified research into their thermal and
moisture characteristics.
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5.1. Thermal Performance Research

In practical applications, modifications are frequently employed to enhance the me-
chanical robustness and durability of earthen materials. However, such modifications
can exert a notable influence on the thermal behavior of earthen materials. Certain re-
searchers [146,166–169] have investigated the thermal attributes of modified earthen ma-
terials through the incorporation of fibers like barley straw, Hibiscus cannabinus fibers,
millet waste fibers, and date palm fibers. The outcomes reveal that an augmentation in
both fiber quantity and length results in a marked reduction in the thermal conductivity
of the modified earthen materials, as illustrated in Figure 16. This decline is attributed to
the presence of fibers, which yield a diminished bulk density and an augmented presence
of air voids, thereby curtailing heat conduction. Thus, fiber-based modification holds the
potential to heighten the insulation efficacy of earthen materials. Conversely, contrary
results reported by certain researchers [170–172] indicate that the incorporation of cement
and other cementitious materials leads to adverse effects on the thermal performance of
earthen materials. The hydration products of cement tend to occupy void spaces within
the earth, resulting in a reduction in porosity and subsequently leading to increased heat
conduction. Consequently, an increase in cement content will result in a higher thermal
conductivity of earthen materials, consequently reducing their insulation performance.
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Apart from modified materials, scholars have also explored the impact of factors like
bulk density, moisture content, and mineral composition on the thermal performance of
earthen materials. Bulk density, as a key parameter, significantly affects the thermal con-
ductivity of earthen materials. Lower bulk density observed by Mansour and Liu [173,174]
generally translates to higher porosity and increased air voids, reducing heat conduction
pathways and enhancing insulation performance. Hall and Tang [175,176] studied the
thermal conductivity of compressed earth bricks and found that higher moisture content in-
creased the material’s thermal conductivity. Water has relatively high thermal conductivity,
so when there is more moisture in the material, heat conduction increases, lowering its in-
sulation performance. Apart from bulk density and moisture content, mineral composition
has also been shown to play a crucial role in the thermal performance of earthen materials.
Liuzzi and Cagnon [177,178] compared the thermal conductivity of bricks from different
regions and found that differences in mineral composition had a significant impact on
the thermal conductivity of the bricks. Earthen materials with high thermally conductive
minerals (such as iron and aluminum) have higher thermal conductivity because these min-
erals are more effective at transferring heat, enhancing the overall heat conduction capacity.
Conversely, earthen materials containing low thermally conductive minerals (such as silica
and quartz) exhibit lower thermal conductivity due to their poor heat transfer capacity.

5.2. Moisture Performance Research

Relative to the thermal performance of earthen materials, research on their moisture
performance remains relatively limited both domestically and internationally. Ashour
and Taallah [179,180] highlighted that the introduction of fibers into earth tends to raise
its equilibrium moisture content, suggesting that modified earthen materials with fibers
possess higher moisture absorption capacities. In contrast, the incorporation of cement,
lime, gypsum, and other cementitious materials reduces the equilibrium moisture content
of earthen materials. This phenomenon can be explained by the fact that the presence
of fibers increases the material’s pore space, enhancing its moisture absorption capacity.
On the other hand, cementitious materials fill the pore space in earth, thereby reducing
its moisture absorption capacity. Shang et al. [181] similarly identified that the equilib-
rium moisture content of unmodified earthen materials is considerably higher than that
of earthen materials modified with cementitious substances. This observation implies
that earthen materials inherently possess exceptional moisture absorption and desorption
characteristics, which tend to diminish following modification. Gypsum-modified earthen
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materials excel in terms of equilibrium moisture content, closely trailed by lime-modified
earthen materials. Xia et al. [182] noted that under isothermal conditions with a relative
humidity of 52.89%, the equilibrium moisture content of modified earthen wall materials
notably increases with higher cement content. Conversely, with increased lime, fly ash, and
moisture content, the equilibrium moisture content displays a trend of initially decreasing
and subsequently increasing. Hu et al. [183] explored the use of steel slag from iron and
steel plants as modified admixtures, uncovering that such additives not only improved
mechanical properties and durability but also maintained micropore capillary effects, re-
sulting in superior humidity regulation. Additionally, Saidi et al. [170] studied the moisture
adsorption isotherms of compressed earth bricks with different modifiers and found that
the addition of cement or lime reduces the water vapor permeability of earthen materials.

In addition to studying the influence of modified materials on the moisture perfor-
mance of earthen materials, some scholars have explored the effects of density, capillary
action, and environmental conditions on this aspect. McGregor et al. [184] studied the
moisture adsorption isotherms of compressed earth bricks with different modifiers and
found that the addition of cement or lime reduced the water vapor permeability of earthen
materials. Additionally, Zhang et al. [185] observed that, with increasing relative humidity,
the dry pores on the surface of compressed earth bricks tended to adsorb water vapor
molecules from the surrounding environment. This occurs because water vapor molecules
exhibit stronger adsorption forces on the surfaces of dry pores, leading to their absorption
into the pores, consequently increasing the moisture content within the pores and improv-
ing the material’s moisture performance. In contrast, Jiang et al. [186] demonstrated that
when indoor relative humidity remains constant and increases, the interior surface of the
wall absorbs more moisture, resulting in an increase in the average moisture content of the
wall. This is because as indoor temperature rises, the difference in water vapor pressure
between indoor and outdoor environments increases, driving more moisture to enter the
interior of the wall, thereby enhancing the moisture performance of the wall.

In conclusion, the current standardization level of experimental schemes for evaluating
the moisture performance of earthen materials is relatively low, making it somewhat
difficult to compare results. However, considering the excellent moisture performance
of earthen materials, it is anticipated that exploration and development of new types of
building products could be carried out, reducing the adverse impact of construction on the
environment and creating more comfortable and efficient indoor environments. Therefore,
for the design and application of such building materials, in-depth research into their
thermal and moisture characteristics is of the utmost importance. This will provide crucial
scientific support for future sustainable architecture and environmental design.

6. New Perspectives

Earthen materials, as a natural and environmentally friendly construction resource,
play a crucial role in the sustainable building industry. To explore potential future directions,
it is essential to comprehensively consider advancements in their thermal properties,
ecological characteristics, structural mechanics, and reuse technologies to achieve broader
applications and comprehensive sustainability.

Firstly, leveraging the advantages of earthen materials in thermal performance, estab-
lishing a lifecycle-based carbon emissions’ calculation model and decarbonization methods
are paramount. These models should comprehensively assess the carbon emissions through-
out the lifecycle of earthen materials—from harvesting, production, use, to disposal—and
propose targeted emission reduction strategies. Integrating circular economy principles by
reducing raw material consumption, optimizing production processes, and enhancing ma-
terial reuse rates can significantly minimize the carbon footprint of earthen materials across
their lifecycle. Secondly, while maximizing the retention of the green ecological properties
of earthen materials, there is a need to enhance their structural mechanics through material
modifications. This endeavor aims to strike a balance by preserving their natural attributes
while bolstering their performance in diverse engineering environments. Utilizing mod-
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ern technological means for nano-level material modifications can elevate the durability,
compressive strength, and weather resistance of earthen materials, thereby expanding their
application scope. Simultaneously, integrating earthen material modification techniques
with the reuse of construction waste holds promise in expanding their technological applica-
tions, driving research into green recycled materials. By effectively integrating and utilizing
discarded construction materials, novel high-performance green recycled materials can
be created, promoting not only resource recycling but also propelling the construction
industry towards more eco-friendly and sustainable practices. However, to realize the
aforementioned potential directions, one of the current challenges—lack of standardized
testing and evaluation for earthen materials—needs addressing. Future research should
prioritize addressing this issue, establishing comprehensive and scientific testing standards
and evaluation systems for earthen materials, thus fostering their broader applications.

In summary, the future development directions for earthen materials encompass
advancements from carbon emission calculations to enhancing structural mechanics and
innovative application of reuse technologies. This comprehensive development trajectory
will bring forth greater possibilities in the field of green construction, propelling the
construction industry towards a more environmentally friendly and sustainable future.

7. Conclusions

The rapid development of urbanization and modernization presents a significant
challenge for earth construction today. As environmental consciousness deepens, there
is a growing interest among people in buildings that possess ecological value, conse-
quently garnering increased recognition for earth construction’s advantages. This article,
by consolidating the current research status of earthen materials domestically and interna-
tionally, highlights:

(1) Enhancement of engineering mechanical performance while preserving the thermal
and moisture characteristics of earthen materials. Future modifications should target
comprehensive performance improvements, not only elevating the mechanical and
durability aspects but also holistically considering the effects of modifications, em-
phasizing the overall enhancement of building performance metrics like resistance to
dry–wet cycles, thermal insulation, and heat retention. This contributes to heightened
energy efficiency and indoor comfort in constructions.

(2) Application in non-load-bearing structural components of buildings. Deploying
earthen materials in load-bearing wall materials often falls short of meeting con-
temporary architectural demands. Conversely, employing earthen materials in non-
load-bearing walls, insulation, and heat retention material areas allows for a more
effective utilization of their inherent features such as insulation, moisture regulation,
and thermal properties.

(3) Emphasis on research and construction combining local resources in practical ap-
plication engineering. Currently, most studies are either in the stage of theoretical
exploration or improvement research. To effectively apply earthen materials, targeted
research is imperative, focusing on local soil resource characteristics, modification
methods, performance, durability of earthen wall materials, as well as environmental
and economic indicators.

(4) Varied significance of the economic aspect of earthen materials in different scenarios.
When selecting earthen materials, a comprehensive consideration of diverse factors is
necessary, balancing economic viability with other elements pertinent to specific appli-
cation contexts. This facilitates the optimal utilization of earthen material advantages
and propels their extensive application across different domains.
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