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Abstract: This research evaluates the coastal vulnerability of Shanghai, evaluates the effectiveness
of existing natural habitats in reducing that vulnerability, and, finally, provides recommendations
to improve the resilience of the coastal areas. Shanghai is an important economic center that is
home to a large population. However, the combination of ground subsidence, rising sea levels, and
more frequent coastal flooding due to tropical cyclones poses escalating climate risks for Shanghai,
demanding urgent mitigation measures. The InVEST Coastal Vulnerability Model was used in this
study to assess Shanghai’s coastal vulnerability under the current situation and various scenarios
that simulated the absence of natural habitats. The assessment results were analyzed through a
comparison between different scenarios and spatial aggregation analysis. This study pinpointed
highly vulnerable areas, primarily located on the east coast of Chongming Island, the east and
northeast coasts of Hengsha Island, and the east coast of the mainland of Shanghai. These areas need
to be prioritized for intervention. Also, it demonstrated the effectiveness of existing natural habitats
in reducing coastal vulnerability, with large green spaces and salt marshes playing a greater role
compared to small green spaces. This is the first study applying the InVEST Coastal Vulnerability
Model to Shanghai, demonstrating the model’s potential in providing valuable information regarding
coastal protection against the impacts of climate change in Shanghai. Insights from the findings of
this study are useful in crafting sustainable land-use policies and plans for Shanghai.

Keywords: tropical cyclones; ground subsidence; Shanghai, China; sea level rise; InVEST Coastal
Vulnerability Model

1. Introduction
1.1. Background

Coastal hazards such as erosion, storm surges, tsunamis, and floods have become a
major worldwide issue, presenting a substantial risk to coastal populations, homes, and
infrastructure [1]. The Indian Ocean Tsunami (IOT) of 2004 resulted in the deaths of about
200,000 people [2]. The subsequent inundation of seawater resulted in the deterioration
of both land productivity and the ecological environment [3]. Also, an extensive flooding
following Hurricane Katrina in 2005 led to damages exceeding USD 100 billion and a loss
of approximately 2000 lives in the United States [4]. More recently, storms such as Harvey
and Maria in 2017 also underscored the immense destructive potential of hurricanes and
their resulting storm surges and floodings [5].

Climate change leads to an increase in sea levels and more frequent and severe extreme
weather events, which worsens coastal erosion and flooding [1–6]. The global average
sea level has risen by about 20 cm since 1880 [7]. Moreover, since the 18th century, the
rate of sea level rise has accelerated, from 1.4 mm per year to 3.6 mm per year [7]. Sea
level rise increases the coastal erosion in many regions, such as the east coast of the United
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States, the Papua New Guinea delta, and the European region [8–12]. Also, in many coastal
communities of the United States, the incidence of compound flooding, which is caused
by the convergence of high sea levels and intense precipitation, has increased significantly
over the past century [12]. Similarly, there has been an upward trend in compound flooding
along the coasts of Northern Europe [13].

Globally, there are approximately 2 billion people located in near-coastal zones and
nearly 900 million people in low-lying coastal zones [14]. Furthermore, the coastal popula-
tion is projected to rise further due to rapid economic growth and coastal migration [14].
Additionally, the economic impact of coastal hazards is substantial. One study showed
that global economic losses caused by coastal hazards reached approximately 6 billion
dollars in 2005 and are estimated to increase to 52 billion dollars by 2050 [15]. Coastal areas’
vulnerability to these trends is a matter of concern, and immediate action is required to
mitigate their detrimental effects.

As a metropolis, Shanghai is an important economic hub and home to a substantial
population in China. However, it is heavily influenced by coastal hazards and will be
increasingly vulnerable to them due to ongoing development and climate change [16].
Between the 1990s and the 2010s, the combination of rising sea levels and storm surges
resulted in nearly $400 million in socioeconomic damages [17]. Also, it is projected that
about 50% of Shanghai will have experienced flooding by 2100 and 46% of seawalls and
levees will be overtopped [18]. In this light, it is essential to understand the coastal
vulnerability of this city and provide effective strategies to mitigate the risks, thereby
reducing the loss of life and property and maintaining economic viability.

1.2. Literature Review
1.2.1. Basic Definition of Coastal Vulnerability

Coastal vulnerability is typically understood under the umbrella concept of vulnera-
bility. The definition of vulnerability is not standardized and often changes with specific
issues and situations [19,20]. Nevertheless, it can be generally defined as ‘The character-
istics of a person or group in terms of their capacity to anticipate, cope with, resist, and
recover from the impact of a natural hazard’ [21]. Moreover, many researchers characterize
vulnerability by considering exposure, sensitivity, and adaptive capacity, an approach
which is developed from the conceptual framework initially introduced by the IPCC in
1995 [22–27]. Specifically, exposure refers to the degree to which a system is subjected to
hazards. Sensitivity is the measure of how much a system is impacted by these hazards.
Adaptive capacity, on the other hand, refers to a system’s ability to reduce the negative
effects of hazards [25–28].

1.2.2. Coastal Vulnerability Index: A Main Assessment Method

The fact that numerous countries and regions are vulnerable to coastal hazards high-
lights the importance of a comprehensive assessment of their vulnerability status. By
pinpointing vulnerable hotspots and high-priority areas, coastal vulnerability assessment
can guide the allocation of resources and the implementation of mitigation measures [29].
This entails enhancing infrastructure, devising sustainable land-use regulations, and imple-
menting community-based measures to mitigate the extensive impacts of coastal hazards.

Index-based methodologies are widely used in coastal vulnerability assessment [30–33].
These are often applied in conjunction with remote sensing, GIS, and dynamic modeling
techniques [31]. This approach allows people to summarize and simplify relevant information
and obtain visual and quantified outcomes, facilitating scientific planning and policymaking
for coastal regions [31–37].

The concept of the Coastal Vulnerability Index (CVI) was first formulated by Gorintz
in 1990 [38]. In the study, six geophysical variables—geomorphology, coastal slope, relative
sea level rise, and tidal range—were integrated to investigate the impact of sea level rise.
This measure was first used for the coastlines of the United States [39]. Subsequently, many
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researchers adopted and modified this method to conduct coastal vulnerability assessments
on a wide range of regions and scales [32–42].

It is recognized that vulnerability is the result of interactions between biophysical and
social factors [43]. Thus, even though much of the literature discusses geomorphic and
physical coastal vulnerability, a growing number of studies are considering socio-economic
factors and incorporate relevant variables into comprehensive assessments. Cutter et al. [43]
initially created the Social Vulnerability Index (SoVI), making use of a total of 42 factors
to examine the socio-economic vulnerability of significant coastal regions in the United
States. This index has acted as the foundational reference for numerous coastal vulnerability
assessments that take socio-economic factors into account [44]. The selection of variables
ranges from the simple to the complex, with socio-economic status, population, education
level, and land use being very common [45]. For example, Onat et al. [46] considered only
population density when assessing the coastlines of Hawaii Island, whereas Yoo et al. [25]
used a more diverse set of variables, such as regional gross domestic product (GRDP),
transportation networks, and healthcare services, in their study in Jakarta, Indonesia.

Currently, most studies use a composite CVI and multi-scale CVI, considering both
physical and socio-economic factors [47–50]. Such CVIs use varied subindices that are
combined to yield the final CVI. For example, Murali et al. [48] utilized a composite CVI
to study the Puducherry coast in India. They examined seven variables for their Physical
Vulnerability Index (PVI), such as coastal geomorphology, regional elevation, and sea level
change. Additionally, four parameters were considered for their Social Vulnerability Index
(SVI), such as population, land use, transportation systems, and cultural heritage [48]. The
CVI was finally calculated as the arithmetic mean of the PVI and SVI [48]. Also, McLaughlin
and Cooper developed another multi-scale CVI that specialized in the impacts of coastal
erosion. The index integrated three sub-indices, including a coastal characteristic sub-index,
a coastal forcing sub-index, and a socio-economic sub-index, and has been applied to
coastal systems in the UK at various scales, from the national to the local [51].

Furthermore, given that vulnerability is often characterized as including a combination
of exposure, sensitivity, and adaptive capacity, several researchers have used this conceptual
framework to create three subindices, including the Exposure Index (EI), the Sensitivity
Index (SI), and the Adaptive Capacity Index (ACI) [25–52]. The EI and SI generally reflect
the potential of coastal systems to be negatively affected by hazards [53], whilst the ACI
generally indicates their ability to mitigate the impacts [45]. The CVI considers physical
and social factors to measure vulnerability, whereas the EI incorporates climate change
scenarios, making it useful for coastal habitat assessments. The Coastal InVEST model
assesses coastal vulnerability using both indicators and considers future changes under
several climate change scenarios [54–59]. In the study by Zhang et al. [27], which assessed
the coastal vulnerability of Bohai in China, the researchers considered a total of 15 variables
(5 variables for each subindex), including geomorphology, natural habitats, population
density, urbanized area, per capita GDP, and medical services, and computed the final CVI
for each coastline segment based on the formula CVI = (EI + SI)/ACI [27].

1.2.3. Application of the InVEST Coastal Vulnerability Model

The InVEST Coastal Vulnerability Model is an effective tool for quickly evaluating
the risks associated with coastal disasters. Based on the rationale of the CVI, this model
determines coastal vulnerability by considering multiple geophysical variables [54]. A
detailed explanation of how this model works will be given in the Methodology section.

To date, this model has been applied in many cases around the world, such as the
United States, Italy, China, and East Africa, contributing to coastal protection and manage-
ment from local to cross-national scales [56–59]. This research used a methodology that has
been proven effective in previous cases to evaluate the vulnerability of Shanghai’s coastal
areas. The objective was to provide valuable information for the future development and
administration of these coastal regions.
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1.2.4. Calls for Coastal Protection and Adaptation

It is widely recognized that governments at different levels need to take actions for the
mitigation of and to adapt to coastal hazards. The Rio+20 Conference reached a consensus
that adaptation is one of most important priorities at the global level and emphasized
the concern over the escalating threats posed by sea level rise and coastal erosion [60].
More recently, the Sharm-El-Sheikh Adaptation Agenda was launched at COP 27, which
proposed that there is a need to further enhance adaptation actions, with a focus on
vulnerable communities [61].

At present, the mitigation and protection measures for coastal hazards mainly rely on
hard structures such as seawalls, groins, and breakwaters, particularly in urban areas [62,63].
Even though such structures are effective against hazards, they have a significant limitation
of high construction and maintenance costs [64,65]. Hard structures also tend to be resistant
to hazards only up to a certain threshold; for example, the seawalls in Jiangsu and Shanghai
in China are typically designed to withstand the water levels of 50-year and 200-year
return periods [66]. However, as sea levels continue to rise and violent storms become
more frequent, the likelihood of hard buildings failing is growing. This, in turn, might
worsen coastal risks in the nearby communities [67,68]. Additionally, hard structures can
bring other negative consequences, such as reducing the aesthetics of coastal landscapes,
and altering hydrodynamic and depositional processes, which may exacerbate coastal
erosion [63].

Meanwhile, it is increasingly realized by scholars and policymakers that coastal ecosys-
tems play an essential role in preserving coastlines and enhancing the resilience of coastal
systems to natural hazards [60,69]. As a result, there is a growing trend of making the
preservation of ecosystems a part of coastal development plans [70]. On the international
scale, Aichi Targets emphasize the importance of recognizing the values that ecosystems
can provide and integrating them into national and local development strategies [71]. More-
over, the Kunming-Montreal Global Biodiversity Framework advocates for governments to
adopt nature-based solutions, which could be understood as approaches to protecting and
restoring ecosystems to maintain and enhance ecosystem services, including protection
from natural disasters [71].

1.2.5. Importance of Natural Habitats

Coastal vegetated habitats, including mangroves, salt marshes, and seagrass meadows,
have been proven to be effective in coastal protection [72]. The root systems of vegetation,
especially mangroves, can create a barrier between water and soil, which enhances soil
cohesion and slows coastal erosion [72,73]. In addition, vegetation can decelerate water
flow and promote sediment deposition [60,74]. In turn, sediments can further support the
growth of roots [75]. Moreover, vegetation can significantly dissipate wave energy and,
thus, mitigate storm surges and flooding [73,76]. According to McIvor et al. [77], 100 m
of mangroves could result in a 13%–66% reduction in wave height. An early study in
England found that salt marshes had the ability to mitigate wave energy by about 82% [78].
Additionally, in a study in northwestern Europe, it was shown that salt marshes that were
merely 40 m wide were able to reduce the wave height by about 15% [79].

Moreover, these habitats can grow with rising sea levels. A few studies have found
deep sediments in mangrove and salt marsh ecosystems, suggesting that vegetation has
been growing vertically [74,80]. However, the accretion rates of these habitats can vary by
location; for example, it has been proposed that salt marshes would accrete at a lower rate
at higher latitudes due to the shorter growing season [60–83]. Regardless, this characteristic
allows these habitats to adapt to climate change, providing an advantage over traditional
coastal defense structures [74,84].

In addition to coastal vegetated habitats, coral reefs are another typical natural habitat
that can protect the coast. The complex geometry and rough surface of coral reefs can absorb
and disperse the energy of waves, thereby protecting the shore against hazards [85–88]. A
thorough study of coral reefs in the Indian, Pacific, and Atlantic oceans revealed that coral
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reefs can disperse almost 97% of wave energy [89]. Also, in the study by Reguero et al. [88],
it was found that the uppermost 1 m of coral reefs along the coastlines of the United States
prevented a ten-fold increase in the frequency of 100-year flooding events, as well as a 23%
expansion of the flood zone. However, it is important to note that the effectiveness of these
habitats in coastal protection is closely linked to their health [90]. Coral reef ecosystems are
in crisis globally; for example, in the Indo-Pacific, where coral reefs are highly abundant,
the annual loss of coral cover is about 1–2% [91]. A range of environmental issues, such as
seawater warming, ocean acidification, and pollution all contribute to coral reef bleaching and
degradation [92,93].

Many nations and regions are now acknowledging the importance of natural habitats
in enhancing coastal resilience. As a result, they are actively engaging in efforts to restore
and create biological habitats as a means of coastal protection and adaptation [64,94]. For
instance, the Belgian government has undertaken a large-scale project to restore about
4000 hectares of reclaimed wetlands in the Scheldt estuary to flood plains, of which about
2500 hectares would be tidal marsh [64]. This project, which is due to be completed by
2030, will effectively reduce annual losses due to coastal flooding by 1 billion euros in
the future [95]. Similar projects have been implemented in estuaries in the UK, such as
the Humber Estuary, to restore marshes for coastal defense, known as “managed coastal
realignment” [96]. Multiple large-scale projects are now being carried out in the United
States, such as the rehabilitation of tidal marshes in San Francisco Bay and the Mississippi
River Delta [64,97]. In addition, in tropical areas such as Bangladesh, the Philippines, and
Vietnam, mangroves are being planted and protected against storm surges [98,99].

1.3. Research Aims & Objectives

Continuous understanding of the level of protection that natural habitats provide to-
ward coastal resilience is needed. This entails building on previous research and enhancing
existing models [60]. Moreover, essential information regarding specific locations in which
natural habitats provide protection against coastal hazards and reduce coastal vulnerability
is often lacking for decision-makers [69]. Hence, this research aims to (1) assess Shanghai’s
coastal vulnerability under the current situation and under scenarios that simulate the
absence of different natural habitats; (2) evaluate the effectiveness of different natural
habitats in reducing that vulnerability; and (3) provide intervention recommendations to
improve coastal resilience in Shanghai.

The research objectives include:

1. Produce maps that depict the spatial distribution of coastal vulnerability under the
current situation and under scenarios without certain natural habitats;

2. Compare the differences in the distribution of coastal vulnerability between different
scenarios;

3. Discuss the characteristics of the spatial distribution of the current coastal vulnerability;
4. Identify priority areas for implementing interventions;
5. Propose recommendations for interventions that can improve the city’s resilience to

coastal hazards.

2. Materials and Methods
2.1. Study Area

The location and boundaries of the study area, which comprises the Shanghai main-
land and three inhabited islands under municipal administration, are illustrated in Figure 1.
Shanghai, a notable urban center, is geographically located on the eastern coast of China, at
the convergence of the Yangtze River and the East China Sea. It covers an area of 6340 km2,
spanning the geographical coordinates between 30◦23′–31◦37′ N and 120◦50′–121◦45′ E [17,18].
This city is home to a substantial population of 24.76 million as of 2022 [100]. Moreover, the
population is projected to increase to 32.87 million by 2023 [101].
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Figure 1. Location and boundaries of the study area (Shanghai).

Shanghai has an annual precipitation of approximately 1200 mm and a humid subtrop-
ical climate [102]. The majority of the precipitation occurs during the summer months [103].
Tropical cyclones frequently affect the city from August to September [104]. The city en-
countered a total of 148 tropical cyclones from 1949 to 2015, among which 91 incidents
resulted in storm surges exceeding 0.8 m [16]. Coastal flooding resulting from tropical
cyclones is a significant natural hazard in Shanghai, with an increase in frequency since
1949 [16,103]. Moreover, as a result of the combined effects of ground subsidence and sea
level rise, the danger of coastal inundation in Shanghai will increase in the future [104,105].

Shanghai is situated on an alluvial plain with low-lying terrain. The average elevation
is only 4 m [18]. This inherent topographical feature renders the city susceptible to coastal
hazards. To strengthen the city’s defense, a flood defense system was initiated in the 1950s
and has since undergone extensive reinforcement. Currently, Shanghai has 480 km of levees
along the Huangpu River [16]. Additionally, it has a network of 514 km of coastal seawalls,
designed to stand at least 6 m in height [18].

2.2. Main Phases of the Study

This study was conducted in four main phases, including data preparation, model
operation, visualization, and data and result analysis. Each phase produced corresponding
outputs that could be fed into the next phase or serve the final research aims. Different
software tools and models were used throughout the process, including ArcGIS Pro 3.2,
the InVEST Coastal Vulnerability Model, and MS Excel 2021. The following parts of this
section will specifically introduce the InVEST Coastal Vulnerability Model and explain the
processes of data preparation, scenario creation, and data and result analysis.

2.3. InVEST Coastal Vulnerability Model

This research used the Coastal Vulnerability Model in InVEST 3.13.0 to perform a
comprehensive evaluation of coastal vulnerability as shown in Figure 2. This model is an
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open-source software created by the Natural Capital Project [54]. The model can create
shore points along the coastline, and compute an EI for each point. The EI quantifies the
level of vulnerability to erosion and flooding caused by storm events. The purpose of this
research is to use the EIs as a metric to assess the degrees of susceptibility of coastal areas.
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The EI is calculated by integrating the ranks of a range of bio-geophysical variables,
including relief, natural habitats, wind exposure, wave exposure, surge potential, geomor-
phology, and sea level change. The following equation represents the calculation of the
EI [54]:

EI = (R_Geomorphology R_Relief R_Habitats R_WindExposure R_WaveExposure R_Surge R_SLR)1/7 (1)

where R is the rank of the variable.
The ranking of variables is grounded in the methods proposed by Gornitz et al. [39]

and Hammar-Klose and Thieler [106]. The model assigns distinct ranks (from Rank 1 to 5)
to the variables, with a higher rank referring to a higher level of exposure. Appendix A is
an illustrative example from the Natural Capital Project [54]. Notably, the ranking criteria
for natural habitats and geomorphology can be tailored to the context of the study area. In
this study, both were properly modified, and the adjustment details will be elucidated in
Section 3.2.2, Data Preparation.

2.4. Data Preparation

The operation of the model necessitated a series of data layers for the Digital Elevation
Model (DEM), bathymetry, continental shelf contour, landmass, geomorphology, natural
habitat, wind and wave data, and sea level rise (SLR) [54]. Most data were openly accessible
and could be directly input into the model. However, certain data, including data on the
landmass, geomorphology, and natural habitat, were either unavailable or lacked the
required level of accuracy and detail for the project’s needs. To address this issue, visual
interpretation and supervised classification were adopted to create and modify data layers
that described the required bio-geophysical variables. Table 1 lists the details of the datasets
used in this study.

Table 1. Input data and their sources.

Input Data Description Source

DEM
Directly used the dataset of Global Multi-resolution Terrain
Elevation Data 2010 (GMTED 2010); the resolution is 7.5 arc

seconds
[107]

Bathymetry Directly used the dataset of General Bathymetric Chart of the
Oceans 2023 (GEBCO 2023); the resolution is 15 arc seconds [108]
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Table 1. Cont.

Input Data Description Source

Continental Shelf Contour Directly used the shapefile provided by the InVEST coastal
vulnerability package [54]

Landmass
Downloaded the dataset of Global Self-consistent,

Hierarchical, High-resolution Geography Database (GSHHG)
version 2.3.7, and made modifications

[109]

Geomorphology Created a data layer in ArcGIS Pro through visual
interpretation

Natural Habitat

Directly used the dataset of Global Distribution of
Saltmarshes version 6.1 from UNEP-WCMC Ocean Data
Viewer; Created two data layers in ArcGIS Pro through

supervised classification

[110]

Wind and Wave Directly used the WaveWatchIII dataset included in the
InVEST coastal vulnerability package [54]

The landmass data were sourced from GSHHG version 2.3.7 [109]. Due to ongoing
land reclamation activities and the deposition of sediment in the study area [111], the
existing data layer faced a limitation in accurately depicting certain landmass outlines.
Given this, the landmass data layer was manually modified with reference to Landsat-8
satellite imageries [111] and World Imagery [112].

The geomorphology data layer was manually created by visual interpretation. The
imagery information was sourced from World Imagery [112] and street views provided by
Google Maps and Baidu Maps. Referring to the Natural Capital Project [55] and pertinent
studies [55,58], the coastal geomorphology of the study area was classified into six types
with different ranks, including protection structure, harbour and wharf, cobble beach,
lagoon, estuary, and mudflat (see Table 2).

Table 2. The main coastal geomorphic features of Shanghai with their ranks.

Type Protection
Structure

Harbour
and Wharf

Cobble
Beach Lagoon Estuary Mudflat

Rank 2 3 4 4 4 5

In this study, the natural habitats were mainly salt marsh and coastal green space. The
data layer of saltmarsh was downloaded from the UNEP-WCMC Ocean Data Viewer [113].
The Ocean Data Viewer also provided data on other habitats, such as seagrasses and
mangroves, but they were not distributed within the study area.

Coastal green spaces and vegetated habitats were considered in the study due to their
function of coastal protection [72,114]. Since there was a lack of existing datasets, this study
employed the method of supervised classification to identify ground features within a 1 km
radius of the shorelines, and then screened the vegetated areas to create the data layer
of coastal green space. This process was conducted in ArcGIS Pro, and satellite imagery
composited from Landsat-8 spectral bands was used as reference [111].

The classification was relatively rough due to technical limitations and a lack of high-
resolution images. There were four main categories for the ground features, including
water bodies, developed area, vegetated area, and bare land. Also, an accuracy assessment
was conducted for the classification results (see the assessment result in Appendix B). While
the overall accuracy is modest, the accuracy of “vegetated area” is relatively high at over
80%. Therefore, this data layer could be considered reliable in general.

Additionally, given that the effectiveness of green space in mitigating coastal hazards
increases with its size, further processing was carried out on the data [115]. Green spaces
smaller than 0.1 km2 were deemed negligible and subsequently removed from the dataset.
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Coastal green spaces larger than 0.5 km2 were classified as large green space with a lower
rank of exposure, while those smaller than 0.5 km2 were classified as small green spaces
with a higher rank of exposure. Table 3 illustrates the final ranks of the natural habitats and
their protection distances. The ranking was based on the Natural Capital Project [54].

Table 3. The main natural habitats in Shanghai with their ranks and protection distances.

Type Salt Marsh
Coastal Green Space

Large Small

Rank 2 3 4
Protection Distance (m) 500 1000 250

2.5. Scenario Creation

Since one of the aims of this research was to evaluate the benefits of natural habitats in
mitigating vulnerability, this study (in addition to the current situation) assessed the coastal
vulnerability for four different simulated scenarios, including (1) “without all natural habi-
tats”, (2) “without salt marshes”, (3) “without large coastal green space”, and (4) “without
small coastal green space”. These scenarios were generated by selectively inputting datasets
of natural habitats. With the various scenarios, the study could conduct an analysis of
how coastal vulnerability changes with variations in natural habitats, thereby acknowl-
edging their significance and enabling the formulation of informed recommendations for
coastal planning.

2.6. Data and Result Analysis

According to the rationale of the InVEST model, the EIs are output with values ranging
from 1 to 5, with 1 being the least exposed and 5 being the most exposed. Accordingly, this
study set four equal intervals, classifying coastal points with EI values between 1.00 and
1.99 into “low vulnerability,” EI values between 2.00 and 2.99 into “medium,” EI values
between 3.00 and 3.99 into “high,” and EI values between 4.00 and 5.00 into “very high.”

Indeed, the methods for vulnerability classification are not standardized. For example,
in the study of Ai et al. [58], vulnerability was classified into five classes by the natural
breakpoint method, while Cabral et al. [116] and Silver et al. [69] used the percentile
method to divide it into three or five classes. However, the metric intervals corresponding
to each vulnerability level derived from these techniques may be influenced by variations
in the overall scope and arrangement of EIs across various circumstances. Conversely, the
approach used in this investigation utilizes predetermined intervals. This allows for a more
clear and direct assessment of variations in the dispersion of coastal vulnerability across
various situations, aiding in comprehending the specific locations and degree to which
natural habitats contribute.

As for the analysis of the data and results, it was conducted in two parts. The first part
described the results of the coastal vulnerability assessment of all scenarios (i.e., the current
situation and the four simulated scenarios). More specifically, this involved describing and
comparing the mean EI, and the numbers and proportions of coastal points at different
levels. The spatial distribution of coastal vulnerability was also described. This part of the
analysis aimed to understand the general distribution of coastal vulnerability in Shanghai,
and to evaluate the effectiveness of different natural habitats in improving coastal resilience.

The second part involved the spatial aggregation analysis of costal vulnerability
through three methods, including Spatial Autocorrelation Analysis (Global Moran’s I),
Hot Spot Analysis (Getis-Ord Gi*), and Cluster and Outliers Analysis (Anselin Local
Moran’s I). This part of the analysis was conducted for the current coastal vulnerability
(i.e., the current situation) only, with the aim of gaining a better understanding of which
areas are currently highly vulnerable and in need of focused attention, in order to provide
constructive guidance for the next mitigation measures. This process was carried out in
ArcGIS Pro.
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Spatial Autocorrelation Analysis reveals the spatial correlation of certain phenomena
or attribute values across a whole study area [58]. The analysis result is typically presented
by Global Moran’s I, which yields values within a range from −1 to 1 [58]. A positive
I value (I > 0) indicates clustering of the objects, with higher I values suggesting a more
pronounced positive correlation; conversely, a negative I value (I < 0) indicates dispersion
of the objects, and smaller I values imply greater negative correlation; when I = 0, it points
to a random spatial distribution of the objects [58,117].

Cluster and Outliers Analysis is a technique used to determine the spatial correlation
between a certain region within the studied area and its neighboring areas [118]. An index
value is estimated for each feature, representing the similarity between its attribute values
and those of neighboring features [117]. The high-value clusters and low-value clusters can
be distinguished by this method. Additionally, it has the capability to distinguish between
two categories of outliers. H–L outliers refer to features that have a high value but are
surrounded by low-value features, whereas L–H outliers refer to features that have a low
value but are surrounded by high-value data [117]. The main issue often lies with outliers,
necessitating specific recommendations.

Hot Spot Analysis could statistically identify high-vulnerability clusters (i.e., hot
spots) and low-vulnerability clusters (i.e., cold spots) in the coastal areas of Shanghai,
which would help to prioritize areas for the allocation of conservation and mitigation
resources [119,120]. A statistically significant hot spot refers to areas that exhibit high
values and are also bordered by other areas with high values. Conversely, cold spots refer
to areas that exhibit low values and are surrounded by other areas with low values [117].

3. Results
3.1. Coastal Vulnerability of the Current Situation and Simulated Scenarios

Based on the InVEST model, the Eis of 5608 coastal points along the Shanghai coastline
were derived. The coastal vulnerability was categorized into four levels, including “low” (EI:
1.00–1.99), “medium” (EI: 2.00–2.99), “high” (EI: 3.00–3.99), and “very high” (EI: 4.00–5.00). In
terms of the current situation, the average EI in Shanghai is 2.69. The “medium vulnerability”
has the highest number of shorelines, accounting for 68.62% of the total. This is followed by
“high vulnerability” with 19.61%, “low vulnerability” with 8.31%, and “very high vulnerability”
with only 3.46%, see Table 4.

Table 4. Descriptive statistics of the coastal vulnerability of all scenarios.

Input Current Situation Scenario 1 Scenario 2 Scenario 3 Scenario 4

Count

Low (1.00–1.99) 466 212 423 331 466
Medium (2.00–2.99) 3848 3276 3720 3587 3843

High (3.00–3.99) 1100 1873 1233 1481 1105
Very High (4.00–5.00) 194 247 232 209 194

Percentage

Low (1.00–2.00) 8.31% 3.78% 7.54% 5.90% 8.31%
Medium (2.01–3.00) 68.62% 58.42% 66.33% 63.96% 68.53%

High (3.01–4.00) 19.61% 33.40% 21.99% 26.41% 19.70%
Very High (4.01–5.00) 3.46% 4.40% 4.14% 3.73% 3.46%

Change in the number
of shore points

(compared with the
current situation)

Low (1.00–2.00) −54.51% −9.23% −28.97% 0.00%
Medium (2.01–3.00) −14.86% −3.33% −6.78% −0.13%

High (3.01–4.00) 70.27% 12.09% 34.64% 0.45%
Very High (4.01–5.00) 27.32% 19.59% 7.73% 0.00%

Mean Exposure Index 2.686379933 2.878233021 2.750210796 2.766914664 2.689440308

Scenario 1 simulated the absence of any natural habitat, which presented the greatest
difference in coastal vulnerability from the current situation. Compared to the current
situation, the average EI increased to 2.88, and the numbers of “high vulnerability” and
“very high vulnerability” shore points increased by 70.27% and 27.32%, respectively. In this
scenario, 33.40% of the shore points were at the level of “high vulnerability,” and 4.40% of
the shore points were at the level of “very high vulnerability.” Conversely, the percentages



Sustainability 2024, 16, 609 11 of 23

of both “medium vulnerability” and “low vulnerability” shore points decreased (compared
to the current situation), to 58.42% and 3.87%, respectively.

Comparing the other three scenarios showed that large coastal green spaces and salt
marshes had a relatively larger impact on the coastal vulnerability, while small green spaces
had a smaller one (see Figure 3). In terms of average EI, those in scenario 3 (without large
coastal green spaces) and 2 (without salt marshes) were 2.77 and 2.75, respectively, both of
which increased compared to the current situation. However, the average EI of scenario 4
(without small green spaces) remained basically unchanged from the current situation at
2.69. In terms of the distribution of shore points across vulnerability levels, the numbers of
“high vulnerability” and “very high vulnerability” shore points in scenario 2 had increases
of 12.09% and 19.59%, respectively, when comparing to the current situation, whilst those in
scenarios 3 increased by 34.64% and 7.73%, respectively. These numbers directly suggested
that the loss of large coastal green spaces and salt marshes would result in more areas being
at greater risk. As for scenario 4, there were only very minor or even no changes in the
distribution.
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Figure 4 presents the spatial distribution of the coastal vulnerability in different
scenarios. In the current situation, it was found that the shore points with a “very high
vulnerability” were concentrated on the east side of Chongming Island’s north coast. The
distribution of “high vulnerability” areas was relatively dispersed, concentrating mainly
on the east coast of Chongming Island, the east and northeast coast of Hengsha Island,
and the east coast of the mainland. With the absence of all natural habitats, the “very high
vulnerability” areas expanded on the east side of Chongming Island’s north coast. Also,
certain “medium vulnerability” sites on the east coast of the mainland, the south coast
of Hengsha Island, and the northmost shore of Chongming Island were reclassified into
“highly vulnerable” zones.

By comparing the differences between Scenarios 2, 3, and 4 and the current situation,
it can be seen that salt marshes can effectively reduce the coastal vulnerability along the
eastern part of Chongming Island’s north coast, turning a small portion of the shore points
with “very high vulnerability” into “high vulnerability” Points. Also, they transformed
certain coastline segments on the north coast of the mainland from “high” to “medium.” The
presence of large coastal green spaces downgraded certain areas from “high vulnerability”
to “medium vulnerability,” and these were mainly on the east coast of the mainland and the
south coast of Hengsha Island. Moreover, they protected the coastline of the northern part
of Chongming Island and the small island belonging to Chongming Island, making them
“low vulnerability”. However, small coastal green spaces did not play a significant role.
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3.2. Spatial Aggregation Analysis of Current Costal Vulnerability
3.2.1. Spatial Autocorrelation Analysis

According to the analysis of spatial autocorrelation, the global Moran’s I of the current
situation was 0.959. The value was extremely close to 1, which demonstrated that the coastal
vulnerability was significantly spatially autocorrelated. In other words, areas of higher (or
lower) vulnerability are always surrounded by areas of higher (or lower) vulnerability.

3.2.2. Cluster and Outliers Analysis

The results of the Cluster and Outliers Analysis indicated the characteristics of local
spatial aggregation in the coastal vulnerability (see Table 5). In the current situation, it
could be observed that “high-high” and “low-low” clusters were very prominent, while
“high-low” and “low-high” outliers were negligibly few. A total of 28.50% of the shore
points fell into the “high-high” category and 38.98% of them fell into the “low-low” category.
Conversely, only 26 shore points were “high-low” outliers, and 6 shore points were “low-
high” outliers.

Table 5. Descriptive statistics of the results of the Cluster and Outliners Analysis.

High-High High-Low Low-High Low-Low Not Significant

Count 1598 26 6 2186 1792
Percentage 28.50% 0.46% 0.11% 38.98% 31.85%

3.2.3. Hotspot Analysis

The Hotspot analysis identified hot and cold spots of coastal vulnerability at 99%,
95%, and 90% confidence levels. Hotspots with the highest level of confidence typically
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represent areas where interventions are most needed. The findings indicated that the
locations most susceptible to risk (referred to as hotspots with a 99% confidence level) were
mostly situated on the eastern shore of Chongming Island, the eastern and northeastern
beaches of Hengsha Island, and the eastern coast of the mainland. Meanwhile, a few
small coastline segments located along the northernmost coast of the mainland and the
north-central part of Chongming Island’s south coast were also significant hot spots. In
contrast, the cold spots were more dispersed, and, in theory, these areas could be given a
lower priority in implementing coastal protection and adaptation interventions relative to
those hot spots.

4. Discussion
4.1. Important Factors for Coastal Vulnerability

Based on the findings of the coastal vulnerability assessment, the northern coast’s
eastern side of Chongming Island is identified as the most susceptible location in Shanghai,
exhibiting the greatest level of EI values, as shown in Figure 5. Moreover, by analyzing the
spatial aggregation characteristics, it can be concluded that the east coast of Chongming
Island, the east coast of the mainland, and the east and northeast coasts of Hengsha Island
are the primary hotspots with higher coastal vulnerability, where interventions need to
be developed on a priority basis. An important reason for the high vulnerability of these
areas is that they are located at the eastern edge of the landmass, closest to the East China
Sea, and are not surrounded by any shelter, such as islands. As a result, they are exposed
to higher wind and wave energies than other areas and face a trend of higher sea level
rise. As for the east side of Chongming Island’s north coast, its geomorphic characteristics
are an additional factor contributing to its high vulnerability. Unlike the majority of the
coastal regions in Shanghai, which use rigid buildings as a protective barrier against
coastal threats, this location stands out as distinct. This property is situated on a low-lying
mudflat, rendering it very susceptible to coastal hazards. However, natural habitats are not
a significant contributor to the high vulnerability of these areas, as parts of the shoreline,
even when protected by them, still remain highly vulnerable.

Local features result in differences in vulnerability within Shanghai. Moreover, a
few holistic geophysical features also play an important role in contributing to coastal
vulnerability across the city. Due to its location in an estuarine delta where the land is
formed by the deposition of silt and mud, the natural geomorphic features of Shanghai are
mainly those that are highly exposed to coastal erosion and inundation, such as mudflats
and estuaries. Shanghai’s biological and environmental dynamics depend on its estuaries,
notably the Yangtze. One of the world’s greatest alluvial estuaries, the Yangtze, borders
China’s most developed economic zone [121]. Many cities, like Shanghai, depend on
estuaries, which are dynamic ecosystems affected by natural and human influences [122].
Therefore, even though much of the coastline of Shanghai is protected by coastal defense
structures, many areas are at great risk of disasters when these structures fail to withstand
hazards. In the existing defense system of Shanghai, only 23% of the coastal seawalls can
withstand 200-year storm surges and strong typhoons of magnitude 12, and only 58% of
the levees along the Huangpu River can withstand 1000-year storm surges [18]. According
to Wang et al. [104], under the combined effects of multiple coastal hazards, 4.31% of the
total length of the seawalls and levees in Shanghai would be at risk of overtopping by 2030,
and the overtopping rate would further increase to 27.55% and 45.98% by 2050 and 2100,
respectively.

Furthermore, Shanghai is confronted with a significant issue of rising sea levels and
land subsidence. Shanghai has had a consistent increase in its absolute sea level over the
last three decades, with an average annual rise of 3.8 mm. This rate of increase surpasses
both the world and national norms [123]. It is projected that, by 2050, the sea level in the
city will rise by 75–155 mm compared to 2018 [124]. Moreover, since the early 20th century,
this city has experienced large-scale land subsidence mainly due to anthropogenic activities
including extensive groundwater extraction and construction [18,125]. During the period
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of 1995–2001, the land subsidence rate in the urban area was about 25–60 mm/year [18].
Currently, land subsidence is a primary driver of the relative sea level changes in Shanghai.
This will lead to an increased likelihood of the inundation and deformation of defense
structures, ultimately causing coastal areas to be at higher risk levels [126]. In response
to this issue, the municipal government launched a comprehensive plan to control land
subsidence in 2016, with specific measures that include the delineation of control zones,
the establishment of a sound monitoring system, the control of groundwater extraction
projects, and the recharge of groundwater. These measures have proven to be effective in
slowing down the rate of subsidence, and should be further advanced in the future [125].
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4.2. Intervention Suggestions
4.2.1. Maintenance and Development of Natural Habitats

Multiple studies have shown that natural habitats have the capacity to enhance coastal
resilience in a very cost-effective manner [60–72]. Therefore, the preservation of existing
habitats and the development of future habitats is a sound option for reducing coastal
vulnerability, which should be incorporated into coastal management and development
plans and strategies.

In this study, existing natural habitats, especially salt marshes and large coastal green
spaces, have shown their value in protecting the coasts of Shanghai. Specifically, salt
marshes and large coastal green spaces have effectively reduced the vulnerability of the
coasts in the northeast of Chongming Island, the east of the mainland, and the south of
Hengsha Island. These natural ecosystems not only safeguard the shoreline but also provide
other ecological roles and services, including carbon storage and sequestration, biodiversity
enhancement, and recreation. For example, Chongming Dongtan Wetland provides habitats
and resources for diverse bird species; Paotaiwan Wetland Forest Park and Binjiang Forest
Park, which are on the north coast of the mainland, provide recreational and educational
opportunities for local residents [127]. However, a large number of habitats are currently
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under great stress of loss and degradation due to both natural and anthropogenic factors,
including extensive reclamation, pollution, species invasion, coastal erosion, and sea level
rise [128,129]. For these reasons, relevant regulations should be formulated to strictly
control reclamation projects and waste discharge. Also, the government should invest
financial funds and human resources to strengthen ecological restoration and monitoring,
allowing natural habitats to perform their roles to the fullest [130].

In addition, developing new natural habitats is also critical, especially in areas that are
highly vulnerable or lacking in habitats. For example, on the east coast of the mainland,
where property and infrastructure are concentrated, coastal shelterbelt forests can be
planted which can serve as an important barrier to reduce the risk of economic loss. It is
crucial to emphasize that, when establishing forest belts, a comprehensive investigation of
the local terrain, soil, and vegetation should be conducted. This will help in selecting the
most suitable species, as this often results in the greatest benefits. Unsuitable tree species
are likely to fail to establish strong root systems and, consequently, cannot withstand
strong storms [131]. However, it is a different case for the northeastern and eastern parts
of Chongming Island as well as the eastern part of Hengsha Island, where agriculture
is the predominant type of land use, and where some of the agricultural land that has
less economical value can be restored to wetlands covered by native vegetation, thereby
establishing highly adaptive and resilient coastal ecosystems [18,132,133]. Also, certain
types of natural habitats, like marshes, dunes, and oyster reefs, can be created as extensions
of existing habitats or outside of seawalls. Therefore, the development of natural habitats
needs to take into account a combination of natural and socio-economic conditions, such as
land requirements, technical support, cost-effectiveness, and sustainability.

4.2.2. Improvement of Coastal Defense Structures

Relying exclusively on natural habitats to protect the coast in urban areas is not
practical, since the desired results in coastal protection can usually only be achieved when
natural habitats are sufficiently large and healthy [134,135]. Hard coastal defense structures
that have the advantages of high efficiency and space savings are necessary for coastal
urban areas [65,136]. The existing seawall and levee systems in Shanghai must be regularly
maintained to prevent them from failing due to aging or damage and reinforced where
necessary to enable them to cope with the escalating coastal hazards brought about by
climate change. Areas with high population and property densities should be prioritized
in the development of hard defense structures. For instance, the most densely populated
and developed area of Shanghai is in the northern part of the mainland near the estuary.
The same is true for the east coast of the mainland, where important infrastructure like
international airports is located. These are both places where it might be necessary to
strengthen hard defense structures.

In addition, traditional hard structures can be improved by incorporating ecological
elements, structures, and processes to achieve better coastal hazard mitigation. Various
methods and techniques have been applied around the world, ranging from the micro-scale
incorporation of barnacles into construction materials to the macro-scale integration of
ecosystems into foreshores [137–139]. The Howard Beach Coastal Defence Project in New
York is a comprehensive case study that can serve as a reference, which combines a variety
of approaches, including restoring marsh habitats, creating mussel beds along the shoreline,
and building raised berms, rock groins, flood gates, and seawalls [140]. In addition, an
approach that can be applied to the coasts of Shanghai is to combine traditional seawalls
with vegetated foreshores and submerged breakwaters (see Figure 6) [136]. Breakwaters can
attenuate nearshore waves and capture sediments; vegetated foreshores can reduce wave
energy and stabilize salt marshes; and seawalls can protect against extreme tidal levels and
prevent wave overtopping. The functions of these three components are interdependent
and synergistic, resulting in a more robust and resilient coastline.
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4.3. Limitations and Further Research

The InVEST Coastal Vulnerability Model used in this study has the limitation of being
oversimplified, as we simplified the calculation of the EI to a geometric mean of seven
variables [54]. It does not take into account or model some complex geophysical features
and processes, such as storm surges and wave fields in nearshore areas, hydrodynamic or
sediment transport processes, and interactions between different variables [54].

In addition, a major limitation of this project was the lack of richness and detail of
natural habitat data. The UNEP-WCMC Ocean Data Viewer provided data on salt marshes,
but no other types of natural habitats were available in the study area. Meanwhile, no other
reliable data sources on natural habitats in Shanghai were found. Therefore, this study used
supervised classification in ArcGIS Pro to create a data layer for the coastal green space.
However, this data layer included all the land covered by vegetation, and did not have
a further classification of green spaces such as farmland and wetlands. This may lead to
certain inaccuracies in the results of coastal vulnerability assessment, as well as an inability
to recognize the roles of different types of coastal green spaces on coastal vulnerability.
Several relevant studies used field surveys as a complementary method to collect and refine
natural habitat data [58,141]. However, due to time and location constraints, it was less
feasible to obtain data through this method in this study. Future research on the coastal
vulnerability of Shanghai could adopt this method to fill the data gaps and, thus, improve
the accuracy and reliability of the assessment results [142,143].

Another limitation of this project is that the assessment only considered geophysical
variables. Since Shanghai is a highly populated and economically developed city, socio-
economic factors, such as demographics and infrastructure, can have a significant impact
on coastal vulnerability. Therefore, further research should consider both geophysical and
socio-economic factors, and calculate three subindices, including exposure, sensitivity, and
adaptive capacity, based on the conceptual model of vulnerability, and, finally, synthesize
the result of coastal vulnerability. Such a comprehensive assessment could provide more
scientifically sound information for resource allocation and intervention implementation
in the coastal area [144–146]. This would further contribute to enhancing resilience and
sustainability in the area, shedding light on the social, economic, and ecological aspects
that strengthen resilience against coastal hazards.

Additionally, this project compared and evaluated the roles of different habitats in
the coastal vulnerability of Shanghai. However, it is worth noting that this evaluation
is not a quantification of their effectiveness, but rather an examination of their relative
contributions. Therefore, more comprehensive empirical research is required in order to
fully comprehend the quantitative advantages of minimizing the effects of coastal risks.

5. Conclusions

Based on the InVEST Coastal Vulnerability Model, this study assessed the vulnerability
of the shoreline of Shanghai under current situations as well as simulated scenarios without
different natural habitats. In addition, it conducted further spatial aggregation analysis of
the current coastal vulnerability.

This study concluded that the existing natural habitats in Shanghai play a role in
reducing coastal vulnerability, with salt marshes and large coastal green spaces being more



Sustainability 2024, 16, 609 17 of 23

significant. Also, this study identified that the east coast of the mainland of Shanghai, the
east coast of Chongming Island, and the east and northeast coasts of Hengsha Island are
hotspots of coastal vulnerability, which need to be prioritized for interventions to enhance
coastal resilience. These findings will be useful in decision-making toward sustainable
policies and plans for Shanghai. Given the results of this study, the government and
relevant stakeholders should enhance the protection and development of natural habitats
to maximize their benefits for coastal protection. The key measures are to strictly control
development projects that damage natural habitats and to actively implement ecological
restoration work. Also, it is necessary to improve defense structures in critical areas.
Innovative defense structures that combine ecological elements and engineering techniques
should be considered for wide application.

This is the first study that applies the InVEST Coastal Vulnerability Model to Shanghai.
It demonstrated the potential of the model to be widely applicable, and more importantly,
provided valuable information for future coastal protection and sustainable development
in Shanghai. However, there were some limitations, such as the oversimplification of the
model and the lack of natural habitat data, which slightly affected the results of the study.
Further research could be conducted to enhance the aforementioned elements, thereby
facilitating a more comprehensive evaluation of the city’s susceptibility to coastal hazards.
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Appendix A

Table A1. Confusion matrix showcasing the results of accuracy assessment of the supervised classification.

Rank 1
(Very Low
Exposure)

Rank 2
(Low Exposure)

Rank 3
(Medium
Exposure)

Rank 4
(High Exposure)

Rank 5
(Very High
Exposure)

Relief 81 to 100 Percentile 61 to 80 Percentile 41 to 60
Percentile 21 to 40 Percentile 0 to 20 Percentile

Natural Habitats
Coral reef;
mangrove; coastal
forest

High dune; marsh Low dune Seagrass; kelp No habitat

Geomorphology
Rocky; high cliffs;
fjord; fiard;
seawalls

Medium cliff;
indented coast;
bulkheads and
small seawalls

Low cliff; glacial
drift; alluvial
plain;
revetments;
rip-rap walls

Cobble beach;
estuary; lagoon;
bluff

Barrier beach;
sand beach; mud
flat; delta

Wind Exposure
0 to 20 Percentile 21 to 40 Percentile

41 to 60
Percentile 61 to 80 Percentile

81 to 100
Percentile

Wave Exposure
Surge Potential

https://drive.google.com/drive/folders/1DK13XKN6ODCldwGcS9js4XI2ZqbrA9_G
https://drive.google.com/drive/folders/1DK13XKN6ODCldwGcS9js4XI2ZqbrA9_G
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Appendix B

Table A2. Confusion Matrix showcasing the results of accuracy assessment of the supervised
classification.

Water Developed
Area

Vegetated
Area Bare Land Total User’s

Accuracy Kappa

Water 46 0 1 3 50 0.92
Developed Area 3 31 2 14 50 0.62
Vegetated Area 0 2 42 6 50 0.84
Bare Land 6 9 2 33 50 0.66
Total 55 42 47 56 200
Producer’s Accuracy 0.836364 0.738095 0.893617 0.589286 0.76
Kappa 0.68
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