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Abstract: Analyzing vegetation cover provides a basis for detecting ecological and environmental
health in urban areas. We analyzed the temporal and spatial changes in vegetation cover using NDVI
data from the central Yunnan urban agglomeration (CYUA). The dimidiate pixel model (DPM) and
intensity analysis were used to study changes at three levels: time intervals, category, and transition.
Analysis of time series data from 1990–2020 using the Theil–Sen Median with Mann–Kendal test
identified the overall trends. Geodetector explored the relationship between natural and human
factors in vegetation cover change. The CYUA’s vegetation cover gradually decreases from west
to east and south to north, with middle–high and high vegetation occupying over 55%. During
1990–2020, significant improvement was observed in the east and north regions, with an increase
of 22.49%. The anthropogenic core area showed severe degradation with nearly 1.56% coverage.
The transformation intensity of middle vegetation coverage was dominant from 1990–2010 but was
replaced by middle–high vegetation coverage from 2010–2020. Meanwhile, high vegetation coverage
became the most prominent gains target, and the conversion of middle–high to high vegetation
showed a system tendency to exceed the average in absolute number and relative intensity. Spatial
and temporal differences in vegetation cover were mostly affected by land cover (q = 0.4726, p < 0.001),
and the most influential topographic factor was the slope (q = 0.1491, p < 0.001). The impact of human
activities has increased to 16%, double that of 2000. The CYUA’s vegetation cover improved more
than it degraded, but required site-specific forest management due to human activities.

Keywords: central Yunnan urban agglomeration (CYUA); urban green space (UGS); FVC (fractional
vegetation cover); spatial and temporal change; intensity analysis; GeoDetector

1. Introduction

The World Cities Report 2022 sheds light on the ongoing trend of urbanization [1],
particularly in developing nations with rapid urban growth. As cities expand, their impact
on surface form and microclimate becomes increasingly noticeable, with green spaces
in urban areas particularly vulnerable to human and economic activity [2,3]. There are
various methods used to assess green spaces in urban areas, such as accessibility [4], green-
looking ratio [5], landscape patterns [6], land use/land cover [7], and ecosystem services [8].
However, vegetation cover remains the most crucial aspect of terrestrial ecosystems and a
critical factor for characterizing land surface cover [9]. Alterations in vegetation coverage
can reveal the ecological health of a region and help identify the environmental quality of
its green spaces. Therefore, evaluating and preserving urban green spaces is crucial, as they
offer numerous benefits including enhanced mental and physical health, biodiversity, and
climate regulation.

Sustainability 2024, 16, 661. https://doi.org/10.3390/su16020661 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su16020661
https://doi.org/10.3390/su16020661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://doi.org/10.3390/su16020661
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su16020661?type=check_update&version=3


Sustainability 2024, 16, 661 2 of 25

Fractional vegetation cover (FVC) is a significant factor used to assess the condition
of surface vegetation [10]. It is defined as the ratio of vertically projected area covered
by vegetation to overall surface area [11,12]. Research on vegetation coverage is usually
combined with the analysis of vegetation structure, remote sensing images, ecosystem
services, land cover, and urban expansion [13,14]. With the development of remote sensing
and satellite imaging technologies, high-definition images provide new research materials.
Remote sensing data, representing vegetation cover, has been widely used to calculate
the vegetation index in order to quantitatively detect vegetation growth [15,16], seasonal
change, spatial pattern characteristics, and influencing factors. Vegetation indices such
as NDVI and EVI are commonly used to study plant growth. NDVI can be used in all
stages of plant growth, while EVI is more effective in areas with a lot of chlorophyll
and flat terrain [17,18]. NDVI is considered one of the best vegetation indices because it
eliminates most of the variations caused by factors such as sun angle, instrument calibration,
topography, cloud shadow, and atmosphere. This makes it a more accurate measure of
vegetation growth [19,20]. There are various methods available for deriving vegetation
coverage, such as relative vegetation abundance (RA) algorithms, spectral mixture analysis
(SMA) algorithms, spectral-based supervised classification algorithms, physically-based
models, machine learning algorithms, and other methods [21]. One of the most widely used
algorithms for RA is the dimidiate pixel model (DPM), which is a linear mixed model. It is
preferred due to its simple algorithm and effective simulation [17,22]. Numerous studies
have utilized NDVI to examine the correlation between vegetation and urban environment
at various levels, ranging from global [23] to national [24] and regional scales [25]. For
urban-scale research, recent studies have used NDVI to characterize urban green space
with better results than land cover [26]. Therefore, it is urgent to increase the study of green
space in urban areas from the perspective of vegetation cover.

Vegetation coverage analysis can be effectively evaluated through the examination of
temporal and spatial transformations. One approach to achieve spatial alterations involves
the utilization of land use/cover transfer and spatial autocorrelation methods [27,28].
Meanwhile, linear regression analysis can be employed to forecast transformation trends
through time [29,30]. It is widely acknowledged that both climate change and human
activities are the primary driving forces that impact vegetation cover [31,32]. Researchers
have focused on characterizing, identifying, and exploring the impact of driving factors
on vegetation cover [33,34]. Partial correlation analysis, t-tests, residual analysis, and the
geodetector model are some of the methods used to study the driving factors. However,
it is important to note that correlation or regression methods may only reflect results if
there is linearity between the factors and driving forces [35]. In contrast, the geodetector
model can quantify the nonlinear effects of multiple influencing factors and interactions,
meaning it overcomes the limitations of traditional methods [36]. Therefore, it has become
an effective tool to quantify the factors influencing vegetation cover changes.

The central Yunnan urban agglomeration (CYUA) is a newly developed urban area
in China which is considered the core area for the development of Yunnan Province; by
the end of 2022, it had an overall urbanization level of 58.94%, which is higher than the
provincial average of 53% [37,38]. It is known for its rich botanical resources and is also a
hub for economic and cultural activities. However, extreme climate and intensified human
activities in recent years have affected the vegetation coverage level in the region. The
increasingly dry and warm climate has affected the growth of vegetation, and human
economic construction activities continue to change the stability of vegetation [39]. With a
unique topography ranging from tropical rainforests to high-altitude meadows, the CYUA
provides a valuable opportunity to study the impact of climate change on vegetation
cover. However, rapid urbanization has resulted in significant environmental challenges,
including air and water pollution, deforestation, and land use changes. Given the region’s
rich natural resources, monitoring environmental quality is essential to prevent ecological
crises. This study serves as a theoretical basis for monitoring environmental quality changes
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in the region and developing sustainable development strategies to mitigate the negative
impact of urbanization on the environment.

This paper, based on the NDVI data of the central Yunnan urban agglomeration
(CYUA), used the dimidiate pixel model, intensity analysis, and intensity map methods
to analyze the spatial and temporal changes in vegetation cover at three levels: time
intervals, category, and transition. The Theil–Sen Median trend analysis was integrated
with a Mann–Kendal analysis to analyze the characteristics of the overall change trends
in vegetation coverage based on the time series data from 1990 to 2020. In addition, we
used the geodetector model to explore the relationship between natural and human factors
that affect vegetation cover change in the CYUA. The geodetector model is an effective tool
for analyzing the relative importance and interaction between various factors [40]. This
analysis provides a comprehensive understanding of the factors contributing to vegetation
changes in the CYUA.

The results of this study will provide valuable insights into the construction and
ecological management of green spaces in the CYUA. We anticipate that the findings will
support sustainable development and ecological conservation efforts in the CYUA. The
following questions need to be addressed: (a) What was the vegetation cover of the CYUA
between 1990 and 2020? (b) How did the various levels of vegetation cover interact with
each other? (c) What are the factors that influence changes in vegetation coverage during
the urban development process?

The workflow is shown in Figure 1.
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2. Materials and Methods
2.1. Study Area and Data

The central Yunnan urban agglomeration (CYUA) (100◦45′ E–104◦48′ E, 23◦20′ N–
27◦02′ N) is a highly populated, rapidly growing, and economically thriving region located
in Yunnan Province, China (Figure 2). The CYUA encompasses Kunming, Qujing, Yuxi,
Chuxiong, and part of Honghe Prefectures, spanning a total of 114,600 km2, which accounts
for 28.3% of the province’s overall area [41]. This area is also home to 46.5% of the popu-
lation of Yunnan Province. Situated in Southwest China, the CYUA serves as a vital hub
for the construction of the China–South Asia corridor (Pearl River Delta–Central Yunnan–
South Asia) and China–Southeast Asia (Yangtze River Delta–Central Yunnan–Southeast
Asia). The region experiences a monsoon climate with four seasons, offering a warm
and spring-like ambiance. The average summer temperature is around 20 ◦C, whereas
the coldest month’s temperature stays around 10 ◦C. The annual temperature difference
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averages 10 ◦C, and the region had a multi-year average precipitation of less than 1000 mm
from 2000 to 2022. The study data and sources are shown in Table 1.
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Table 1. Study data and sources.

Data Data Accuracy Data Sources Data URL

Normalized difference
vegetation index (NDVI) data

[42,43]
250 m Global Change Research Data

Publishing and Repository
https://www.geodoi.ac.cn/

(accessed on 20 November 2023)

DEM data 30 m Geospatial data cloud https://www.gscloud.cn/
(accessed on 20 November 2023)

Annual average precipitation
data [44] 1000 m

National Earth System Science Data
Center, National Science and

Technology Infrastructure of China

http://loess.geodata.cn (accessed
on 20 November 2023)

Annual average
temperature data [45] 1000 m

National Earth System Science Data
Center, National Science and

Technology Infra-structure of China

http://loess.geodata.cn (accessed
on 20 November 2023)

Nighttime light data [46,47] 1000 m

A global dataset of annual urban
extents (1992–2020) from

harmonized nighttime
lights. figshare.

https://doi.org/10.6084/m9
.figshare.9828827.v2 (accessed on

20 November 2023)

Land cover/use data [48,49] 30 m Big Earth Data Science
Engineering Program

https://data.casearth.cn/
(accessed on 20 November 2023)

Afforestation data / Yearbook of Yunnan Provincial
Bureau of Statistics

http://stats.yn.gov.cn/ (accessed
on 20 November 2023)

https://www.geodoi.ac.cn/
https://www.gscloud.cn/
http://loess.geodata.cn
http://loess.geodata.cn
https://doi.org/10.6084/m9.figshare.9828827.v2
https://doi.org/10.6084/m9.figshare.9828827.v2
https://data.casearth.cn/
http://stats.yn.gov.cn/
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2.2. Calculation of Vegetation Cover

We used the dimidiate pixel model (DPM) to calculate vegetation coverage [17,21,22].
The model assumes that each mixed pixel can be decomposed into two parts, pure vegeta-
tion, and bare soil, and the spectral information obtained is a linear combination weighted
by the area ratio of the two pure components [21]. The percentage of area occupied by pure
vegetation is the fractional vegetation cover (FVC). The equation can be represented as:

FVC =
NDVI − NDVIsoil

NDVIveg − NDVIsoil
(1)

Among them, FVC stands for fractional vegetation cover; NDVI, NDVIsoil , and
NDVIveg, respectively, represent complete pixels, bare soil pixels, and vegetation-covered
pixels. According to the method proposed by studies 22 and 23 for estimating NDVIsoil ,
and NDVIveg, the maximum and minimum values within the confidence interval of the
study area were selected. In this study, the 0.5% interval value was selected as NDVIsoil ,
and the 99.5% value was selected as NDVIveg.

Considering land use, FVC, and rocky desertification degree classification standards
from the National Ecological Environment Standard of the People’s Republic of China
(HJ1174-2021) [50], the study area was divided into five levels, as detailed in Table 2.

Table 2. The FVC classification.

Categories Categories Name Landscape Features

I Level Extremely low coverage 0 ≤ FVC ≤ 35%
No vegetation, water bodies, bare land, rock, residential areas, high rocky desertification

II Level Low coverage 35% < FVC ≤ 55%
Sparse vegetation, sparse grassland, built-up area, middle-level rocky desertification

III Level Middle coverage 55% < FVC ≤ 65%
Middle-yield grassland, arable land, and green land in built-up areas

IV Level Middle–high coverage 65% < FVC ≤ 75%
Higher-yield grassland, arable land, shrubland

V Level High coverage 75% < FVC ≤ 100%
Flourishing vegetation, high-yield grassland, arable land, dense (irrigated) woodland

2.3. Trend Analysis

The Theil–Sen estimator is a non-parametric statistical method with good stability and
robustness and a strong ability to interfere with outliers, and is suitable for trend analysis
of time series data [51–53]. The equation can be represented as follows:

ρ = median
FVCj − FVCi

j− i
1990 ≤ i < j ≤ 2020 (2)

In Equation (2), ρ is the trend degree. If ρ < 0, this means that FVC shows a downward
trend. When ρ > 0, this means that FVC shows an upward trend. FVCj and FVCi represent
the vegetation coverage values in the year j or i.

The Mann–Kendall test is a non-parametric trend test method not affected by missing
values and outliers, which is suitable for use with Theil–Sen slope estimation [54]. The
equation could be represented as follows:

Z =


β−1√
Var(β)

, (β > 0)

0 , (β = 0)
β+1√
Var(β)

, (β < 0)
(3)
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where

β =
n−1

∑
i=1

n

∑
j=i+1

sign
(

FVCj − FVCi
)

(4)

Furthermore,

sign
(

FVCj − FVCi
)
=


1, FVCj − FVCi > 0
0, FVCj − FVCi = 0
−1, FVCj − FVCi < 0

(5)

And
Var(β) =

1
18

(n(n− 1)(2n + 5)) (6)

Among Equations (4)–(6), Z is the standardized test statistic, Var(β) is the variance,
and the value of β in this study is the result of the Theil–Sen slope estimation. The given α

significance level is 0.05, and a two-sided test is used. If |Z| > Z1−α/2, the significance test
is passed.

2.4. Intensity Analysis

The evaluation of vegetation coverage was heavily dependent on the transition matrix,
which unfortunately only captured the increase or decrease in a particular vegetation type
without providing an accurate explanation of the change process [29]. To address this
limitation, we used intensity analysis [55] and intensity mapping [56] to analyze changes in
vegetation coverage across three levels: time interval, category, and transition This approach
allowed us to identify patterns and tendencies in vegetation changes. By understanding
the current state of vegetation and its impact on the surrounding environment, we could
develop strategies that promote sustainable practices. This can involve identifying areas
where vegetation is thriving or struggling, determining which kind of vegetation cover
was most influencing to the CYAU at the time interval, and implementing management
techniques that maintain a healthy balance between vegetation and other natural resources.
Ultimately, such efforts can help to ensure the long-term health and vitality of our natural
environment, while also supporting the needs of urban development that rely on it.

Intensity analysis is suitable for analyzing multi-level variables in multiple time
intervals [55].

First, the annual change rate of FVC was computed for the three time intervals.

U = area o f change during all time intervals/area o f study region
During o f all intervals

=
∑T−1

t=1

{
∑J

j=1

[(
∑J

i=1 Ctij

)
−Ctij

]}
/
[
∑J

j=1

(
∑J

i=1 Ctij

)]
YT−Y1

× 100%
(7)

St = Change during[Yt ,Yt+1]/area o f study region
Duration o f [Yt ,Yt+1]

=

{
∑J

j=1

[(
∑J

i=1 Ctij

)
−Ctij

]}
/
[
∑J

j=1

(
∑J

i=1 Ctij

)]
(Yt+1−Yt)

× 100%
(8)

In Equations (7) and (8), U is the mean value of intensity at the time interval; St is
the change during [Yt, Yt+1]; T is the number of time intervals, three in this study; J is the
number of J grades in FVC, which is five in this study; t is a time point during [Yt, Yt+1],
and the value range is [1, T − 1]; i is the FVC level of the starting year; and j is the FVC
level of the ending year.

Secondly, the annual gain or loss change in each level in a certain period is compared
with the mean intensity line to determine the change for category analysis. The equation is
as follows:

Gtj = area o f gross gain o f category j during[Yt ,Yt+1]/duration[Yt ,Yt+1]
area o f category j at timeYt+1

× 100%

=

[(
∑J

i=1 Ctij

)
−Ctij

]
/(Yt+1−Yt)

∑J
i=1 Ctij

× 100%
(9)
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Lti = area o f gross loss o f category i during[Yt ,Yt+1]/duration o f [Yt ,Yt+1]
area o f category i at time Yt

× 100%

=

[(
∑J

j=1 Ctij

)
−Ctij

]
/(Yt+1−Yt)

∑J
j=1 Ctij

× 100%
(10)

In Equations (9) and (10), Gtj and Lti represent, respectively, the gross gain intensity of
category j and the gross loss intensity of category i during [Yt, Yt+1]. If different levels of
FVC are uniformly distributed in the period, then St = Gtj = Lti; If Gtj < St, it indicates that
within t time, the increase in level i is dormant. If Gtj > St, it suggests that within t time,
the increase in level i is active.

The third level is the transition level, which analyzes the intensity with which each
FVC transforms into another level, and other levels into this level, and finds out the
dominant level transition in a specific period.

Rtin = area o f transition f rom i to n during[Yt ,Yt+1]/duration o f [Yt ,Yt+1]
area o f category i at time Yt

× 100%

= Ctin/(Yt+1−Yt)

∑J
j=1 Ctij

× 100% (11)

Wtn = area o f gross gain o f category n during[Yt ,Yt+1]/duration o f [Yt ,Yt+1]
area that is not category n at time Yt

× 100%

=

[(
∑J

i=1 Ctin

)
−Ctnn

]
∑J

j=1

[(
∑J

i=1 Ctij

)
−Ctnj

] × 100%
(12)

Qtmj =
area o f transition f rom m to j during[Yt ,Yt+1]/duration o f [Yt ,Yt+1]

area o f category j at time Yt+1
× 100%

=
Ctmj/(Yt+1−Yt)

∑J
i=1 Ctij

× 100%
(13)

Vtm = area o f gross loss o f category m during[Yt ,Yt+1]
area that is not category m at time Yt+1

× 100%

=

[(
∑J

j=1 Ctmj

)
−Ctmm

]
∑J

i=1

[(
∑J

j=1 Ctij

)
−Ctim

] × 100%
(14)

In Equations (11)–(14), Rtin is the annual intensity of category i transferred to n (n 6= i)
within [Yt, Yt+1]. Wtn is the uniform conversion intensity from non-n category to n category
at time point Yt within [Yt, Yt+1]; Qtmj is the annual intensity of category m transferred to
j (m 6= j) within [Yt, Yt+1]; and Vtm is the uniform conversion intensity from category m at
time point Yt+1 to all non-m category within [Yt, Yt+1].

2.5. Intensity Map

Intensity map analyzes the intensity of transitions between different FVC levels during
the same interval [56]. This method draws a map from the absolute/relative conversion
intensity and intuitively interprets the conversion pattern in the same time interval.

The first is the characterization of different levels for absolute intensity, calculated
as follows:

AIin =
Cin/(Yt+1 −Yt)

∑I
i=1 Cin

(15)

MAIn =

{
[(∑I

i=1 Cin)−Cnn]
(I−1)

}
(Yt+1−Yt)(
∑I

i=1 Cin

) (16)

AOmj =
Cmj/(Yt+1 −Yt)

∑J
j=1 Cmj

(17)
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MAOm =


[(

∑
J
j=1 Cmj

)
−Cmm

]
(J−1)


(Yt+1−Yt)(
∑J

j=1 Cmj

) (18)

In Equations (15)–(18), AIin is the absolute intensity of i level into n (i 6= n) within
[Yt, Yt+1], and MAIn is the average absolute intensity of non-n level transfer to n level.
AOmj is the absolute intensity of level m into level j (m 6= j) within [Yt, Yt+1]. MAOm is the
average absolute intensity transfer non-m level to j (m 6= j) level at time [Yt, Yt+1].

The characterization of the relative intensity between the different levels is carried out
using Equations (19)–(22):

RIin =
Cin/(Yt+1 −Yt)

∑J
j=1 Cin

(19)

MRIn =

[(∑I
i=1 Cin)−Cnn]
(Yt+1−Yt)

∑J
j=1

[(
∑I

i=1 Cij

)
− Cnj

] (20)

ROmj =
Cmj/(Yt+1 −Yt)

∑I
i=1 Cij

(21)

MROm =

[(
∑J

j=1 Cmj

)
−Cmm

]
(Yt+1−Yt)

∑I
i=1

[(
∑I

j=1 Cij

)
− Cim

] (22)

Among Equations (19)–(22), RIin is the relative intensity of i level to n (i 6= n) within
[Yt, Yt+1], and MRIn is the mean relative intensity of non-n level to n level. ROmj is the
relative intensity of m level into j (m 6= j) within [Yt, Yt+1], and MROm is the mean relative
intensity of level not m to level j (m 6= j) within [Yt, Yt+1].

The method of judging the transformation tendency of different FVC levels is as
follows. Taking the absolute intensity as an example, if AIin = MAIn, then level i and other
levels have equal chances of transferring to level n, and there is no apparent tendency. If
AIin > MAIn, then the area transferred from level i to level n is higher than the average
level, and it has a clear tendency, which is mapped in red; if AIin < MAIn, the process
of transferring from level i to level n is inhibited, which is mapped by blue (as shown
in Figure 3). The transition tendency between two levels i and j is defined as follows:
either the absolute intensity is higher than the mean intensity, and the relative intensity
is less than the mean intensity, which is an absolute tendency (Figure 3a), or the absolute
intensity is less than the mean intensity, and the relative intensity is greater than the mean
intensity, showing a relative tendency (Figure 3b). Both the absolute intensity and the
relative intensity are higher than the mean one, showing system tendency (Figure 3c);
otherwise, it is system-inhibitory (Figure 3d).
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2.6. Geodetector Model

Two primary factors influenced the shift in vegetation coverage: natural and human
factors [29,31,32]. The natural factors included meteorology and topography, with precipi-
tation and temperature being the meteorological factors, and slope, aspect, and elevation
being the topographic factors. Meanwhile, human factors were determined by night-
time light and land cover, which shed light on human activities and urban development
changes [57,58].

The dependent variable Y In this study is the FVC of the study year, and the indepen-
dent variables X are topographical factors, including aspect (X1), slope (X2), and elevation
(X3); meteorological factors, including mean annual precipitation (X4) and mean annual
temperature (X5); and human factors, including nighttime lights (X6) and land cover (X7).
Then, we used the geodetector model to explore the impact of the seven independent
variables on changes in FVC for the study area during different intervals [36,40].

Factor detection is mainly used to detect the explanatory degree of independent
variable X to dependent variable Y, generally expressed by the q value [59], and can screen
the dominant factors of the FVC. The equation can be represented as

q = 1− ∑L
h=1 Nhσ2

h
N

σ2
= 1− SSW

SST

SSW =
L
∑

h=1
Nhσ2

h , SST = Nσ2

(23)

In Equation (23), the value of q is [0, 1], which represents the explanatory power of
each factor on FVC. The larger the q value, the stronger the factor’s explanatory power
for FVC. h is the classification of X; Nh and N are the number of units in layer h and the
whole area, respectively; and σ2

h and σ2 are the variances of the Y value of layer h and the
entire area, respectively. SSW and SST are within the sum of squares and the total sum
of squares.

In this study, interaction detection is used to explore relationship between factors.
Interaction detector assesses whether the explanatory powers of two factors are enhanced,
weakened, or independent of each other. First, the q values of two factors X1 and X2
for Y were calculated (q(X1) and q(X2)). Then, the q value of interaction, which is a new
layer formed by tangent of overlay variables X1 and X2, was calculated (q (X1 ∩ X2)) and
compared with q(X1) and q(X2) to indicate the interaction type between two variables.

The research steps were as follows. First, the ArcGIS10.7 was used to reclassify
quantitative factors by natural breaks method, and other factors were reclassified according
to types, as in Table 3; then, a fishnet of 5 km side length was drawn to cover the study
area, while the FVC layer and factor layer of the study year were extracted using spatial
statistical analysis tools. After cleaning up the null values, we loaded the Geodetector
model to explore the factor relationship.

Table 3. Factor reclassification table.

Variables Factors Reclassify Categories

X1 Aspect (◦) 9

1 = Gentle slope (−1◦), 2 = North slope (0–22.5◦, 337.5–360◦), 3 = Northeast slope
(22.5–67.5◦), 4 = East slope (67.5–112.5◦), 5 = Southeast slope (112.5–157.5◦), 6 = South
slope (157.5–202.5◦), 7 = Southwest slope (202.5–247.5◦), 8 = West slope (247.5–292.5◦),

9 = Northwest slope (292.5–337.5◦)
X2 Slope (◦) 15 <3◦, >42◦, Divide every 3◦

X3 Elevation (m) 5 1 = 129–1200 m, 2 = 1200–1600 m, 3 = 1600–2000 m, 4 = 2000–2400 m, 5 = 2400-highest
X4 Mean annual precipitation (mm) 9 Natural breakpoint method
X5 Mean annual temperature (◦C) 9 Natural breakpoint method
X6 nighttime lights (DN) 9 Natural breakpoint method

X7 landcover 9
1 = Rainfed cropland, 2 = Herbaceous cover, 3 = Irrigated cropland, 4 = evergreen
broadleaved forest, 5 = deciduous broadleaved forest, 6 = evergreen needle-leaved

forest, 7 = Shrubland, 8 = Grassland
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3. Results
3.1. Spatial and Temporal Changes in FVC

Figure 4 shows the spatial distribution of FVC in CYUA from 1990 to 2020. Research
indicated that the highest vegetation level was in the southwest of the study area, while
the lower vegetation level was in the east and water body. The FVC change results of
CYUA showed a gradual increase from north to south and east to west. Most areas have
middle–high or high vegetation coverage and good ecological environment quality. Until
2020, the study area consistently had high vegetation coverage along the Ailao Mountains
in the southwest, the northwest of Chuxiong, and Luoping and Shizong in the southeast of
Qujing. In addition to water bodies and urban core areas, low-vegetation-coverage areas
include Mengzi, Kaiyuan, and Jianshui in Honghe Prefecture in the south and Yuanmou and
Yongren in the north of Chuxiong. The vegetation coverage in most areas of Qujing in the
east has improved; however, Huize and Luliang still have low vegetation coverage levels.
According to statistical analysis (Figure 4d), from 1990 to 2010, the highest proportion
was Level IV (32.12%, 37.68%, 33.60%). In 2020, the highest proportion was Level V
(39.92%). According to the data, over 55% of the total area falls under middle–high and
high coverage (Level IV and V), which suggests robust vegetation growth and superior-
quality green space.
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The spatial transformation pattern of FVC levels in CYUA during different periods
is shown in Figure 5. During 1990–2000, the total increase area (23.17%) was greater than
the decrease area (10.57%). The increasing trend mainly occurred in Xuanwei, Huize,
Dongchuan, and Fuyuan in the northeast and Mengzi in the south (Figure 5a,d). From
2000 to 2010, the overall decrease area was 7.19% greater than the increase area, and
the decreasing trend (21.33%) was widely distributed spatially. Still, it was relatively
concentrated in the Mile, Kaiyuan, and Ai’lao Mountains in the southwest (Figure 5b,d).
From 2010 to 2020, the area increased significantly (34.77%), and the spatial distribution
accounted for over half. From 1990 to 2020, the proportion of Level I gradually increased,
and the area proportion of Level II fluctuated and decreased; Level III first increased and
then reduced, and finally dropped by nearly 10%. Level IV conversions were the most
active, peaking in 2000 (37.68%). By 2020, the proportion of Level V was the greatest (39.9%),
mainly concentrated in Fuyuan, Luoping, Shizong, Luxi, and Mile in the east (Figure 5c,d).
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3.2. Variation Trends Analysis of FVC

The significance judgment of the β value of the Theil–Sen estimator and the Z value
of the Mann–Kendall test were used to obtain the spatial change trend distribution map
of FVC in the CYAU from 1990 to 2020 (Figure 6). The different value ranges were set to
represent areas with change trend characteristics, as shown in Table 4. Based on Figure 6
and Table 4, the main trends of FVC in the CYUA were divided into five categories:
significant improvement, improvement, stable, slight degradation, and severe degradation.
The improved vegetation cover areas (26.99%) were much more extensive than degraded
ones (1.71%). Significant improvement (a 22.49% coverage) has been observed in the
eastern karst landform and northern alpine meadow areas encompassing Xuanwei, Huize,
Fuyuan, Xundian, Dongchuan and Chuxiong, Yao’an, Mouding, as shown in Figure 6d,e.
Conversely, areas of severe degradation (1.56%) were predominantly located in the urban
impervious regions of Guandu, Songming, Yiliang, Jinning, Hongta, Jiangchuan, Tonghai
(in the center, Figure 6a), Qilin and Luliang (in the east, Figure 6b), and Mengzi (in the south,
Figure 6c). The remaining vast areas (75.95%) have either remained stable or experienced
minor changes. Urban expansion has led to a significant reduction in vegetation coverage
around areas that were already severely degraded. However, afforestation and “Pearl River
Source” ecological restoration projects in the Northeast have successfully improved the
vegetation coverage.
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Table 4. Statistics of FVC trends in the CYUA.

β Z Trend Coverage

β > 0
2.58 < Z Significant improvement 22.49%

1.96 < Z ≤ 2.58 Improvement 4.5%
β = 0 0 ≤ Z ≤ 1.96 Stable 71.3%

β < 0
1.96 < Z ≤ 2.58 Slight degradation 0.15%

2.58 < Z Severe degradation 1.56%
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3.3. FVC Change at Time Interval, Category, and Transition Level

The results at the time level are shown in Figure 7. The average annual intensity of
change in vegetation cover in the CYUA showed a continuously increasing trend. The
change rate intensity from 2010 to 2020 is 4.02%/a > 3.65%/a (the uniform intensity). The
annual rate of change for FVC during this time interval was the fastest, with the largest
actual size of changes (left side of Figure 7).
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the CYUA.

The results of the category level are shown in Figure 8. In Figure 8a, during 1990–2000,
Level IV increased the largest size, and at the same time, the gain intensity of Level IV was
very active. The gain/loss intensities in Level III were relatively active, and the intensity
of loss in Level II was the highest during this time period. In Figure 8b, the size of the
increase and decrease in Level III were almost the same, but the gain intensity was greater
than the loss intensity. Level IV has the largest reduction area and the highest loss intensity.
Level II has the highest loss intensity. In Figure 8c, the area of severe reduction in Level
III corresponds to the most active loss intensity, which is much larger than the uniform
intensity. Level IV’s size of increase/decrease was huge, and the gain/loss intensity of that
level was also very active. Level II showed an area reduced by a small amount, but its loss
intensity was active.

The intensity changes in the III and IV levels were the most active during the three
intervals. The left side of Figure 8 shows that the total of areas change of Level III during
the three time intervals were 25,305.9 km2, 23,848.6 km2, and 25,639.4 km2. In the first
two intervals, the annual gross gains and losses exceeded the uniform intensity. After
2010, the loss intensity became more active. Moreover, Level IV occupied the largest total
change area at all time points, accounting for 36.5%, 38.9%, and 39.8%. Finally, the gain
and loss bar extended to the right of the uniform line in the third time interval. Alongside
Levels III and IV, we found the gains and losses bar of Level II played a major role. Level
V remained balanced and stationary in the first two intervals, then in the third interval
increased quickly, but the gains still did not extend to the uniform line (Figure 8c).

Prior to 2000, heightened agricultural endeavors aiming to augment food production
led to a substantial reduction in low vegetation coverage. In contrast, measures to safeguard
forests were initiated after 2000, ushering in a dynamic shift towards middle-to-high vegeta-
tion coverage. Furthermore, following 2010, the conversion intensity of areas characterized
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by middle–high to high vegetation coverage experienced an increase, primarily attributable
to the implementation of policies safeguarding cultivated land and the environment.
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intervals, which meant that the transfer-from level and transfer-to level changed each other.
So, Figure 9 reports the transition at Level IV. From 1990 to 2000, the target for the transition
out of Level III was Level IV, with the rate reaching 3.46%. Meanwhile, the transition rate
to Level V (2.17%) also exceeded the uniform intensity, presenting a tendency towards low
to high vegetation coverage (Figure 9a). The interval 2000–2010 shows Level IV was the
target for transitioning away from high vegetation levels (Figure 9b), with some vegetation
degradation. In 2010–2020, Level IV underwent a transition similar to that of 1990–2000
(Figure 9c), with the actual gain size of Level V being 14.54%, much larger than that of
1990–2000.

Table 5. Conversion of dominant vegetation coverage during three time intervals in the CYUA.

Category
The 1990–2000 Interval The 2000–2010 Interval The 2010–2020 Interval

Transfer from Transfer to Transfer from Transfer to Transfer from Transfer to

I II II II II III II
II I, III I, III I, III I, III I, III I, II
III II II, IV II, IV II, IV II II, IV
IV III V V III, V III V
V IV IV IV IV IV IV
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3.4. Transitions Level Change Tendency of FVC

The intensity map further analyzes the characteristics of FVC conversions in different
time intervals, as shown in Figure 10.
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From 1990 to 2000, the system’s tendency included Level II to Level III, Level III to
Level IV, and Level IV to Level V. The actual intensity and relative intensity were larger than
the mean intensity. The absolute tendency included Level IV to Level III, which showed
that AIIV–III was greater than MAIIV–III and AOIV–III was greater than MAOIV–III, but RIIV–III
was less than RAIIV–III and ROIV–III was less than RAOIV–III. The transitions in system
tendency are all located on the upper right, indicating that the shift from a low to high
level is dominant. At the same time, the actual intensity from Level IV to Level III is also
powerful. From 2000 to 2010, the system tendency includes Level III to Level II, Level IV to
Level III, Level V to Level IV, and Level IV to Level V. Some 75% of the system tendency
occurs in the lower left, and the shift from a high level to low level became dominant. From
2010 to 2020, the system tendency type was the same as the first interval.

At the first time interval, there was an absolute tendency from Level IV to Level III, but
a system tendency from Level III to Level IV and from Level IV to Level V; consequently,
by the end of this period, the actual area size of Level IV had increased by 5.56% (as shown
in Figure 5d). During the third time interval, Level III to Level IV and Level IV to Level
V were all the system tendencies; the absolute intensity of AIV–IV from Level V to Level
IV dropped significantly, and is smaller than MAIV–IV. This was no longer the system
tendency at the previous time interval (Figure 10b,c). At the end of this period, Level V
had the largest actual area size (39.92%, as shown in Figure 5d).

3.5. Contributions of the Climate Change and Human Activity Factors to FVC Changes

Figures 11 and 12 display the outcomes of factor detection and interaction detection.
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Based on Figure 11, the most noteworthy impact on spatiotemporal changes in the
green space vegetation coverage of the CYUA is that of land cover (X7, q = 0.4726, p < 0.001).
This factor has a significantly greater influence than others, and displays a positive trend.
Additionally, nighttime lighting has a considerable impact (q = 0.1658, p < 0.001), with an
explanatory power of over 16%, which is double the impact from 1990. Topographical
factors, including aspect and slope, remain stable, with q values of 0.0885 (p < 0.001)
and 0.1491 (p < 0.001), respectively. Among these, slope has a more significant influence.
In this study, the meteorological factors of mean annual precipitation and mean annual
temperature have a less than 10% explanatory power, indicating their limited influence.
Overall, the impact of human factors has increased in significance over time. The results
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of aspect, slope, and elevation show a gradual increasing trend, while the impact of
meteorological factors remains relatively stable.
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The spatiotemporal difference of FVC in CYUA is the synergistic effect of multiple
factors, which is more significant than that of a single factor. The interaction between
any two factors is a complex and nonlinear combination of enhancement, and the in-
teraction of land cover with any other factor creates the most synergistic effect. Strong
interaction factors from 1990 to 2000 are slope∩mean annual temperature (q = 0.219), mean
annual precipitation∩mean annual temperature (q = 0.226), aspect∩slope (q = 0.232), and
slope∩mean annual precipitation (q = 0.208). From 2000 to 2020, nighttime lights–slope
(q = 0.280) was the strongest factor, followed by nighttime lights∩aspect (q = 0.259), night-
time lights∩elevation (q = 0.205), nighttime lights∩mean annual precipitation (q = 0.234),
and nighttime lights∩mean annual temperature (q = 0.209). This further indicates that
landcover, nighttime lights, and slope are the key factors influencing FVC.

4. Discussion
4.1. Trends in the Patterns of FVC

This study effectively estimates spatial changes in FVC distribution in the central
Yunnan urban agglomeration from 1990 to 2020 using the remote sensing index NDVI
and the dimidiate pixel model. The examination of the spatial pattern was conducted
through intensity analysis, whereas the investigation of the temporal trend was undertaken
utilizing a linear model. The findings indicated that there was a gradual increase in the
vegetative cover across the region, which was consistent with findings from previous
studies, including global [14,32], national [60], and regional [25,61,62] scales, with a signif-
icant concentration of vegetation resources in the mountainous terrain. Urban areas are
experiencing vegetation degradation, which has been confirmed multiple times [31,63].
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We specifically focus on analyzing the areas with the highest level of urbanization in
Yunnan Province over a longer period, which accurately reflects the dynamic characteristics
of green space vegetation coverage in rapidly developing areas in which populations are
gathering. Therefore, our research has identified that changes occur between middle–
high to high vegetation coverage. We have also observed that the transformation of low
vegetation cover primarily occurred in the northeastern regions, such as Xuanwei, Huize,
and Xundian, from 1990 to 2000.

Over the past decade, the highest level of vegetation coverage has rapidly increased,
predominantly in Xuanwei, Huize, and Dongchuan, as well as in Shizong, Fuyuan, and
Luxi. In 2000, Zhanyi and Xuanwei established the Pearl River Source Nature Reserve
to restore forests, water conservation, and the entire ecosystem. Since 2012, the eastern
region has consistently expanded afforestation areas and implemented other ecological
management projects such as rocky desertification control and soil erosion detection [64].
As a result, the expansion of forests and the mitigation of rocky desertification may have
significantly contributed to improvements in ecological quality and the increase in FVC, as
shown in Figures 4d and 5c. Since 1990 to 2020, the vegetation coverage in the urban core
area has decreased, indicating the impact of urbanization and human activities.

4.2. Changes in the Intensity of FVC

Intensity analysis is generally used for land use changes and is divided into three
levels, further supplementing the original matrix analysis [65]. Some studies have applied
this method to changes in vegetation coverage and found that it has good adaptability to
vegetation coverage with different categories [29]. However, the intensity analysis needs a
more straightforward description of the actual conversion sizes [56]. We introduced the
intensity map method to compare the actual and relative intensity of FVC levels and draw
intensity maps to analyze the tendency/inhibition further.

Based on the findings, it is evident that the coverage area of middle–high and high
vegetation has been consistently expanding, as reflected in Figures 4 and 5. Additionally,
the rate of change from 2010 to 2020 has been the highest, as shown in Figure 7. While
middle coverage played a significant role in the first time interval, middle–high and high
coverage became more prominent in subsequent intervals, as depicted in Figures 8–10. The
proportion of forests in the CYUA is the highest (more than 50%). At the same time, the
study site is also the most artificial afforested area in the province. Qujing has the largest
artificial afforestation area at 31%, followed by Honghe Prefecture, at 27%. Yunnan has
consistently prioritized the sustainable development of forests and implemented numerous
management measures. The rapid increase in middle–high and high coverage is a testament
to the effectiveness of forestry development in the past decade, as evidenced by Figures 4d,
5c and 13.
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4.3. Differences in the Response of FVC Changes to Impact Factors

The CYUA has a mild climate, but in terms of precipitation, it is one of the most
deficient areas in the province. The eastern part is a typical karst landform area, which
is accompanied by rocky desertification. Kunming, Qujing, Yuxi, and Chuxiong have
large populations, accounting for more than 40% of the entire province. Based on the
characteristics of the study area, we selected influencing factors, and the results further
proved the synergistic effect of natural and human factors.

4.3.1. Meteorological Factors

Temperature affects the transpiration of vegetation, while precipitation is the primary
source of moisture. FVC changes stably responded to mean annual temperature and
precipitation (taking 2020 as an example, as shown in Figure 14).
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Figure 14. Spatial distribution of (a) vegetation coverage, (b) mean annual precipitation, and (c) mean
annual temperature for 2020.

Recent studies have suggested that Yunnan Province is currently experiencing a warm
and dry climate [66]. Additionally, research finds a positive correlation between mean
annual precipitation and temperature with vegetation coverage in the CYUA, indicating
that higher levels of precipitation and temperature can lead to more robust vegetation
growth [67,68]. However, our study also notes that meteorological factors have a slightly
weaker explanatory power when compared to topographic and human factors, possibly
due to the type of vegetation cover and average altitude in the area. Research showed that
the vegetation cover pattern of cultivated land at around 2000 m was mainly influenced by
the slope of total primary productivity rather than meteorological factors [69,70], similar to
the situation in eastern grain-producing regions. In the face of climate warming and the
frequent occurrence of local disasters [71,72], moderate artificial intervention can alleviate
the vulnerability and sensitivity of the region, making it increasingly dependent on the
regulatory role of water conservancy projects.

4.3.2. Topographical Factors

Slope mattered more than aspect or elevation. Although over 90% of the region is
mountainous, with elevations ranging from 127 m to over 4281 m, not all slopes are created
equal. Plateau lakes and farmland, with slopes between 0◦ and 3◦, account for only 4.56%
of the region. In contrast, steeper areas, with slopes ranging from 24◦ to 81◦, make up a
significant 34.54% of the region, making vegetation coverage changes more challenging.
Research indicated that slopes between 3◦ and 24◦ were optimal for vegetation survival
and growth. However, as the slope becomes steeper and the terrain more complex, soil
erosion becomes a more critical issue [73]. Slope affects the vertical distribution of water
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and heat conditions for vegetation survival, leading to heterogeneity in the topographic
conditions of FVC in CYUA.

4.3.3. Human Factors

In recent years, human activities have had a significant impact on the environment, par-
ticularly in relation to economic activities and land use [74]. In 2008, researchers introduced
a new perspective by utilizing nighttime light data to study economic development [75,76].
Since then, these data have been employed to investigate the effects of human activities
on the environment, urban areas [77], climate change [78], and ecosystems [79]. In our
exploration of the impact of human activity on vegetation coverage, we have opted to use
nighttime light data as a measure.

Figure 15 illustrates that since 1993, the built-up area of the CYUA has continued to
grow, and this is also the area shown in Figure 6, where vegetation coverage has significantly
declined. Nighttime light has a strong explanatory influence on the FVC of the CYUA, as
observed in Figures 11 and 12 (qmax = 0.1658, sig. < 0.001), which confirms the accuracy of
nighttime light data in characterizing human activities.
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For this study, we reclassified the land cover into nine types: rainfed cropland (1),
herbaceous cover (2), irrigated cropland (3), evergreen broadleaved forest (4), deciduous
broadleaved forest (5), evergreen needle-leaved forest (6), shrubland (7), grassland (8) and
other types (9). As shown in Figure 16, forest resources (evergreen broadleaved forest,
deciduous broadleaved forest, evergreen needle-leaved forest, and shrubland) here are
abundant, with a proportion of over 50%. It is a fact that forests have a much larger leaf
area compared to other types of vegetation, which also confirms the distribution of high
FVC levels in the study area (Figure 4). Forests are essential to the environment as they
play a crucial role in regulating climate and providing habitats for countless species. In
particular, the sharp increase in evergreen broad-leaved forest corresponded to the most
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actively transformed middle–high and high FVC levels among the three time intervals
(Table 5 and Figure 9). Combined with ecological management measures such as closing
hills for afforestation, returning farmland to forests, and artificial afforestation, the Pearl
River’s ecological management and the frequency and intensity of mutual transfer of land
cover types have increased, which enhances the sizes forests and grassland areas and
optimizes the green space’s structure (Figures 4 and 5).
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4.3.4. Factors Interaction Effect

We found that the interaction between driving factors is more significant than a single
factor, consistent with many studies [80–83]. Although meteorological and topographic fac-
tors have a relatively weak overall influence on vegetation changes (as shown in Figure 11),
their explanatory power increased significantly after 2010 due to a non-linear enhancement
effect between land cover and each other factor (as depicted in Figure 12). Specifically, the
interactions between land cover and other factors surpassed 0.30 (as shown in Figure 12).
In order to promote higher-quality development in the CYUA, it is essential to strengthen
greening construction. However, due to the general water shortage in these urban agglom-
erations, the slope factor plays a crucial role in controlling temperature and precipitation
gradient distribution. Therefore, it is imperative to focus on land and water conservation
under the influence of slope. Nighttime lighting has played a nonlinear enhancement role
since 2010. Urban economic activities have increased, and the scope of construction has
continued to expand. “Towns moving up the mountain” have revitalized surrounding
mountain resources and affected vegetation coverage.

5. Conclusions

Over the past three decades, the spatial distribution of vegetation cover in the CYUA
has shown the following trends.
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(1) Vegetation cover gradually decreased from south to north and from west to east.
(2) As of 2020, the proportion of vegetation coverage levels is as follows: high vegetation

coverage (Level V) > middle–high vegetation coverage (Level IV) > middle vegetation
coverage (Level III) > low vegetation coverage (Level I/Level II).

According to our trend analysis,

(3) Overall, there is a 26.99% area of improvement and only a 1.71% area of degradation.
(4) Specifically, the areas with significant improvement in vegetation coverage were the

eastern karst landform area and plateau meadow area (22.49%). In comparison, the
areas with severe degradation were distributed in the central and eastern core areas
of human activity (1.56%).

According to our intensity analysis,

(5) The intensity of the time intervals increased by 1.19 times. At the category level, the
most active gain/loss was in middle and middle–high vegetation coverage. At the
transition level, the middle–high vegetation coverage changed significantly, being
associated with forest protection and artificial afforestation in the CYUA.

According to our analysis of driving factors,

(6) The factors that had an influence greater than 10% from 1990 to 2020 were land cover
> slope before 2010; after 2010, the factors with the greatest influence were land cover
> nighttime light > slope.

(7) The most significant synergy between land cover and other factors is greater than
0.30. Land cover change is further accelerated due to increased human activities
and urbanization.

The rapid growth of the urban center of the CYUA has led to several environmental
concerns, particularly with regard to the depletion of natural green spaces and vegetation
cover. This phenomenon poses a threat to the aesthetic appeal of the city, and has far-
reaching ecological consequences such as increased soil erosion, heightened air pollution
levels, and loss of biodiversity. As such, it is imperative to implement strategic measures to
curb these negative effects and preserve the surrounding regions’ inherent natural beauty.

Author Contributions: Conceptualization, Y.L. and Y.S.; methodology, Y.L., X.C. and Y.S.; software,
Y.L.; validation, Y.L., L.H. and J.Z.; formal analysis, Y.L. and Y.S.; investigation, Y.L., L.H. and
J.Z.; resources, Y.L.; writing—original draft preparation, Y.L.; writing—review and editing, Y.L.;
visualization, Y.L., L.H. and J.Z.; supervision, Y.S.; project administration, Y.S.; funding acquisition,
Y.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Yunnan Province High-level Talents Training Support Pro-
gram, grant number YNWR-CYJS-2020-022; and the Scientific and Yunnan University Minority
Gardens, and beautiful countryside Science and Technology Innovation Team.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Acknowledgments: The authors acknowledge data support from the Loess Plateau SubCenter, the
National Earth System Science Data Center, and National Science and Technology Infrastructure of
China. (http://loess.geodata.cn) (accessed on 20 November 2023).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. World Cities Report 2022: Envisaging the Future of Cities, the United Nations Human Settlements Programme. Available online:

https://unhabitat.org/wcr/ (accessed on 20 November 2023).
2. Najihah, N.A.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of rapid urban expansion on greenspace structure. Ecol. Indic. 2017,

81, 274–284. [CrossRef]

http://loess.geodata.cn
https://unhabitat.org/wcr/
https://doi.org/10.1016/j.ecolind.2017.05.031


Sustainability 2024, 16, 661 23 of 25

3. Wang, J.; Zhang, Y.; Zhang, X.; Song, M.; Ye, J. The spatio-temporal trends of urban green space and its interactions with urban
growth: Evidence from the Yangtze River Delta region, China. Land Use Policy 2023, 128, 106598. [CrossRef]

4. Yin, H.W.; Kong, F.H.; Zong, Y.G. Accessibility and Equity Assessment on Urban Green Space. Acta Ecol. Sin. 2008, 28, 3375–3383.
Available online: https://kns.cnki.net/kcms2/article/abstract?v=TzO8JwpG6ugQJ4d6aYgKBriI7-x8Gb5qDx1NP-WXKVYe0
Wf3qELif_BlTnPkBbenhAH6bd1LD1dkPQsZAhdT-4TP8Hisvq8M313SxYZQhM5FQAnXY4KUG6nZqb3QpiQ-&uniplatform=
NZKPT&language=CHS (accessed on 20 November 2023).

5. Zheng, L.Y.; Pu, H.X.; Jiang, Z.P. Spatial satisfaction of urban parks based on the visible green index. J. Nanjing For. Univ. (Nat. Sci.
Ed.) 2020, 44, 199–204. [CrossRef]

6. Wu, S.; Wang, D.; Yan, Z.; Wang, X.; Han, J. Spatiotemporal dynamics of urban green space in Changchun: Changes, transforma-
tions, landscape patterns, and drivers. Ecol. Indic. 2023, 147, 109958. [CrossRef]

7. Matsa, M.; Mupepi, O.; Musasa, T. Spatio-temporal analysis of urban expansion in Gweru city, Zimbabwe between 1990 and 2020.
Environ. Chall. 2021, 4, 100141. [CrossRef]

8. Paudel, S.; States, S.L. Urban green spaces and sustainability: Exploring the ecosystem services and disservices of grassy lawns
versus floral meadows. Urban For. Urban Green 2023, 84, 127932. [CrossRef]

9. Qin, W.; Zhu, Q.k.; Zhang, X.x.; Li, W.h.; Fang, B. Review of vegetation covering and its measuring and calculating method. J.
Northwest Sci-Tech Univ. Agric. For. (Nat. Sci. Ed.) 2006, 34, 163–168.

10. Ren, Y.; Zhang, F.; Zhao, C.; Cheng, Z. Attribution of climate change and human activities to vegetation NDVI in Jilin Province,
China during 1998–2020. Ecol. Indic. 2023, 153, 110415. [CrossRef]

11. Jiapaer, G.; Chen, X.; Bao, A. A comparison of methods for estimating fractional vegetation cover in arid regions. Agric. For.
Meteorol. 2011, 151, 1698–1710. [CrossRef]

12. Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ.
1997, 62, 241–252. [CrossRef]

13. Chu, D.; Chu, D. Fractional vegetation cover. In Remote Sensing of Land Use and Land Cover in Mountain Region; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 195–207. [CrossRef]

14. Wu, D.; Wu, H.; Zhao, X.; Zhou, T.; Tang, B.; Zhao, W.; Jia, K. Evaluation of Spatiotemporal Variations of Global Fractional
Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011. Remote Sens. 2014, 6, 4217–4239. [CrossRef]

15. Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather
prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [CrossRef]

16. Amiri, R.; Weng, Q.; Alimohammadi, A.; Alavipanah, S.K. Spatial-temporal dynamics of land surface temperature in relation
to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 2009, 113, 2606–2617.
[CrossRef]

17. Song, W.; Mu, X.; Ruan, G.; Gao, Z.; Li, L.; Yan, G.; Yan, G. Estimating fractional vegetation cover and the vegetation index of bare
soil and highly dense vegetation with a physically based method. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 168–176. [CrossRef]

18. Ren, H.; Wen, Z.; Liu, Y.; Lin, Z.; Han, P.; Shi, H.; Wang, Z.; Su, T. Vegetation response to changes in climate across different
climate zones in China. Ecol. Indic. 2023, 155, 110932. [CrossRef]

19. Liu, H.Q.; Huete, A. A feedback-based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE
Trans. Geosci. Remote Sens. 1995, 33, 457–465. [CrossRef]

20. Sun, H.; Wang, C.; Niu, Z. Analysis of the vegetation cover change and the relationship between NDVI and environmental factors
by using NOAA time series data. J. Remote Sens. 1998, 2, 210–216. [CrossRef]

21. Gao, L.; Wang, X.; Johnson, B.A.; Tian, Q.; Wang, Y.; Verrelst, J.; Mu, X.; Gu, X. Remote sensing algorithms for estimation of
fractional vegetation cover using pure vegetation index values: A review. ISPRS J. Photogramm. Remote Sens. 2020, 159, 364–377.
[CrossRef]

22. Wittich, K.P.; Hansing, O. Area-averaged vegetative cover fraction estimated from satellite data. Int. J. Biometeorol. 1995,
38, 209–215. [CrossRef]

23. Zhang, W.; Randall, M.; Jensen, M.B.; Brandt, M.; Wang, Q.; Fensholt, R. Socio-economic and climatic changes lead to contrasting
global urban vegetation trends. Glob. Environ. Chang. 2021, 71, 101883. [CrossRef]

24. Jiang, S.; Zhang, Z.; Wang, W.; Du, W.; Jin, Q. Dynamic variation rules of vegetation cover in Jiangsu Province and its response to
climate change. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2016, 40, 74–80. [CrossRef]

25. Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River
Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [CrossRef]

26. Bille, R.A.; Jensen, K.E.; Buitenwerf, R. Global patterns in urban green space are strongly linked to human development and
population density. Urban For. Urban Green. 2023, 86, 127980. [CrossRef]

27. Zheng, B.; Myint, S.W.; Fan, C. Spatial configuration of anthropogenic land cover impacts on urban warming. Landsc. Urban Plan.
2014, 130, 104–111. [CrossRef]

28. Ma, B.; Wang, S.; Mupenzi, C.; Li, H.; Ma, J.; Li, Z. Quantitative Contributions of Climate Change and Human Activities to
Vegetation Changes in the Upper White Nile River. Remote Sens. 2021, 13, 3648. [CrossRef]

29. Tong, S.; Zhang, J.; Ha, S.; Lai, Q.; Ma, Q. Dynamics of Fractional Vegetation Coverage and Its Relationship with Climate and
Human Activities in Inner Mongolia, China. Remote Sens. 2016, 8, 776. [CrossRef]

https://doi.org/10.1016/j.landusepol.2023.106598
https://kns.cnki.net/kcms2/article/abstract?v=TzO8JwpG6ugQJ4d6aYgKBriI7-x8Gb5qDx1NP-WXKVYe0Wf3qELif_BlTnPkBbenhAH6bd1LD1dkPQsZAhdT-4TP8Hisvq8M313SxYZQhM5FQAnXY4KUG6nZqb3QpiQ-&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=TzO8JwpG6ugQJ4d6aYgKBriI7-x8Gb5qDx1NP-WXKVYe0Wf3qELif_BlTnPkBbenhAH6bd1LD1dkPQsZAhdT-4TP8Hisvq8M313SxYZQhM5FQAnXY4KUG6nZqb3QpiQ-&uniplatform=NZKPT&language=CHS
https://kns.cnki.net/kcms2/article/abstract?v=TzO8JwpG6ugQJ4d6aYgKBriI7-x8Gb5qDx1NP-WXKVYe0Wf3qELif_BlTnPkBbenhAH6bd1LD1dkPQsZAhdT-4TP8Hisvq8M313SxYZQhM5FQAnXY4KUG6nZqb3QpiQ-&uniplatform=NZKPT&language=CHS
https://doi.org/10.3969/j.issn.1000-2006.201912006
https://doi.org/10.1016/j.ecolind.2023.109958
https://doi.org/10.1016/j.envc.2021.100141
https://doi.org/10.1016/j.ufug.2023.127932
https://doi.org/10.1016/j.ecolind.2023.110415
https://doi.org/10.1016/j.agrformet.2011.07.004
https://doi.org/10.1016/S0034-4257(97)00104-1
https://doi.org/10.1007/978-981-13-7580-4_10
https://doi.org/10.3390/rs6054217
https://doi.org/10.1080/014311698215333
https://doi.org/10.1016/j.rse.2009.07.021
https://doi.org/10.1016/j.jag.2017.01.015
https://doi.org/10.1016/j.ecolind.2023.110932
https://doi.org/10.1109/TGRS.1995.8746027
https://doi.org/10.1088/0256-307X/15/12/025
https://doi.org/10.1016/j.isprsjprs.2019.11.018
https://doi.org/10.1007/BF01245391
https://doi.org/10.1016/j.gloenvcha.2021.102385
https://doi.org/10.3969/j.issn.1000-2006.2016.05.012
https://doi.org/10.1016/j.ecolind.2022.108818
https://doi.org/10.1016/j.ufug.2023.127980
https://doi.org/10.1016/j.landurbplan.2014.07.001
https://doi.org/10.3390/rs13183648
https://doi.org/10.3390/rs8090776


Sustainability 2024, 16, 661 24 of 25

30. Wei, X.; Wang, S.; Wang, Y. Spatial and temporal change of fractional vegetation cover in North-western China from 2000 to 2010.
Geol. J. 2018, 53, 427–434. [CrossRef]

31. Mao, P.; Zhang, J.; Li, M.; Liu, Y.; Wang, X.; Yan, R.; Shen, B.; Zhang, X.; Shen, J.; Zhu, X.; et al. Spatial and temporal variations in
fractional vegetation cover and its driving factors in the Hulun Lake region. Ecol. Indic. 2022, 135, 108490. [CrossRef]

32. Jiang, L.; Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities
in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [CrossRef]

33. de Beurs, K.M.; Henebry, G.M.; Owsley, B.C.; Sokolik, I. Using multiple remote sensing perspectives to identify and attribute land
surface dynamics in Central Asia 2001–2013. Remote Sens. Environ. 2015, 170, 48–61. [CrossRef]

34. Li, Y.; Zheng, Z.; Qin, Y.; Rong, P. Relative contributions of natural and man-made factors to vegetation cover change of
environmentally sensitive and vulnerable areas of China. J. Clean. Prod. 2021, 321, 128917. [CrossRef]

35. Zhang, Y.; Ye, A. Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland
China with the improved residual method. GISci. Remote Sens. 2021, 58, 235–260. [CrossRef]

36. Wang, J.F.; Zhang, T.L.; Fu, B.J. A measure of spatial stratified heterogeneity. Ecol. Indic. 2016, 67, 250–256. [CrossRef]
37. Fang, C. Progress and the future direction of research into urban agglomeration in China. Acta Geogr. Sin. 2014, 69, 1130–1144.

[CrossRef]
38. The Government Work Report of Yunnan Province. 2023. Available online: https://www.yn.gov.cn/zwgk/zfxxgk/zfgzbg/2023

02/t20230207_254669.html (accessed on 20 November 2023).
39. Wang, Y.; Lu, H. Driving force of vegetation cover change in Yunnan province of China from 2001 to 2018. Mt. Res. 2022,

40, 531–541. [CrossRef]
40. Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical detectors-based health risk assessment

and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [CrossRef]
41. “Development Plan for Urban Agglomeration in Central Yunnan”, Yunnan Provincial People’s Government. Available online:

https://www.yn.gov.cn/zwgk/zfxxgkpt/fdzdgknr/zcwj/zdgkwjyzf/202008/t20200826_209715.html (accessed on 20 November 2023).
42. Liu, H.; Zhou, T.; Gou, P. NDVI Dataset of China and Average in 361 Cities (250 m, 1990–2020). Digit. J. Glob. Chang. Data Repos. 2023,

10. Available online: https://www.geodoi.ac.cn/edoi.aspx?DOI=10.3974/geodb.2023.04.06.V1 (accessed on 20 November 2023).
43. Zhou, T.; Liu, H.; Gou, P.; Xu, N. Conflict or Coordination? Measuring the Relationships Between Urbanization and Vegetation

Cover in China. Ecol. Indic. 2023, 147, 106941. [CrossRef]
44. Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci.

Data 2019, 11, 1931–1946. [CrossRef]
45. Loess Plateau SubCenter, National Earth System Science Data Center, National Science & Technology Infrastructure of China.

Available online: http://loess.geodata.cn (accessed on 20 November 2023).
46. Li, X.; Zhou, Y.; Zhao, M.; Zhao, X. Harmonization of DMSP and VIIRS nighttime light data from 1992–2018 at the global scale.

2020. Available online: https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_
from_1992-2018_at_the_global_scale/9828827 (accessed on 20 November 2023). [CrossRef]

47. Zhao, M.; Cheng, C.; Zhou, Y.; Li, X.; Shen, S.; Song, C. A global dataset of annual urban extents (1992–2020) from harmonized
nighttime lights. Earth Syst. Sci. Data 2021, 14, 517–534. [CrossRef]

48. Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m
using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2021, 13, 2753–2776. [CrossRef]

49. Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using
multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020,
12, 1625–1648. [CrossRef]

50. Ministry of Ecology and Environment of the People’s Republic of China. Available online: https://www.mee.gov.cn/ (accessed
on 20 November 2023).

51. Tudor, C. Ozone pollution in London and Edinburgh: Spatiotemporal characteristics, trends, transport and the impact of
COVID-19 control measures. Heliyon 2022, 8, e11384. [CrossRef]

52. Bu, H.; Wulan, T.Y.; Siqin, C.K.T.; Han, S.M.; Gao, S.R.G.; Wu, X.Q. Response of vegetation fraction cover change to meteorological
drought in Inner Mongolia from 1982 to 2099. J. Northwest For. Univ. 2023, 5, 1–9. [CrossRef]

53. Wang, L.; Li, W.; Zheng, Y.; Zhang, X.; Yuan, F.; Wu, X. Water Deficit Caused by Land Use Changes and Its Implications on the
Ecological Protection of the Endorheic Dalinor Lake Watershed in Inner Mongolia, China. Water 2023, 15, 2882. [CrossRef]

54. Xu, T.; Wu, H. Spatiotemporal Analysis of Vegetation Cover in Relation to Its Driving Forces in Qinghai–Tibet Plateau. Forests
2023, 14, 1835. [CrossRef]

55. Aldwaik, S.Z.; Pontius, R.G., Jr. Intensity analysis to unify measurements of size and stationarity of land changes by interval,
category, and transition. Landsc. Urban Plan. 2012, 106, 103–114. [CrossRef]

56. Li, S.C.; Gong, J.; Yang, J.X.; Chen, G.; Zhang, Z.; Zhang, M.Q. Characteristics of LUCC patterns of the Lanzhou-Xining urban
agglomeration: Based on an intensity analysis framework. Resour. Sci. 2023, 45, 480–493. [CrossRef]

57. Mu, B.; Zhao, X.; Zhao, J.; Liu, N.; Si, L.; Wang, Q.; Sun, N.; Sun, M.; Guo, Y.; Zhao, S. Quantitatively Assessing the Impact of
Driving Factors on Vegetation Cover Change in China’s 32 Major Cities. Remote Sens. 2022, 14, 839. [CrossRef]

58. Zheng, Y.; He, Y.; Zhou, Q.; Wang, H. Quantitative Evaluation of Urban Expansion using NPP-VIIRS Nighttime Light and Landsat
Spectral Data. Sustain. Cities Soc. 2021, 76, 338. [CrossRef]

https://doi.org/10.1002/gj.3030
https://doi.org/10.1016/j.ecolind.2021.108490
https://doi.org/10.1016/j.scitotenv.2017.05.012
https://doi.org/10.1016/j.rse.2015.08.018
https://doi.org/10.1016/j.jclepro.2021.128917
https://doi.org/10.1080/15481603.2021.1872244
https://doi.org/10.1016/j.ecolind.2016.02.052
https://doi.org/10.11821/dlxb201408009
https://www.yn.gov.cn/zwgk/zfxxgk/zfgzbg/202302/t20230207_254669.html
https://www.yn.gov.cn/zwgk/zfxxgk/zfgzbg/202302/t20230207_254669.html
https://doi.org/10.16089/j.cnki.1008-2786.000691
https://doi.org/10.1080/13658810802443457
https://www.yn.gov.cn/zwgk/zfxxgkpt/fdzdgknr/zcwj/zdgkwjyzf/202008/t20200826_209715.html
https://www.geodoi.ac.cn/edoi.aspx?DOI=10.3974/geodb.2023.04.06.V1
https://doi.org/10.1016/j.ecolind.2023.109993
https://doi.org/10.5194/essd-11-1931-2019
http://loess.geodata.cn
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827
https://figshare.com/articles/dataset/Harmonization_of_DMSP_and_VIIRS_nighttime_light_data_from_1992-2018_at_the_global_scale/9828827
https://doi.org/10.6084/m9.figshare.9828827.v2
https://doi.org/10.5194/essd-14-517-2022
https://doi.org/10.5194/essd-13-2753-2021
https://doi.org/10.5194/essd-12-1625-2020
https://www.mee.gov.cn/
https://doi.org/10.1016/j.heliyon.2022.e11384
https://doi.org/10.3969/j.issn.1001-7461.2023.05.01
https://doi.org/10.3390/w15162882
https://doi.org/10.3390/f14091835
https://doi.org/10.1016/j.landurbplan.2012.02.010
https://doi.org/10.18402/resci.2023.03.02
https://doi.org/10.3390/rs14040839
https://doi.org/10.1016/j.scs.2021.103338


Sustainability 2024, 16, 661 25 of 25

59. Zhou, X.; Wen, H.; Zhang, Y.; Xu, J.; Zhang, W. Landslide susceptibility mapping using hybrid random forest with GeoDetector
and RFE for factor optimization. Geosci. Front. 2021, 12, 101211. [CrossRef]

60. Kong, Z.; Ling, H.; Deng, M.; Han, F.; Yan, J.; Deng, X.; Wang, Z.; Ma, Y.; Wang, W. Past and projected future patterns of fractional
vegetation coverage in China. Sci. Total Environ. 2023, 902, 166133. [CrossRef] [PubMed]

61. Yang, S.; Song, S.; Li, F.; Yu, M.; Yu, G.; Zhang, Q.; Cui, H.; Wang, R.; Wu, Y. Vegetation coverage changes driven by a combination
of climate change and human activities in Ethiopia, 2003–2018. Ecol. Inform. 2022, 71, 101776. [CrossRef]

62. Wang, Z.; Wang, Y.; Liu, Y.; Wang, F.; Deng, W.; Rao, P. Spatiotemporal characteristics and natural forces of grassland NDVI
changes in Qilian Mountains from a sub-basin perspective. Ecol. Indic. 2023, 157, 111186. [CrossRef]

63. Wang, Y.; Li, M. Annually Urban Fractional Vegetation Cover Dynamic Mapping in Hefei, China (1999–2018). Remote Sens. 2021,
13, 2126. [CrossRef]

64. Li, W.; Wang, W.; Chen, J.; Zhang, Z. Assessing effects of the Returning Farmland to Forest Program on vegetation cover changes
at multiple spatial scales: The case of northwest Yunnan, China. J. Environ. Manag. 2022, 304, 114303. [CrossRef] [PubMed]

65. Mallinis, G.; Koutsias, N.; Arianoutsou, M. Monitoring land use/land cover transformations from 1945 to 2007 in two peri-urban
mountainous areas of Athens metropolitan area, Greece. Sci. Total Environ. 2014, 490, 262–278. [CrossRef]

66. Sun, H.; Wang, J.; Xiong, J.; Bian, J.; Jin, H.; Cheng, W.; Li, A. Vegetation change and its response to climate change in Yunnan
Province, China. Adv. Meteorol. 2021, 2021, 8857589. [CrossRef]

67. Shi, H.; Chen, J. Characteristics of climate change and its relationship with land use/cover change in Yunnan Province, China. Int.
J. Climatol. 2018, 38, 2520–2537. [CrossRef]

68. Hillman, A.L.; Yu, J.; Abbott, M.B.; Cooke, C.A.; Bain, D.J.; Steinman, B.A. Rapid environmental change during dynastic transitions
in Yunnan Province, China. Quat. Sci. Rev. 2014, 98, 24–32. [CrossRef]

69. Zhang, C.; He, H.; Mokhtar, A. The impact of climate change and human activity on spatiotemporal patterns of multiple cropping
index in South West China. Sustainability 2019, 11, 5308. [CrossRef]

70. Tao, J.; Zhu, J.; Zhang, Y.; Dong, J.; Zhang, X. Divergent effects of climate change on cropland ecosystem water use efficiency at
different elevations in southwestern China. J. Geogr. Sci. 2022, 32, 1601–1614. [CrossRef]

71. He, Y.; Zhou, C.; Ahmed, T. Vulnerability assessment of rural social-ecological system to climate change: A case study of Yunnan
Province, China. Int. J. Clim. Chang. Strateg. Manag. 2021, 13, 162–180. [CrossRef]

72. Sun, L.; Jaramillo, F.; Cai, Y.; Zhou, Y.; Shi, S.; Zhao, Y.; Gunnarson, B. Exploring the influence of reservoir impoundment on
surrounding tree growth. Adv. Water Resour. 2021, 153, 103946. [CrossRef]

73. Gu, Z.; Bai, Z.; Duan, X.; Ding, J.; Feng, D.; Shi, X.; Han, X. Quantitative effects of environmental factors on climatic yield
in the mountainous area: A case study in Yunnan Province. Chin. J. Agrometeorol. 2015, 36, 497. Available online: https:
//zgnyqx.ieda.org.cn//EN/Y2015/V36/I04/497 (accessed on 20 November 2023).

74. Fan, F.; Xiao, C.; Feng, Z.; Yang, Y. Impact of human and climate factors on vegetation changes in mainland Southeast Asia and
Yunnan Province of China. J. Clean. Prod. 2023, 415, 137690. [CrossRef]

75. Gibson, J.; Olivia, S.; Boe-Gibson, G. Night lights in economics: Sources and uses 1. J. Econ. Surv. 2020, 34, 955–980. [CrossRef]
76. Levin, N.; Kyba, C.C.; Zhang, Q.; de Miguel, A.S.; Román, M.O.; Li, X.; Elvidge, C.D. Remote sensing of night lights: A review

and an outlook for the future. Remote Sens. Environ. 2020, 237, 111443. [CrossRef]
77. Dong, B.; Yang, Y.; You, S.; Zheng, Q.; Huang, L.; Zhu, C.; Tong, C.; Li, S.; Li, Y. Identifying and Classifying Shrinking Cities Using

Long-Term Continuous Night-Time Light Time Series. Remote Sens. 2021, 13, 3142. [CrossRef]
78. Cai, D.; Fraedrich, K.; Guan, Y.; Guo, S.; Zhang, C. Urbanization and climate change: Insights from eco-hydrological diagnostics.

Sci. Total Environ. 2019, 647, 29–36. [CrossRef]
79. Bennie, J.; Davies, T.W.; Cruse, D.; Bell, F. Artificial light at night alters grassland vegetation species composition and phenology.

J. Appl. Ecol. 2017, 55, 442–450. [CrossRef]
80. Liu, C.; Li, W.; Wang, W.; Zhou, H.; Liang, T.; Hou, F.; Xu, J.; Xue, P. Quantitative spatial analysis of vegetation dynamics and

potential driving factors in a typical alpine region on the northeastern Tibetan Plateau using the Google Earth Engine. CATENA
2021, 206, 105500. [CrossRef]

81. Zuo, Y.; Li, Y.; He, K.; Wen, Y. Temporal and spatial variation characteristics of vegetation coverage and quantitative analysis of
its potential driving forces in the Qilian Mountains, China, 2000–2020. Ecol. Indic. 2022, 143, 109429. [CrossRef]

82. Xu, X.; Jiang, H.; Guan, M.; Wang, L.; Huang, Y.; Jiang, Y.; Wang, A. Vegetation responses to extreme climatic indices in coastal
China from 1986 to 2015. Sci. Total Environ. 2020, 744, 140784. [CrossRef]

83. Zhang, S.; Zhou, Y.; Yu, Y.; Li, F.; Zhang, R.; Li, W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of
Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sens. 2022, 14, 5794. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.gsf.2021.101211
https://doi.org/10.1016/j.scitotenv.2023.166133
https://www.ncbi.nlm.nih.gov/pubmed/37567294
https://doi.org/10.1016/j.ecoinf.2022.101776
https://doi.org/10.1016/j.ecolind.2023.111186
https://doi.org/10.3390/rs13112126
https://doi.org/10.1016/j.jenvman.2021.114303
https://www.ncbi.nlm.nih.gov/pubmed/34933269
https://doi.org/10.1016/j.scitotenv.2014.04.129
https://doi.org/10.1155/2021/8857589
https://doi.org/10.1002/joc.5404
https://doi.org/10.1016/j.quascirev.2014.05.019
https://doi.org/10.3390/su11195308
https://doi.org/10.1007/s11442-022-2012-7
https://doi.org/10.1108/IJCCSM-08-2020-0094
https://doi.org/10.1016/j.advwatres.2021.103946
https://zgnyqx.ieda.org.cn//EN/Y2015/V36/I04/497
https://zgnyqx.ieda.org.cn//EN/Y2015/V36/I04/497
https://doi.org/10.1016/j.jclepro.2023.137690
https://doi.org/10.1111/joes.12387
https://doi.org/10.1016/j.rse.2019.111443
https://doi.org/10.3390/rs13163142
https://doi.org/10.1016/j.scitotenv.2018.07.319
https://doi.org/10.1111/1365-2664.12927
https://doi.org/10.1016/j.catena.2021.105500
https://doi.org/10.1016/j.ecolind.2022.109429
https://doi.org/10.1016/j.scitotenv.2020.140784
https://doi.org/10.3390/rs14225794

	Introduction 
	Materials and Methods 
	Study Area and Data 
	Calculation of Vegetation Cover 
	Trend Analysis 
	Intensity Analysis 
	Intensity Map 
	Geodetector Model 

	Results 
	Spatial and Temporal Changes in FVC 
	Variation Trends Analysis of FVC 
	FVC Change at Time Interval, Category, and Transition Level 
	Transitions Level Change Tendency of FVC 
	Contributions of the Climate Change and Human Activity Factors to FVC Changes 

	Discussion 
	Trends in the Patterns of FVC 
	Changes in the Intensity of FVC 
	Differences in the Response of FVC Changes to Impact Factors 
	Meteorological Factors 
	Topographical Factors 
	Human Factors 
	Factors Interaction Effect 


	Conclusions 
	References

