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Abstract: Deforestation is a central topic in the ongoing environmental degradation stemming
from global economic expansion and population growth. This study delved into the effects of
electricity production from renewable sources, GDP per capita, and urbanization on forest area
growth in Finland during the over-three-decade research period, 1990–2022, using an Autoregressive
Distributed Lag (ARDL) model. Both the ARDL bounds test and the Bayer–Hanck cointegration
tests proved the existence of a long-term cointegrating relationship between the variables, and the
constructed error correction model (ECM) evaluated short-term relationships. The results showed
that: (i) forest area growth is positively connected with electricity production from renewable
sources and urbanization; (ii) forest area growth is negatively connected with economic growth;
(iii) in the short run, forest area growth is positively connected with all regressors. The utilized
ARDL-ECM model, characterized by its robustness and appropriateness, validated the time-series
dynamics. The obtained results were scrutinized, and their policy implications were thoroughly
examined. Additionally, recommendations are provided to ensure the sustainability and success of
forest conservation efforts.

Keywords: ARDL modeling; forest area growth; sustainable forest management; renewable resource
utilization; green power

1. Introduction

Deforestation represents a pressing global concern, carrying significant implications
for the environment, society, and economy. It refers to the large-scale removal of forests,
primarily for agricultural expansion, logging, infrastructure development, and urbanization.
This practice has raised various concerns for several reasons. Forests house a significant
share of the Earth’s biodiversity. Their destruction or degradation unsettle the equilibrium
of the planet’s ecosystems.

The primary contributor to the release of greenhouse gases (GHGs) into the atmosphere
is identified as deforestation. According to Tanner and Johnston [1], illegal logging by itself
could account, globally, for 7% to 20% of the annual total human-induced GHGs.

In recent decades, Europe has experienced an increase in its forested areas, primarily
due to sustainable forest management practices and reforestation efforts [2]. The primary
drivers of deforestation are agricultural expansion, urban development, and timber harvest-
ing [3]. The effort to achieve the EU’s goal of decarbonizing its economy by 2050 includes
the promotion of sustainable bioenergy as a substitute for fossil fuels. Hence, there is a need
for strategies focused on sustainable forest management and the preservation of biodiverse
areas, aimed at utilizing biomass for the generation of electricity [4].

This research examined the factors influencing forest area growth in Finland over
the period from 1990 to 2022. The Annual Climate Report for 2021 reported that Finland
witnessed a 9% reduction in its CO2 emissions compared to 2020, and it aims to achieve
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carbon neutrality by 2035. The transition toward a carbon-neutral economy by 2035 involves
the development of low-carbon strategies tailored to specific sectors, as outlined by Majava
et al. [5]. Furthermore, Finland also aspires to be the first nation worldwide to operate
entirely without fossil fuels. Attaining carbon neutrality involves finding equilibrium
between the release of greenhouse gas emissions and the utilization of carbon sinks that
capture and store carbon. Forests, in particular, function as crucial carbon sinks by capturing
and storing CO2. Sustainable forestry practices and growing forests can sequester more
carbon, contributing to climate change mitigation. This carbon sequestration aspect can be
considered a positive environmental impact.

The Finnish forests cover about 75% of the country’s land area, making it one of
the most forested countries in Europe. Finland’s forest situation is significant for both
its environmental and economic aspects. Finland’s economy relies significantly on the
forestry sector. This includes the production of wood and wood products, pulp, and paper
and the manufacturing of various forest-related products. Finnish forests provide raw
material for these industries. Boreal forests play a crucial role in offering a diverse array
of ecosystem services that hold significance for society. Triviño et al. [6] examined the
resilience concept within the field of forest sciences, exploring how extreme events pose
risks to boreal forests and the role of management in mitigating or exacerbating these risks.
Their analysis indicated that rising temperatures and extreme events are jointly exerting
adverse effects on forests.

Finland is known for having a substantial forest area, representing a significant natural
resource for the country [7,8]. Finland’s forests undergo meticulous management, and
the timber industry stands out as one of the paramount sectors in the country’s economy.
Finland has implemented forest conservation policies to ensure their sustainable use.

We observe in Figure 1 that the forest area lost in Finland has shown notable variations
over the years. On the x-axis in Figure 1A,B, the years are represented, while on the y-axis in
(A), hectares are depicted, an in (B), CO2 emissions are expressed in milligrams (Mg). There
was a significant increase in losses in 2017, reaching a peak at 336,198 hectares, after which
the losses slightly decreased in the following years but remained at relatively high levels.
Greenhouse gas emissions associated with forest cover loss increased significantly in 2017,
when the losses were the highest. Despite variations in the subsequent years, emission
levels remained relatively high until the year 2022. These data indicate a connection
between deforestation and greenhouse gas emissions in Finland. The subsequent decline in
losses may have resulted from conservation measures or sustainable forest management,
but it is crucial to monitor these trends in the long term and evaluate their repercussion on
the environment and climate change.
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Finland’s sustainable management practices play a vital role in forest conservation.
Finland prioritizes sustainable forestry, emphasizing the responsible management of forests
to safeguard the long-term health and productivity of ecosystems. This approach focuses
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on preserving biodiversity, maintaining soil and water quality, and ensuring that forest
resources are harvested in a way that allows for regeneration. The role of Finnish forests
is recognized in mitigating climate changes. Finland has implemented measures to pro-
mote carbon sequestration. Sustainable forest management contributes to carbon storage
in trees and forest soils. Afforestation helps mitigate climate change by capturing and
storing carbon. França et al. [10] assert that the USA and Finland are leaders in forest
management optimization.

Numerous Finnish forests hold certification from various forest certification programs,
including the Forest Stewardship Council and the Programme for the Endorsement of For-
est Certification [11]. These certifications ensure that the forests are managed sustainably.
Finland’s approach to forest conservation in the framework of sustainable management
seeks to balance the economic perks of forest activities with the ecological significance of its
forested areas. This commitment to sustainability helps ensure that Finland’s forests con-
tinue to thrive and provide various benefits to both the environment and society. According
to Mönkkönen et al. [12], given that managed forests encompass almost 90% of the country,
they are bound to contribute to promoting biodiversity recovery. Nevertheless, the extent
of their impact hinges crucially on the methods of management employed. As human
population density rises and various forest-related livelihoods emerge, human land use
has become a direct influence on the alteration of forest structures. In contemporary forest
landscapes, a consistent management regime prevails, resulting in a relatively uniform
forest structure [13].

The primary objective of this research was to analyze the impact of three key factors—
gross domestic product (GDP), renewable energy production (RENP), and urbanization
(URB)—on forest area growth in Finland, in both the long and short term. Through a
detailed analysis of these economic and environmental variables, the research aimed to
unveil the complex dynamics governing the interrelationship between economic prosperity
and deforestation trends. This exploration extended beyond mere statistical scrutiny; it
ventured into the realm of forecasting, particularly utilizing forest area growth as a pivotal
metric for discerning deforestation patterns. The forecasting model incorporated real GDP
per capita and other macroeconomic variables, meticulously designed to unravel and
comprehend the complex connections that underlie the intersection of economic growth
and deforestation—a paramount concern in contemporary environmental discourse [14]. By
analyzing the interaction between economic, social, and environmental variables, the study
aimed to provide an in-depth perspective on the impact of environmental policies on forest
ecosystems. In the context of global climate change and increasing anthropogenic pressures,
this research makes a valuable contribution to understanding how forest conservation
can be optimized to support biodiversity and ensure a sustainable future for Finland’s
natural resources.

This three-decade study represents a contribution to the determinants of forest area
growth in Finland, considering the electricity production from renewable sources as one of
the regressors.

The following research questions are explicitly explored in this paper:

➢ RQ1: Is there a correlation between the expansion of the Finnish economy and the
growth of forested areas?

➢ RQ2: Does the use of electricity generated from renewable energy sources impact
deforestation practices in Finland?

The structure of this work is as follows. The following section includes the state of
art and an exploration of research gaps. In the methodology section, we propose utilizing
the ARDL technique to examine how RENP, GDP, and URB influence forest area growth.
Following this, we present empirical findings and provide discussions and interpretations.
Our results indicate that, in the long term, GDP has a negative impact on forest area growth,
while RENP and URB have a positive impact on forest area growth. The error correction
term (ECT) is −1.46, signifying a 146% speed of adjustment from the long-term to the short-
term equilibrium. The study concludes with final remarks and policy recommendations.
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2. Literature Review

This section provides an overview of existing studies in the field of deforestation,
highlighting their significance in a global context and the need for a deeper understanding
of influencing factors.

2.1. ARDL Technique Application and Studies in Finland

In this subsection, we examine how the ARDL technique has been applied in defor-
estation studies in Finland, highlighting the unique contributions and findings of this
research. An extensive body of literature is dedicated to studying the factors that influence
deforestation on a global scale. There is a relatively limited number of studies addressing
the influence of renewable energy consumption on deforestation. The application of the
ARDL technique in Finland represents a novelty in addressing the gap in this field. This
study continued the previous research on Finland’s carbon emissions, economic growth,
and energy consumption.

Georgescu and Kinnunen [15] used an ARDL model to examine the determinants of
CO2 emissions in Finland during the period 2000–2020. The findings revealed that long-
term energy consumption positively influences CO2 emissions, while labor productivity
and urbanization exert a negative effect on CO2 emissions.

Cozma et al. [16] analyzed European countries and discovered that countries practicing
sustainable forest management (among which Finland has the second best performance, af-
ter Denmark) tend to exhibit lower levels of corruption and higher levels of competitiveness
in the tourism sector.

Another study [17] focused on analyzing factors that affect Finland’s trade balance
using the ARDL methodology, aiming to investigate the short-term and long-term relation-
ships between the trade balance, real effective exchange rate, GDP per capita, urbanization,
unemployment, and inflation rate in the Finnish economy. It was found that the real
effective exchange rate, urbanization, and inflation significantly and negatively impact
Finland’s trade balance in both the short and long term. Conversely, the effects of GDP per
capita and unemployment are significantly positive. The authors recommended a reliable
policy measure for Finland aimed at improving the trade balance by promoting domestic
production and reducing imports.

Another study applying the ARDL methodology [18], focused on examining a causal
relationship between renewable energy consumption, gross domestic product (GDP), GDP
squared, non-renewable energy prices, population growth, and forest area. The study’s
conclusions suggested that an increase in renewable energy consumption is associated with
an increase in forest area in these countries. Thus, the importance of using clean energy
for forest conservation was emphasized. The research indicated that policymakers and
economic decision makers should take measures to promote the use of renewable energy
to contribute to forest protection and the fight against deforestation.

2.2. Impact of Electricity Generation on Forest Cover

This subsection explores the relationship between electricity production and defor-
estation, examining how different energy practices impact the forest environment. The
first direction in the literature regards the impact of electricity generation on forest cover.
However, these effects on deforestation are less known despite the existing links between
fossil fuels and forest degradation. Ahmed et al. [19] investigated how deforestation in
Pakistan is determined by economic growth, energy consumption, trade openness, and
population density.

In [1], a strong correlation between rural electrification and a decrease in deforestation
rates was observed. Furthermore, the strength of this correlation remained consistent across
various model specifications, in contrast to population growth and economic development,
which showed less stability in their predicted effects.



Sustainability 2024, 16, 612 5 of 21

In a study conducted in China, Bhattacharyya and Ohiare [20] found that providing
electricity access to rural communities through government initiatives could substantially
mitigate deforestation rates.

The article by Bakehe [21] focused on the effect of access to electricity on deforestation
using data from 47 African countries during the period 1990–2015. The author showed that
improving access to electricity reduces the deforestation rate. However, when excluding
North African countries and South Africa from the dataset, the effect of access to electricity
became insignificant. Measures such as reducing electricity consumption prices and pro-
viding quality service could increase the chances of substituting more advanced energy
sources like electricity for traditional biomass and, consequently, reduce deforestation.

Woldemedhin et al. [22] conducted a study examining the relationship between forests,
energy consumption, and economic growth within the context of Ethiopia’s climate-resilient
green economy strategy. The study highlighted that forests play a crucial role as a source
of energy and income in tropical regions, and economic growth significantly affects both
forest coverage and energy usage patterns. To investigate this, the authors applied Vector
Autoregression and Autoregressive Distributed Lag models to analyze time-series data
spanning from 1990 to 2014. The findings underscored that forests have a substantial
impact on energy consumption and economic growth. This suggests that policymakers
should pay special attention to this aspect when formulating policies.

2.3. Role of Renewable Energy Consumption in Deforestation

Another direction in the literature focuses on the impact of renewable energy consumption
on deforestation rates, with special attention to ecological policy and its implementations.

Ref. [1] found that the government can lower deforestation rates through the imple-
mentation of an ecological policy that grants rural communities greater access to renewable
energy sources. This approach helps alleviate the reliance on biomass for their daily
energy needs.

Nazir et al. [23] explored the creation of a wind energy atlas as a potential remedy
for the issue, demonstrating a robust connection between the adoption of clean energy
and a reduction in deforestation. The research by Bakehe and Hassan [24] centered on the
impact of clean fuel and cooking technology accessibility in developing countries and its
connection to deforestation. The analysis spanned a dataset comprising 92 countries over
the years 2000 to 2015. The findings indicated that increased access to clean cooking fuels
and technologies contributes to a reduction in the rate of deforestation.

Ponce et al. [18] explored the causal relationships between renewable energy con-
sumption and its determinants, including forest area, in countries classified as high-,
middle-, and low-income. The results indicated that an escalation in renewable energy
consumption correlates with a growth in forest cover, with an approximate increase of
0.04 to 0.02 square kilometers in high-, middle-, and low-income countries, respectively.

Another study [25] focused on making a significant contribution to the debate on the
determinants of deforestation, a threat that impacts sustainable development, particularly
in developing tropical regions. Specifically, this article concentrated on the influence of
energy justice and democratization. The main contribution of this study to the specialized
literature lies in its emphasis on the concept of energy justice—defined as the equality
between rural and urban areas regarding access to electricity, clean energy sources, and
cooking technologies—and its interaction with democratic processes.

The analysis of Makame [26] indicated that most individuals from Zanzibar continue
to rely on traditional stoves, leading to excessive wood consumption and the degradation
of forest resources. As conventional fuels are not easily accessible to the majority in
Zanzibar, enhanced charcoal stoves have emerged as a practical solution to curb wood
fuel consumption in urban Zanzibar, thereby slowing down deforestation. The key lies
in the widespread adoption of these improved charcoal stoves within social systems for
effective change.
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2.4. Economic Growth and Deforestation

Another direction is concerned with the impact of economic growth on deforestation.
The relationship between forest area growth and GDP per capita is not linear, varying
according to the economic development of a country, land-use policies, and environmental
awareness. In the early stage of economic development, when a country’s GDP per capita
is relatively low, there may be a positive correlation between forest area growth and income.
In economies with lower levels of development, a substantial portion of the population
depends on land resources for their sustenance. As these economies experience growth,
there are motivations for engaging in reforestation and afforestation efforts, resulting in an
expansion in forested land. On the other hand, as a country’s GDP per capita increases, there
is often a shift away from traditional reliance on forests, and industrial and agricultural
activities tend to expand. This can lead to deforestation as forests are cleared for agriculture,
infrastructure development, and urbanization. The pressure on forests may increase as the
demand for timber and land resources grows.

Several investigations into economic growth have explored the environmental Kuznets
curve (EKC), which posits an inverted U-shaped correlation between economic growth and
environmental degradation, in this context deforestation.

Ajanaku and Collins [27] aimed to assess the validity of the EKC hypothesis in the
context of deforestation in Africa between 1990 and 2016. The empirical findings from the
panel Generalized Method of Moments (GMM) analysis supported the existence of the
EKC hypothesis for deforestation in Africa, with a turning point at USD 3000.

Rădulescu et al. [4] found that there exists an inverse-U-shaped correlation between
GDP and Romania’s forested areas. The study by Murshed et al. [14] examined the EKC
hypothesis for Bangladesh. Deforestation propensities were the environmental indicator,
while the control factors were energy consumption, agricultural land coverage, and the
population growth rate in a dataset from 1972 to 2018. The statistical evidence supported
the non-linear inverted-U-shaped relationship between economic growth and deforestation
practices in Bangladesh.

The study in [28] assessed the existence of the EKC for deforestation using a dataset of
114 countries clustered into low-, middle-, and high-income groups and examined these
clusters. The results confirmed the inverse-U-shaped EKC for deforestation. Low-income
countries need enhanced efforts to avoid further increases in forest loss. Middle-income
countries displayed a bell-shaped EKC with the turning point occurring when the GDP
per capita was equal to USD 3790. Deforestation continued after this, only at a lower rate,
until eventually, for high-income countries, these rates became negative and the total forest
cover became positive.

The research in [29] delved into the applicability of the EKC hypothesis for deforesta-
tion in five European countries. Employing the ARDL approach for data spanning from
1974 to 2013, deforestation was scrutinized as an indicator of environmental deterioration,
particularly due to its association with global environmental concerns, notably driven by
agricultural expansion. However, Europe has managed to expand its forested regions by
implementing policies that encourage technological advancements in the agricultural sector.
The long-run coefficient results indicated the validity of the EKC hypothesis for France,
Germany, Portugal, and Turkey.

Tsiantikoudis et al. [30] discovered that the connection between growth and deforesta-
tion in Bulgaria takes on an N-shaped pattern. The study employed CO2 emissions from
deforestation as a metric for deforestation tendencies, determining that, despite a threshold
of the GDP beyond which deforestation-induced CO2 emissions declined in Bulgaria, this
pattern was not sustained. Consequently, the country-specific empirical evidence outlined
in the literature underscores the inherent ambiguity in the non-linear relationship between
economic growth and deforestation rates.
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2.5. Urbanization, Trade, and Deforestation

In this part of our discussion, we delve into how political, institutional, and governance
frameworks influence deforestation. We emphasize the crucial role that policy making
plays in the stewardship of natural resources. The relationship between GDP per capita
and forest area growth can be further complicated by global trade dynamics. High-income
countries may import forest products from lower-income countries, indirectly contributing
to deforestation in the exporting countries.

Arcand et al. [31] demonstrated that increased deforestation in developing countries
is determined by the depreciation of the real exchange rate and lax government regulation
through an empirical analysis using annual data from 1961 to 1988 across 101 countries.

Using the fixed-effects model, ref. [32] investigated the impact of trade openness
on deforestation in the Brazilian Amazon from 2000 to 2010. The findings of the study
confirmed that deforestation exhibited an inverse relationship with both trade flows and
economic growth.

The relationship between urbanization and deforestation is another direction in the
literature. Nathaniel and Bekun [33] investigated the complex relationship between urban-
ization and deforestation in Nigeria, taking into consideration the influences of trade flow,
energy, and population on environmental management. By robust estimation techniques,
the authors found that economic growth, energy consumption, and urbanization exhibit
positive effects on deforestation. The migration of individuals from rural areas to urban
centers in search of improved opportunities often has a drawback, frequently causing a
decline in environmental quality.

Yameogo [34] investigated the impact of globalization and urbanization on deforesta-
tion in Burkina Faso from 1980 to 2017 using ARDL and the Toda–Yamamoto Granger
causality. The empirical results confirmed that, in the long run, globalization, urbaniza-
tion, and agricultural land exert a positive influence on deforestation. Conversely, in the
short run, urbanization, economic growth, and population density contribute positively
to deforestation.

2.6. Political, Institutional, and Governance Structures and Deforestation

Another research line regards the impact of political, institutional, and governance
structures on deforestation.

Acheampong and Opoku [25] focused on energy justice, defined as achieving parity
in access to electricity and clean cooking technologies between rural and urban areas, and
its interplay with democracy. Employing panel data from 47 sub-Saharan African countries
spanning the years 2000 to 2020 and utilizing the dynamic two-step GMM estimator, the
findings suggested that enhancing rural–urban equality in access to electricity and clean
cooking technologies correlates with a decrease in deforestation. Similarly, democracy is
associated with a reduction in deforestation.

Rydning and Vadlamannati [35] found a correlation between democracy and reduced
levels of forest coverage on a panel dataset of 139 countries from 1990 to 2012. Additional
analyses uncovered that the positive impact of democracy on forest area coverage is contin-
gent upon the economic development level. At a GDP per capita of about USD 8200, the
influence of democracy on forest coverage turns positive. The results implied that the envi-
ronmental focus of a democratic government depends on its economic development stage.

In another study conducted by Moreira-Dantas and Söder [36], empirical evidence
was presented regarding the relationship between institutional factors and forest cover
conversion. The role of weak institutions was explored using a logistic model based on
recent high-resolution global remote sensing data from the European Space Agency (ESA)
Climate Change Initiative Land Cover (CCI-LC) project for the period 1992–2015. The
authors examined the associations between the Corruption Perception Index (CPI) and the
World Bank Government Effectiveness (GE) index, while also considering physiographic
and structural variables. The results of this study showed that areas with difficult access
represent significant barriers to forest conversion, and regions with high agricultural suit-
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ability are more susceptible to deforestation. Furthermore, higher government effectiveness,
characterized by stronger policy enforcement, better policy design, and a lower perception
of corruption, is significantly associated with a lower probability of deforestation.

3. Materials and Methods
3.1. ARDL Methodology

Given the main objective described in the introduction section, this section will present
the empirical findings, complex analyses, and meaningful insights derived from the ap-
plied methodology, shedding light on the critical role of economic factors in shaping the
environmental landscape of Finland over the examined temporal span. To provide a clear
and consistent understanding of the methodological stage of developing and validating
the ARDL model, we outline the methodological steps in Figure 2.
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The first step we undertook was the application of Vogeslang and Perron and ADF
tests to check data stationarity. The Vogeslang and Perron test is used to verify if data
series are stationary before proceeding with further analysis [37]. It helps identify any
structural changes in the data under analysis. Applying the ADF test focuses on deter-
mining the stationarity of data series and identifying whether differencing is required
to achieve stationary data. It is an essential step in data preparation. The second step
is to verify the existence of long-term cointegration. For this stage, we used the Bayer
and Hank cointegration test. This test is used to determine if there is a long-term coin-
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tegration relationship among the analyzed variables. This relationship suggests that the
variables move together in the long term, having a common effect. Additionally, in this
stage, we also applied the bounds test as a revalidation of the existence of long-term coin-
tegration. If this step confirmed cointegration, we proceeded to the next stage. In step 3,
short-term relationships between the analyzed variables were estimated. This helped us
understand the immediate interactions between variables. Long-run estimation coefficients
were also calculated, providing information about the long-term relationship between
the analyzed variables. The final stage was testing the performance of the constructed
ARDL model. Firstly, we applied techniques such as FMOLS, DOLS, and CCR to evalu-
ate the model’s robustness. Subsequently, we tested the model to identify if there were
issues with autocorrelation, heteroscedasticity, or deviations from a normal distribution
in the model’s residuals. Additionally, we analyzed the stability of factors influencing the
model’s variables.

Overall, this methodological flow aims to ensure the validity and robustness of the
ARDL model, allowing researchers to draw solid conclusions and make meaningful inter-
pretations of the relationships between the analyzed variables.

To establish a comprehensive framework for examining the relationships between
FAG and its key determinants, we employed an Autoregressive Distributed Lag modeling
approach. This approach offers several advantages, including the ability to capture both
short-term and long-term effects and adapt to potential structural changes in the data.

The dependence equation has the form

FAGt = a0 + a1GDPt + a2RENPt + a3URBt + εt (1)

Consistent with prior research, the time series were converted into their natural loga-
rithmic forms. As a result, the estimated coefficients indicated elasticities. Implementing a
logarithmic transformation on these variables helped alleviate potential fluctuations in the
time-series data. The log transformation aimed to stabilize their variance [38].

Equation (1) is expressed as an ARDL (n, p, q, r) model:

FAGt = a0 +
n
∑

k=1
a1∆FAGt−k +

p
∑

k=1
a2∆GDPt−k +

q
∑

k=1
a3∆RENPt−k +

r
∑

k=1
a4∆URBt−k

+λ1FAGt−1 + λ2GDPt−1 + λ3RENPt−1 + λ4URBt−1 + εt

(2)

In Equation (2), the first difference operator is denoted by ∆, and εt is the noise. We
determine later the lag lengths n, p, q, and r.

A first step in applying the ARDL methodology is to check the stationarity of the data
series. Stationarity is a crucial characteristic of time-series data, indicating that the mean
and variance remain constant over time. To assess data stationarity, it is common practice
to employ the Augmented Dickey–Fuller (ADF) test [39].

The Dickey–Fuller unit root test assesses the null hypothesis that α equals 1, where α

represents the coefficient of the initial lag on y in Equation (3):

yt = c + βt + αyt−1 + Φ∆yt−1 + et (3)

In Equation (3), yt−1 is the first lag of the time series, ∆yt−1 is the first difference of
the time series, and et is the error term. If the null hypothesis is accepted, then the series
is non-stationary. An extension of the Dickey–Fuller unit root test [39] is the Augmented
Dickey–Fuller (ADF) test, which contains a higher-order autoregressive process of order p,
as shown by Equation (4):

yt = c + βt + αyt−1 + Φ1∆yt−1 + Φ2∆yt−2 + · · ·+ Φp∆yt−p + et (4)

The lag order p is determined when applying the test. The null hypothesis of the ADF
test is the same as for the Dickey–Fuller test, but applied to Equation (4).
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The existence of the cointegration relationship between FAG, GDP, RENP, and URB
was determined using the joint cointegration test introduced in [40]. This test provides
consistent outcomes by integrating four cointegration methods [41–44]. These cointegration
approaches are denoted EG, JOH, BO, and BDM. This test is based on the Fisher F-statistics
to furnish evidence of cointegration. In accordance with Fisher formula, the test expressions
(Equations (5) and (6)) are

EG − JOH = −2[ln(PEG) + ln(PJOH)] (5)

EG − JOH − BO − BDM = −2[ln(PEG) + ln(PBO) + ln(PBDM)] (6)

PEG, PJOH, PBO, and PBDM represent the probabilities of the tests EG, JOH, BO,
and BDM, respectively. To determine the existence of long-term relationships among the
variables, the Fisher statistic was computed. The null hypothesis of no cointegration can be
rejected if the Fisher statistic calculated is greater than the critical value specified by [40].

Furthermore, the results of this examination were corroborated through the utilization
of the ARDL cointegration bounds test proposed by Pesaran et al. [45]. When compared to
other cointegration methods, such as [41] and [42], the ARDL model has some econometric
advantages. Notably, it does not need the singular integration I(1) as required by Johansen
and Juselius [46]. Furthermore, it facilitates the concurrent estimation of both long-term
and short-term relationships. The null hypothesis of the ARDL cointegration bounds
test posits no cointegration, in contrast to the alternative hypothesis. This assessment is
performed using F-statistics and involves a comparison with the critical values established
by [45]. If the F-statistic surpasses the upper threshold denoted by I(1), the null hypothesis
is rejected, signifying the validity of cointegration. If the F-statistic values fall below the
lower threshold denoted by I(0), the null hypothesis of no cointegration is accepted. If the
F-statistic values lie in the range of I(0) and I(1), the cointegration remains inconclusive.

If cointegration is present, the ECM exhibits the following structure (Equation (7)):

∆FAGT = a0 +
n
∑

k=1
a1∆FAGt−k +

p
∑

k=1
a2∆GDPt−k +

q
∑

k=1
a3∆RENPt−k

+
r
∑

k−1
a4∆URBt−k + ΓECMt−1 + εt

(7)

where Γ characterizes the short-term dynamics within the ECM. The error correction term
(ECT) is expected to be statistically significant and negative, greater than −2 [47]. The
negative sign signifies the speed of adjustment to the equilibrium.

The ECM Equation (7) in the ARDL model was used to analyze the dynamics of
adjustment following a deviation from the long-term equilibrium relationship between
the variables.

The long-term coefficients of the ARDL model were validated by supplementary
testing models, like the Fully Modified Ordinary Least Squares (FMOLS) [48], Dynamic
Ordinary Least Squares (DOLS) [49], and Canonical Cointegration Regression (CCR)
models [50].

The robustness of the model was tested by various diagnostic tests. The normality test,
Breusch–Pagan–Godfrey test, ARCH test, LM test, and Ramsey RESET test were aimed at
confirming the normal distribution of the model, the absence of autocorrelation, and the
stability of the results.

The model’s stability was assessed using the CUSUM and CUSUMSQ tests [51].
Research by Pesaran [52], as well as Pesaran et al. [45], contends that these two tests
provide insight into the suitability of the ARDL-ECM model. Both tests involve plotting
the residuals of the ECM. When the CUSUM and CUSUMSQ plots fall within the 5%
critical boundary, it is not possible to reject the null hypothesis, indicating that the model’s
parameters are stable.
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3.2. Data Sources

In the pursuit of sustainable environmental practices and effective natural resource
management, the complex relationship between economic development and forest area
dynamics has become a focal point of scholarly investigation. This section delves into the
crucial aspects of the data and methodology employed to scrutinize the nuanced interplay
between economic indicators and forest area growth in Finland during the extensive period
from 1990 to 2022.

Table 1 serves as a comprehensive repository, furnishing a concise overview of the
variables under consideration and their respective sources, meticulously compiled for
the specified timeframe. To gain a deeper understanding of forest area dynamics in
Finland, we utilized a set of key variables, each bearing distinct significance in the context
of forest conservation assessment. At the forefront of this inquiry was the dependent
variable, denoted as forest area growth (FAG). This variable encapsulates the annual
changes in the extent of forested regions, drawing from the forest area coverage data
of the present year and its antecedent. Data for this variable were sourced from the
World Bank and were employed to assess annual changes in forest expansion in Finland.
RENEB signifies the percentage of electricity production derived from renewable sources,
excluding hydroelectric power. Data for this variable were also provided by the World Bank
and were used to evaluate the impact of renewable energy sources on forest area. GDP
represents Finland’s gross domestic product, expressed in constant 2015 US dollars. This
variable reflects the country’s economic performance and was included to investigate the
relationship between economic development and forest area. URB indicates the percentage
of urbanization within Finland’s territory. Data for urbanization were collected from the
World Bank and were utilized to assess the influence of urbanization growth on forest area.

Table 1. Factors and data origins.

Factor Abbreviation Measurement Unit Data Origin

Forest area FA % of land area World Bank

Electricity production from
renewable sources,

excluding hydroelectric
RENB % of total World Bank

Gross domestic product GDP Constant 2015 USD World Bank

Urbanization URB % World Bank

By employing these variables, we conducted an in-depth analysis of the complex
relationships between economic development, urbanization, renewable energy production,
and forest conservation in Finland.

To ensure consistency in understanding the abbreviated concepts used in our study,
the Abbreviations section presents a description of the key abbreviated elements.

4. Results
4.1. The Overall Trend of FAG and Other Factors in Finland

To begin our insightful exploration of the empirical results and the ensuing discussions,
Figure 3 stands as a visual testament to the annual evolution of four pivotal indicators
within the context of Finland from 1990 to 2022. The variables on the x-axis represent the
years or time periods, while the values on the y-axis represent the values associated with
the respective variables (FAG, GDP, RENP, URB), which are recorded in logarithmic form.
Thus, on the x-axis, one has the years from 1990 to 2022, and on the y-axis, one has the
corresponding logarithmic values of the mentioned variables for those years. This type
of graph shows the trends and relationships between these variables over the specified
period. This chronological canvas portrays the dynamic trajectories of gross domestic
product (GDP), renewable energy production (RENP), urbanization (URB), and the focal
variable—forest area growth (FAG).
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A discerning gaze upon the depicted trends reveals an upward trajectory in GDP,
RENP, and URB, signifying the robust growth in economic and urban development over
the examined period. Intriguingly, FAG, the key indicator of forest area growth, exhib-
ited a conspicuous surge in recent years, ushering in a period of heightened significance
and complexity.

Drawing parallels with contemporary environmental discourse, the findings echo the
observations made by Ceccherini et al. [53] on a broader European scale. Their comprehen-
sive analysis delved into the complex dynamics of forested landscapes within the European
Union (EU), spotlighting a notable surge in both forest area and biomass harvested. The
stark revelation indicated a pronounced increase (+49%) in the clear cutting of forested
areas across Europe during the period from 2016 to 2018, juxtaposed against the preceding
years from 2011 to 2015. This surge in biomass extraction, as depicted on the biomass map,
unveiled a substantial 69% upswing during the same temporal frame. Critically, these
trends were primarily attributed to an escalated intensity of forest management practices,
with the explicit exclusion of salvage logging post forest fires and windstorms. Notably,
the lion’s share of this surge in harvested forest area was concentrated in Sweden (29%)
and Finland (22%). As we traverse through the nuanced empirical landscape, the ensuing
discussions will delve into the causal relationships underpinning these trends, unraveling
the complex interplay between economic development, renewable energy production,
urbanization, and the consequential impact on forest area growth in the Finnish context.

Table 2 contains the descriptive statistics for the logarithmized variables. The mean
value of URB was 4.41, while the maximum value was 4.45. The average value for GDP
was 10.57, with a low variability of 0.17. URB also showed a low variability. FAG had a
platykurtic distribution, while GDP, RENP, and URB had leptokurtic distributions. All the
variables were negatively skewed, except FAG.

Table 2. Summary statistics.

FAG GDP RENB URB

Mean −2.23 10.57 2.59 4.41
Median −1.92 10.65 2.55 4.41

Maximum 4.60 10.75 2.99 4.45
Minimum −5.97 10.23 2.14 4.38
Std. Dev. 1.92 0.17 0.26 0.02
Skewness 0.71 −0.82 −0.01 −0.10
Kurtosis 7.34 2.20 1.95 1.85

Jarque–Bera 26.17 4.17 1.36 1.68
Probability 0.00 0.12 0.50 0.42
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4.2. Stationarity Analysis and Lag Selection for the VAR Model

First, basic tests were performed to assess the stationary nature of the data at both
level and first difference, namely the Augmented Dickey–Fuller (ADF) test [39], shown in
Table 3, and the Vogelsang and Perron breakpoint unit root test [54], shown in Table 4. A
breakpoint unit root test was applied due to the fact that ADF tests can yield biased results
in the presence of a structural break, as highlighted by Dogan and Ozturk [55].

Table 3. ADF unit root test results.

Variable
Level First Difference

Order of Integration
t-Statistics t-Statistics

FAG −2.30 (0.02) −1.93 (0.05) I(0)
GDP 2.15 (0.99) −3.49 (0.00) I(1)

RENP 1.35 (0.95) −5.71 (0.00) I(1)
URB 1.70 (0.97) −1.88 (0.05) I(1)

Table 4. Vogelsang and Perron breakpoint unit root test results.

Variable
t-Statistics Break Year Order of

IntegrationLevel First Difference Level First Difference

FAG −4.96 (0.00) −7.02 (0.00) 2000 2021 I(0)
GDP −3.72 (0.26) −6.98 (0.00) 1996 2008 I(1)

RENP −1.99 (0.98) −6.86 (0.00) 2010 1998 I(1)
URB −8.73 (0.00) −4.87 (0.01) 2009 2013 I(1)

It is required that all variables exhibit stationarity either at level (I(0)) or at the first
difference (I(1)) to apply the ARDL bounds test. In Tables 3 and 4, probabilities are shown
in parentheses. The break years are also reported in Table 4. From Tables 3 and 4, one
can see that FAG was of integration order 0 (I(0)), while GDP, RENP, and URB were of
integration order 1 (I(1)).

Hence, the ARDL technique stands as the most suitable model, being unbiased and
outperforming other models designed for small sample sizes. To address endogeneity
issues and eliminate residual correlation, as suggested by Ali et al. [56], it is essential to
identify the suitable lag selection. All the criteria in Table 5 point to a lag number of three
being the optimal choice for the Vector Autoregression (VAR) model. The columns in
Table 5 are described as follows: the “Lag” column represents the number of lags used in
the VAR model, the “LogL” column contains the logarithm of the maximum likelihood, the
“LR” column represents the likelihood ratio associated with the proportional probability
test, and the “FPE” column represents the final prediction error criterion and indicates the
final prediction error. Also, the “AIC” column represents the Akaike Information Criterion,
which indicates that lower values produce a better model. Additionally, the “SC” column
represents the Schwartz criterion, and the “HQ” column represents the Hannan–Quinn
criterion. The values marked with * in Table 5 are considered the most significant values
for selecting the VAR lag order based on the criteria used.

Table 5. VAR lag order selection criteria.

Lag LogL LR FPE AIC SC HQ

0 104.56 NA 1.25 × 10−9 −5.14 −8.94 −9.09
1 195.41 140.39 1.44 × 10−12 −15.94 −14.95 −15.71
2 217.13 25.66 1.02 × 10−12 −16.46 −14.68 −16.04
3 255.75 31.60 * 2.15 × 10−12 * −18.52 * −15.94 * −17.91 *
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4.3. Analysis of Cointegration and Long-Term Effects for the ARDL Model

Following this, the ARDL model was employed to assess the relationship between
FAG and GDP, and RENP and URB. The initial procedure, before estimating an ARDL
model, entails conducting cointegration checks through a bounds test. This test aims to
either accept or reject the null hypothesis that posits the absence of cointegration. According
to the AIC lag criterion, the chosen model was ARDL (1, 3, 1, 1). Therefore, n = 1, p = 3,
q = 1, and r = 1. The outcomes of the ARDL cointegration bounds test are showcased in
Table 6. In Table 6, the F-statistics is 6.29, exceeding the critical upper bound denoted by
I(1); this indicates the presence of cointegration among the variables.

Table 6. Results of ARDL cointegration bounds test.

Test Statistic Value K (Number of Regressors)

F-statistic 6.29 3
Critical value bounds

Significance I(0) I(1)
10% 2.67 3.58
5% 3.27 4.30
1% 4.61 5.96

In Table 7, one can see that for both methods, the computed F-statistics values were
greater than the critical values at a 5% significance level. Hence, the outcomes provided
grounds for rejecting the null hypothesis (absence of cointegration) at a 5% significance
level. Thus, the variables were cointegrated.

Table 7. Bayer and Hanck cointegration test results.

Fisher Statistics
EG-JOH-BO-BDM

Fisher Statistics
EG-JOH

EG-JOH-BO-BDM
Fisher Critical Value at

5% Level

EG-JOH
Fisher Critical Value at

5% Level
Inference

111.63 56.35 20.48 10.63 Cointegration

Table 8 displays the estimated long-run coefficients. From Table 8, one can see that
GDP had a negative and statistically significant influence on FAG. A 1% increase in GDP
caused a 4.94% decrease in FAG.

Table 8. The long-run estimated coefficients.

Variable Coefficient t-Statistics Prob.

GDP −4.94 −7.81 0.00
URB 8.68 0.69 0.49

RENP 1.70 2.23 0.04
C 7.17 0.14 0.84

This negative relationship between GDP per capita and the annual growth of forested
areas can be explained by several factors specific to the Finnish context. Finland has
evolved into a highly developed and industrialized nation with a substantial GDP per
capita. As the country attained advanced economic levels, it underwent a transition from
a forestry-centric economy to one that is predominantly industrial and service-oriented.
This transition may have resulted in a decrease in the annual growth of forested areas as
land is needed for urbanization, infrastructure, and industrial activities. Finland boasts
a longstanding tradition of implementing sustainable forest management practices. The
Finnish forest industry operates under robust regulations, ensuring that the pace of defor-
estation is carefully controlled to promote the sustained growth of forested areas over the
long term. This approach aims to strike a balance between economic development and
ecological preservation.
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A 1% increase in RENP led to a 1.70% increase in FAG. When renewable energy
production relies on sustainably sourced biomass, it can encourage the growth of forested
areas. Sustainable harvesting practices ensure that the rate of tree growth exceeds the
rate of tree removal for energy production, leading to a net increase in forested land. The
policies and practices that Finland has adopted strike a balance between renewable energy
production and forest conservation. This means that while biomass may be used for energy,
steps are taken to ensure that the overall forested area increases over time. The positive
correlation between the use of renewable energy and the expansion of forested areas is
confirmed by [1,18,23]. When cleaner energy sources are more accessible, there is a reduced
reliance on forest products for fuel.

A 1% increase in URB led to an 8.68% increase in FAG. This positive relationship aligns
with Finland’s strong tradition of urban planning and development. Many Finish cities
prioritize parks, green spaces, and forests within their urban landscapes. Forests and green
areas are integrated into urban environments, promoting their growth and preservation.
Urbanization in Finland is often accompanied by policies and initiatives that aim to protect
biodiversity. As urbanization continues, the importance of these green areas for carbon
sequestration and offsetting emissions is recognized. The positive impact of URB on FAG
is contingent on effective urban planning and policies that prioritize green spaces and
sustainable practices.

In Finland, urbanization is viewed not merely as a driver of built environment
expansion but as an opportunity to enrich the coexistence of urban areas and nature.
This approach aims to cultivate the growth and preservation of forested areas amidst
urban development.

The ARDL-ECM model results are summarized in Table 9. The ECT registered a value
of −1.46, which is negative and statistically significant at the 5% level, indicating the pres-
ence of cointegration. The adjustment speed toward the long-term equilibrium following
short-term deviations stood at 146%. This adjustment coefficient of −1.46 signifies that the
deviations in FAG from equilibrium were corrected by 146% in the subsequent period. In
this case, the ECT fell within the range of −2 to −1, causing dampened oscillations.

Table 9. The short-run ARDL (1,3,1,1) estimation.

Variable Coefficient t-Statistics Prob.

D(GDP) 0.60 0.31 0.754
D(GDP(−1)) 1.01 0.55 0.587
D(GDP(−2)) 3.14 1.91 0.076

D(URB) 141.18 5.57 0.001
D(RENP) 1.02 1.89 0.081

CointEq(−1) −1.46 −6.41 0.000
R-squared 0.76

Adjusted R-squared 0.69

The explanatory variables accounted for 69% of the total variation in FAG, as explained
by the Adjusted R-squared value.

The short-term dynamics of FAG, GDP, URN, and RENP are captured in Table 9. In the
short term, the positive impact of GDP on FAG can be explained by the resources available
for conservation efforts. The Finish government and organizations invest in reforestation
and afforestation programs. Also, short-term fluctuations in demand for forest products,
like timber or paper, can result in forestry operations being scaled back, allowing forests
to regenerate. In the short term, URB and RENP had a positive impact on FAG, as in the
long term.

4.4. Evaluation of Model Assumptions and Diagnostic Analysis

In addition, this study employed the FMOLS (Fully Modified Ordinary Least Squares),
DOLS (Dynamic Ordinary Least Squares), and CCR (Canonical Cointegration Regression)
techniques to validate the findings established in the ARDL model. These three techniques
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were essential to ensure that the statistical analysis was accurate for the research variables,
with respect to the previously established cointegration relationships. One can notice from
Table 10 that most signs of the FMOLS, DOLS, and CCR tests are consistent with the ARDL
long-run results.

Table 10. FMOLS, DOLS, and CCR long-term coefficients.

Variable FMOLS DOLS CCR

GDP −4.80 ***
(−5.93)

−2.95 ***
(−4.29)

−4.72 ***
(−0.24)

URB 6.54
(0.49)

−28.11 *
(−2.21)

3.48
(0.28)

RENP 1.38 *
(1.70)

4.04 ***
(3.17)

1.58 *
(1.71)

C 16.29
(0.32)

142.21 **
(2.72)

28.37
(0.58)

*, **, *** indicate the significance of variables at 10%, 5%, and 1% levels, respectively.

Table 11 displays four null hypotheses (H0) for the diagnostic tests along with their
corresponding values. It is noteworthy that the p-values for the tests of serial correlation,
heteroscedasticity, and Jarque–Bera normality all exceeded 0.05, which is a positive outcome.
As a result, this model did not exhibit autocorrelation or heteroscedasticity. Additionally,
given that the probability of the Jarque–Bera test surpassed 0.05 and the Jarque–Bera
value fell below 5, it can be concluded that the residuals followed a normal distribution.
The Ramsey RESET test indicated that the model was appropriately specified, thereby
suggesting the absence of instability in the factors determining FAG.

Table 11. Results of diagnostic and stability tests.

Test H0
Decision

Statistics (p-Value)

Serial correlation There is no serial correlation in the residuals Accept H0
1.59 (0.25)

Heteroscedasticity There is no autoregressive conditional heteroscedasticity Accept H0
0.07 (0.78)

Normal distribution Normal distribution Accept H0
0.01 (0.99)

Ramset RESET The absence of model misspecification Accept H0
3.54 (0.06)

We evaluated the model’s stability through the CUSUM and CUSUMSQ tests, plotted
in Figures 4 and 5. Within these graphs, the blue line represents the CUSUM values
(Figure 4) and the CUSUMSQ values (Figure 5) calculated for each data point in the time
series. The CUSUM is the cumulative sum of the differences between the observed values
and the expected values (estimated values or mean values) for each data point. The
CUSUMSQ represents the cumulative sum of the squares of these differences. The blue line
can provide insights into the moments when structural changes occurred in the analyzed
data. If the blue line exceeds the defined boundaries (represented by the red lines) at a
significance level of 5%, it may suggest the presence of a significant change in the data
at that particular moment. Both tests indicated that the model’s parameters were stable,
as both plots fell within the 5% critical threshold marked by the red dashed line. This
underscores the model’s appropriateness for making forecasts.
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The examination of the ARDL-ECM model validated the presence of dynamic prop-
erties in the time series. Consequently, given the robustness of the model, it exhibited a
strong fit, thereby enabling the formulation of policy recommendations.

5. Conclusions and Recommendations

This research analyzed the nexus between forest area growth, electricity production
from renewable sources, GDP, and urbanization for Finland during the period 1990–2022.
The unit root test results indicated that the variables exhibited integration of order zero
(I(0)) and order one (I(1)). Additionally, the cointegration test implied the existence of a
long-term relationship among these variables. The error correction term indicated that the
speed of forest area growth adjustment to equilibrium was high, at about 146%.

In the long-term analysis, forest area growth was negatively connected with economic
growth (research question 1, RQ1) and positively connected with electricity production
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from renewable sources and urbanization (research question 2, RQ2). In the short term,
forest area growth was positively connected with all regressors (RQ1/RQ2).

According to the empirical findings, the following policy recommendations are sug-
gested. The surge in economic activity should ideally occur in contexts where environmen-
tal sustainability and forest conservation are prioritized. The combination of population
growth and urbanization must be accompanied by sustainable land-use practices to avert
an increase in deforestation. Urban growth could be guided by ecological practices, in-
cluding efficient land use and maintaining green areas within cities. The implementation
of sustainable forest management policies could involve measures such as sustainable
harvesting, natural forest regeneration, and biodiversity protection. The specific aspects of
Finnish forest conservation are interconnected with global trends or affected by external
factors. Policymakers may consider strengthening international collaborations to address
transboundary issues. In summary, the ARDL-based evaluation of forest conservation in
Finland can have far-reaching policy implications, influencing strategies, resource allo-
cation, international collaboration, community engagement, climate change adaptation,
monitoring frameworks, economic considerations, and policy stability. Additionally, pro-
moting education and public awareness about the importance of forests and the necessity
of sustainable development can contribute to supporting these policies. Well-informed
citizens are more likely to endorse initiatives aimed at conserving natural resources. Pol-
icymakers should carefully consider these implications to ensure the sustainability and
success of forest conservation efforts.

Furthermore, regarding the use of the results of our study in other countries with
different economic characteristics and conservation policies, our study can provide an ana-
lytical and methodological model that is applicable in various similar or different contexts.
For example, countries facing similar issues related to deforestation and economic develop-
ment can adapt this methodology to assess the specific impact of their local factors on forest
resources. Additionally, the study can serve as a source of inspiration for the development
of forest conservation policies and strategies in a variety of national and regional contexts.
However, it is important to consider the specific differences of each country and the local
nuances in decision making and environmental policy implementation. Alternatively,
the exchange of best practices and lessons learned from Finland could contribute to the
development and implementation of more efficient and sustainable forest conservation
strategies in other countries. Thus, the results and methodology of this study can contribute
to global forest conservation efforts and the promotion of sustainable development.

Additionally, researchers and industry specialists aiming to utilize the findings of our
work must consider that despite the positive results of clean energy utilization, there are
still numerous obstacles and challenges that countries need to overcome to successfully
implement these technologies [57]. Transitioning to clean energy sources often requires
significant investments in infrastructure and new technologies, which can be challenging
for countries with limited financial resources [58]. Moreover, many countries still heavily
rely on traditional energy sources such as fossil fuels. Shifting to clean energy sources
may entail significant changes in infrastructure and the economy. Additionally, the lack of
adequate regulations and policies to promote clean energy can be a major hindrance to the
implementation of these technologies [59,60].

Certainly, additional concerted endeavors are necessary to devise strategies for sustain-
ing biodiversity in both managed and protected forests. Achieving genuinely sustainable
forests and forestry in Finnish society will depend on these collective efforts.

Future studies should analyze additional factors that could influence emission re-
duction and environmental sustainability, while taking account of the implications from
structural breaks in the data. These factors might encompass practices like recycling prod-
ucts and minimizing water and electricity consumption. Additionally, considering that
our study focused on Finland in general, future research could include a more detailed
spatial analysis, examining how changes in forest area vary across different regions of the
country. This might involve assessing the sensitivity of specific areas and the qualitative
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implications of changes in these areas. Expanding the research to include comparisons
with other countries could provide a broader perspective on the effectiveness of forest con-
servation policies and the involved economic and social factors. Moreover, the continued
monitoring and analysis of long-term trends concerning forest area growth, in the context
of the constant evolution of economic and social factors, and a detailed analysis of how
various public policies (both national and international) influence forest conservation and
sustainable development could be another direction for research.
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