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Abstract: Water makes up most of the Earth, although just 0.3% is usable for people and animals.
The huge oceans, icecaps, and other non-potable water resources make up the remaining 99.7%.
Water quality has declined in recent decades due to pollution from population growth, industry,
unplanned urbanization, and poor water management. The textile industry has significant global
importance, although it also stands as a major contributor to wastewater generation, leading to
water depletion and ecotoxicity. This issue arises from the extensive utilization of harmful chemicals,
notably dyes. The main aim of this review article is to combine and assess the impacts of textile
wastewater that contains dyes and chemicals, and to examine their potential consequences on human
health, aquatic health, and the environment. Moreover, the dedicated section presents an in-depth
review of various environmentally sustainable approaches for the management and treatment of
wastewater in the textile industry. These approaches encompass bio adsorbents, biological methods,
membrane technology, ion exchange, advanced oxidation processes, as well as physicochemical
and biochemical processes. Furthermore, this study also evaluates the contemporary progressions
in this particular domain, taking into account the corresponding advantages and disadvantages.
Finally, this article highlights the significance of recovering and reusing dyes, alkalis, and electrolytes
in wastewater treatment. Additionally, it emphasizes the necessity of performing technoeconomic
analyses and life cycle assessments (LCA) on wastewater treatment plants.
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1. Introduction

Currently, ecosystems are primarily experiencing harm due to the exhaustion of natu-
ral resources and the deterioration of the environment resulting from industrial expansion
and environmental emergencies [1,2]. Water pollution is a significant environmental issue
posing significant risks to water, the primary life-sustaining element on Earth, emphasizing
its crucial role in supporting life [3,4]. Pollution is primarily caused by the insufficient
potable water supply and the harmful exposure to various chemicals and pathogens in
the polluted water and food chain. Water pollution is largely defined by two main prob-
lems: the lack of safe drinking water and the dangerous exposure to various chemicals
and pathogens found in contaminated water and the food chain [5,6]. Water pollution is
characterized by the overabundance of harmful substances in water bodies, resulting from
both natural and human activities [7,8].

The textile industry is a significant contributor to water pollution [9], and it is also
responsible for approximately 20% of global water pollution [10], as the second largest pol-
luter after the oil industry [10]. In comparison to other industrial sectors, the textile industry
is known to have the highest water and chemical consumption, with over 8000 species
being utilized [11–13]. The wastewater generated by this industry is often characterized
by a significant amount of unfixed colors and dyeing auxiliaries [14–17]. Approximately
800,000 tons of dyes are produced annually, with 10–15% of this quantity being lost to the
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environment [18]. Over 10,000 distinct synthetic dye varieties have been introduced, with
70% of them belonging to the azo type. In general, dyes are classified into various types
such as direct, reactive, basic, acidic, disperse, vat, sulfur, metal complex, and mordant
dyes [10].

Dyes are a class of organic compounds that possess the ability to impart color to a
diverse range of substrates [19,20]. Frequently, these compounds are recognized for their
ionization properties and notable water solubility, leading to their facile dissemination
into both the surroundings and human physiology [21]. The intricate aromatic structures
of these substances pose a challenge for biodegradation and render them inert, thereby
rendering their elimination a more arduous and laborious task. In contrast to metal ions,
dyes can be classified in various ways. The most prevalent classification method is based on
the charge exhibited upon dissolution, which leads to the formation of three distinct groups:
anionic (inclusive of reactive, acid, and direct dyes), cationic (encompassing all basic dyes),
and non-ionic (comprising disperse dyes). Dyes can be categorized into acid and base based
on the various associated groups that dictate the hue of the color. Acid dyes are anionic
chemicals containing acid moieties in their molecular structure such as sulfonic SO3

2−

and carboxylic -COO¯, while base dyes are cationic ones presenting quaternary amine
groups -NH4

+ [22]. Another systematic method of classification is the color index, which is
related to the chemical structure of the dye substance; however, due to the complexity of
nomenclature from the chemical structure, the classification based on color application is
the most preferable [13]. With respect to chemical structure, a variety of groups such as
azo, diazo, anthraquinone, nitro, diphenylmethane and triphenylmethane, indigoid and
thionindigoid, anthraquinoid, xanthene, phthaleins and metal complex dyes are known
(Figure 1). Meanwhile, the mode of application and substrate-based scale classifies them
into reactive, acid, base, vat, direct, solvent, disperse, and azoic dyes [23,24].
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Figure 1. Classification of dyes used in the textile industry.

The classification of colored substances can be divided into two categories: natural
and synthetic. Synthetic substances have become the predominant choice in the market due
to their vast array of available colors and cost-effectiveness, as noted in [21]. The utilization
of synthetic dyes, which are derived from benzene and its derivatives, has supplanted
the use of conventional natural dyes, leading to the development of over 10,000 dyes
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with varying chemical structures and characteristics [25]. The compounds exhibit intricate
conjugated architectures that pose challenges in terms of their elimination [25]. Certain
dyes, such as azo dyes, possess a high degree of toxicity and carcinogenicity because
of their toxic metabolites and aromatic amine byproducts. The removal of anionic and
non-ionic dyes through conventional techniques poses a challenge due to their high water
solubility and resistance to degradation of non-ionized fused aromatic rings, respectively.
In the interim, it has been observed that biological techniques are not entirely effective
in the complete elimination of reactive and acidic dyes [7]. In general, azo dyes exhibit a
high susceptibility to degradation at their azo N=N linkage, leading to the formation of
hazardous aromatic byproducts during treatment. Conversely, other categories of dyes are
characterized by a low degradability, which limits the range of viable treatment options.
Prior to discharge into the aquatic environment, it is imperative to subject the wastewater
generated by the textile sector to appropriate treatment measures. Figure 2 illustrates the
relationship between the denim factories and the resultant wastewater, which significantly
contributes to the contamination of the Noyal River in Tirupur, India, as well as the adjacent
agricultural areas. The production of denim entails the discharge of wastewater containing
various pigments (Figure 2a), subsequently leading to the pollution of nearby water bodies
(Figure 2b) and ultimately culminating in the contamination of the river (Figure 2c,d). The
impact of the situation on agricultural activities is evident in the images, as depicted in
Figure 2e. Notably, the groundwater is significantly affected, as seen in Figure 2g,h.
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Figure 2. Textile effluent from industry (a) and in the water streams (b) that flow in the Noyal River
(c–e) in India, and the influence of these effluents on the agricultural land (f–h) (pictures taken in
April 2022 and reprinted with the permission of ACS [26] licensed under CC-BY 4.0).

In recent years, there has been a significant focus on the removal of dyes from wastew-
ater owing to their hazardous properties and conspicuousness also now this wastewater
also contains the microplastics [27,28]. The presence of dyes in wastewater can have severe
consequences, including the disruption of photosynthesis and oxygen deficiency caused by
the obstruction of sunlight. These dyes can accumulate in food chains, leading to aesthetic
issues in aquatic and soil environments. Moreover, their carcinogenic and mutagenic
properties can result in the formation of tumors and mutations. The toxic amines and
biologically non-biodegradable byproducts present in dyes can also have immunological
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and dermal effects. Additionally, the presence of dyes can disrupt seed germination and
hinder plant growth, as well as cause chromosomal aberrations and various diseases [23,29].
To mitigate the detrimental impact of dyes and other chemical waste generated by the
textile industry on both the environment and human health, it is imperative to extract the
contaminated wastewater from the hazardous effluents prior to their release into water
bodies. Therefore, the subsequent sections will present a concise review of the impact of
health and environmental concerns linked to these effluents. There exists a more profound
discussion concerning the significance of employing sustainable methodologies for the re-
moval of effluents using various strategies. The primary objective of this review study is to
consolidate and analyze the effects of wastewater containing dyes, as well as their possible
implications for human health and the environment. Additionally, the dedicated section
delineates a range of ecologically friendly approaches for the management and treatment of
wastewater in the textile sector, together with its respective advantages and disadvantages.

2. Common Treatment Methods for Textile Dyes

The primary approaches utilized in the treatment of wastewater may be categorized
into three distinct groups: biological, chemical, and physical. Table 1 provides a concise
overview of the methodologies and presents a comprehensive analysis of their respective
merits and drawbacks. One example of physical techniques is the utilization of membrane
technology. On the other hand, chemical methods encompass processes such as oxidation,
coagulation, and photochemical oxidation. Additionally, biological approaches include the
implementation of anaerobic/aerobic sequential processes [30]. Oxidation is a chemical pro-
cess that encompasses several techniques, including bleaching, chlorination, and ozonation.
These techniques include the utilization of specific chemicals such as hydrogen peroxide,
permanganate, chlorine, chlorine dioxide, and ozone (O3), respectively [13,24,31,32].

Table 1. Advantages and disadvantages of the most common techniques for removal of dyes
from wastewater.

Type Treatment Method Advantages Disadvantages Ref

Chemical

Oxidation

Rapid and effective for both organics
and inorganics

Can be used for both soluble and
insoluble dyes

No need to use microorganisms

Formation of by products
High energy consumption and

running costs
[33–35]

Ozonation No alternation in the sample volume Short half-life and
need pretreatment [33,36–42]

Chemical precipitation Low investment and simple process High maintenance and required
to dispose the sludge [43,44]

Electro kinetic coagulation Economic process High sludge generation [45]

Electrochemical treatment Moderate metal selectivity
Rapid breakdown

Formation of by products
Require high energy [46]

Advanced oxidation with
Fenton reagents as catalyst

No energy input required
Effective for both insoluble and soluble dyes,

for wide variety of wastes treatment

Sludge formation
Expensive process [47–53]

NaOCL Accelerated azo bond cleavage Toxic aromatic amine release [53]

Photochemical degradation
(based on catalyst)

Effective oxidation and lab scale applicability
No sludge generation

Formation of by products
Excessive dissolved O2

is required
[37]

Coagulation-
Flocculation/Sedimentation Variety of coagulants-flocculants Expensive chemicals and

no recycling [54,55]
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Table 1. Cont.

Type Treatment Method Advantages Disadvantages Ref

Biological
method

Single cell organisms such as
bacteria, fungi, algae

and yeasts

Generally, these are more economical than
chemical and physical methods.

For any dye industry and as a preparatory step
for removal

Acceptable efficiency for low concentrations
and volumes

Highly effective for specific dye species

Requires large land area, less
flexible in operation and design

and partially to totally
non-degrading to dyes

[56–58]

Aerobic (presence of free DO) Facile
COD removal Longer detention times [59–61]

Anaerobic (absence of DO) Resistance to wide variety of dyes
Steam generation via the produced biogas Longer acclimatization phase [60,61]

Physical

Membrane (ultrafiltration,
microfiltration, nanofiltration,

reverse osmosis)
Removes all types of dyes

Inapplicable for wastewater
treatment due to the large

pore size
[62–65]

Adsorption For all dye industry
Regeneration of adsorbent with low loss

Only soluble dyes
High energy consumption [66]

Ion exchange For specific applications [67,68]

Irradiation Wide range of colorants
Efficient even for low volumes

High dissolved oxygen
requirement

Light-resistant colorants cannot
be degraded

[69]

3. Effluent from the Textile Industry: Human and Environmental Issues

The effluents discharged by the textile industry in their untreated state consist of a
wide array of organic contaminants, including unfixed colors, acids, alkalis, and notably,
very poisonous dyes [70]. The textile business employs many categories of dyes, with
azo dyes being the predominant group utilized, accounting for over 60% of the industry’s
usage [71]. Azo dyes are characterized by their structural composition, which includes one
or more azo groups. The discharge of unfixed azo dyes into wastewater is attributed to
the inefficiency of textile dyeing processes, accounting for a range of 10–50% [29,72,73].
Certain textile manufacturing facilities employ wastewater treatment methods to break
down the released free azo dyes in order to mitigate their impact on the environment.
Conversely, there are other industries that release untreated industrial effluents straight
into water sources, hence presenting significant ecotoxicological risks and causing harmful
effects on organisms (see Figure 3). Farmers in various Asian nations, such as India,
Bangladesh, Vietnam, and Indonesia, have historically employed the practice of irrigating
their agricultural lands with untreated industrial effluents present in wastewater [74,75].
This practice has had detrimental effects on both soil quality and crop germination rates.
Furthermore, the presence of toxic chemicals in these effluents has had a significant adverse
impact on agricultural productivity, which in turn has had a notable influence on the gross
domestic product (GDP) of these countries [76]. The introduction of azo dyes into water
bodies has been seen to have detrimental effects on light penetration, hence negatively
impacting the growth and productivity of algae and aquatic plants [77]. Additionally, the
presence of these colors has been found to hinder the formation of dissolved oxygen (DO)
in the water. Moreover, the ingestion of dyes by fish and other creatures can lead to the
metabolic conversion of these substances into hazardous intermediates inside their systems,
so exerting detrimental effects on the well-being of both the fish and their predators [78].
Azo dyes present in industrial effluents can potentially come into contact with humans and
other mammals through two primary routes: oral consumption and direct skin contact [79].
The intestinal microflora present in the human gastrointestinal tract is responsible for the
conversion of azo dyes into amino acids that possess toxic properties. These toxic amino
acids have detrimental effects on numerous tissues inside the human body [70,80].
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3.1. Environmental Consequences

The textile sector disposes of significant quantities of untreated wastewater which
largely contains azo dyes and several other organic contaminants (Figure 3). Nevertheless, it
should be noted that azo dyes undergo degradation either before or after being disposed of,
resulting in treated effluents containing amino acids that are potentially more harmful than
the original chemicals [71,81–83]. Conversely, untreated wastewater has a diverse array of
detrimental effects on aquatic ecosystems and creatures. The introduction of textile dyes
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into aquatic habitats has been found to have adverse effects on the plants inhabiting these
environments. One prominent natural concern associated with dyes is to the phenomenon
of sunlight absorption and reflection in water [84,85]. It serves as a barrier that inhibits
the penetration of light into the photic zone of the aquatic environment. Consequently,
notable ecological ramifications ensue, including alterations in the characteristics of aquatic
ecosystems and reduced photosynthetic activity relative to aquatic vegetation. Moreover,
the presence of these waste liquids has been found to be associated with adverse health
effects in humans, such as allergies, dermatitis, skin irritations, cancers, and mutations.
Consequently, these waste liquids can contribute to the degradation of water quality,
leading to the development of toxic properties, as evidenced by changes in odor and
color [86,87].

As significant primary producers in freshwater and marine environments, microalgae
are vital to aquatic ecosystems because they provide food for everyone from tiny zoo-
planktons to gigantic whales [88,89]. Particularly in aquatic ecosystems, the single-celled
tiny algae known as microalgae are essential to the upkeep of the whole food chain [89].
Nonetheless, in aquatic environments, color pollution impedes the development of mi-
croalgae and interferes with the trophic transfer of nutrients and energy. The significant
quantity of textile dyes discharged into water sources affects algae development. Algae are
a great indication of pollution in toxicological studies because they are more vulnerable to
pollutants than other aquatic species [88–92].

3.2. Impact of Textile Dyes on Human Health

Fish and other aquatic animals, which are widely acknowledged as a substantial
protein source for human consumption, has the potential to ingest dyes through their
diet [93,94]. The wastewater generated by the textile industry has significant coloration, a
fluctuating pH, and contains various salts, alkalis, and acids, which contribute to elevated
levels of biological oxygen demand (BOD), chemical oxygen demand (COD), total organic
carbon (TOC), and suspended solids (SS) [95]. In general, the presence of SS hinders the
passage of water across the fish’s gills, impeding the exchange of gases and potentially
leading to reduced growth or mortality. In addition, prolonged exposure to textile effluents
was found to diminish fish feed consumption, thereby leading to a decrease in the growth
rate [96]. The genotoxic effects of reactive azo dyes on adult fish involve the promotion of
erythrocytic micronuclei development, which is dependent on both the dose and duration
of exposure. In fingerlings, the creation of gill micronuclei is also influenced by the duration
of exposure to these colors. Fish are prone to a variety of illnesses due to the detrimental
impact of hypoxia on their immune system and physiological responses (see Figure 4).
Consequently, the presence of contaminated fish exerts a substantial influence on human
well-being. Textile dyes are extremely deadly and include aromatic chemicals that have
the potential to cause cancer [97–99]. They have been connected to a range of disorders
in both humans and animals, including dermatitis and issues with the central nervous
system [100–102]; Figure 4 lists these ailments in humans. Typically, there are two paths,
which include textile dye ingestion or inhalation can irritate the skin and eyes [26,70,103],
particularly if it occurs in dusty conditions [70]. Persons who work with reactive dyes
run the risk of experiencing allergic responses, including occupational asthma, allergic
conjunctivitis, and contact dermatitis. Textile dye genotoxicity is the biggest possible long-
term risk to human health [97,98,100,104,105]. Certain dyes have the potential to cause
mutagenic reactions; one such dye is Disperse Red 1 [106].
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4. Sustainable Wastewater Treatment for the Remediation
4.1. Bioadsorbents in Wastewater Treatment

The utilization of conventional chemical coagulation methods results in the generation
of sludge, which is then disposed of in landfills. This practice has been found to contribute
to the emission of harmful components, including gases that have the potential to contribute
to global warming. Additionally, the disposal of this sludge in landfills has risks such
as landfill leaching and contamination of groundwater [107]. The introduction section of
this article discusses the environmental threat posed by textile effluent containing high
levels of color, BOD, COD, TDS, and TSS. Biological treatment is preferred over chemical
treatment for sustainable treatment. Generally, the presence of complex groups in dyes,
along with the recalcitrance of organic pollutants and their low degradability, restrict the
efficacy of biological treatment methods [108]. Therefore, on this occasion, bioadsorbents
play a significant role in the dye and heavy metal removal. The exploitation of domestic
and agricultural wastes as adsorbents has emerged as a convenient alternative. Numerous
adsorbents derived from biomass wastes have been created and utilized as very effective
agents for the removal of various pollutants from water and wastewater. These waste
materials have been used either in their original form or following suitable modifications.
Various agricultural and food waste materials, such as Azolla [109], banana peel [110–113],
cabbage waste [114], chitosan [115–118], citrus peel [119,120], Citrus limonum leaves [121],
corn cob [122], orange peel [123,124], peanut hull [125], rice husk [126,127], sawdust [128],
and sugar cane bagasse [129] have demonstrated successful utilization as adsorbents for
the purpose of eliminating diverse types of contaminants.

Adsorption generally convert the pollutants from a liquid to a solid phase. This
technique has several advantages, including simple, cost-effectiveness, convenience of
operation, non-toxicity, and reactive surface atoms. Bioadsorbents are frequently employed
for the treatment of textile effluent water owing to their economical, eco-friendly, locally
accessible, sustainable, efficient, renewable, and readily disposable characteristics. They
surpass commercially available activated carbon in terms of quality, rendering the latter’s
high cost unjustifiable. Inexpensive sorbents possess a notable ability to absorb certain
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dyes, particularly reactive dyes, leading to the accumulation of significant amounts of
hydroxylates in wastewater as a result of inadequate fixation of the dyestuff. Adsorption is
advantageous over alternative approaches due to its simplicity, cost-effectiveness, ease of
operation, non-toxic nature, presence of reactive surface atoms, and large surface area [130].
Currently, a global revolution is underway advocating for the recycling of organic wastes
from agriculture, forests, and industries into economically viable products [130]. Some of
the commonly used bio adsorbents and their nature of activity in treating textile effluent
water are explained below.

The peel of Citrus limetta has been shown to be a cost-effective adsorbent for the
removal of various colors [119]. Every year, a significant proportion of citrus fruit (~40% to
60%) is discarded in landfills. Research indicates that the global citrus processing industry
generates a substantial amount of trash, estimated at approximately 120 million tons [120],
creating serious ecological issue. As an example, orange peels are employed for the removal
of 1-naphthyl amine dye from wastewater generated by the textile industry. The findings of
the study indicated that the adsorption capacity of the peel waste had a positive correlation
with the concentration of dye ions. Additionally, it was observed that the percentage of
dye ion removal also rose as the original dye ion concentration increased. Furthermore, the
utilization of orange peels in the preparation of activated carbon has proven to be effective
as an adsorbent for the removal of MB [131]. Banana fiber is an economically accessible and
abundantly available material, owing to its substantial cultivation and extensive presence
as a crop, with a global count over 25 billion banana or plantain trees [132]. Banana
powder has demonstrated promising potential as a biosorbent for the removal of MB dye.
This is attributed to the presence of many functional groups on the surface of banana
particles, as well as their uneven morphology [133]. Another study found that banana peel
is particularly successful in removing reactive dyes, with 90% of the dyes being removed in
5 min [134]. The utilization of ash derived from banana stem as a potential bio adsorbent for
dye removal has promising results. This is evidenced by its ability to achieve a 95% removal
efficiency for MB dye [135]. The effectiveness of banana stem ash may be attributed to its
diverse array of components and functional groups, as well as its rough and porous surface
characteristics. Recent research provides further evidence supporting the removal of 91%
of color from the Banana stem [136]. Some of the resent studies confirms that the waste
extraction from coffee waste shows promising adsorbents for the dyes [137].

Coconut coir dust refers to a lightweight, porous particle that is separated from
the husk during the process of fiber extraction. The weight of coir dust accounts for
approximately 35% of the total weight of coconut husk. Coconut coir is comprised of
cellulose, lignin, pectin, and hemicellulose. The presence of hydroxyl groups in cellulose
and lignin facilitates the adsorption of dyes [138]. Bio chars produced from coconut coir
have enhanced dye adsorption capabilities due to their significantly higher specific surface
area [139]. The research focuses on investigating the efficacy of coconut shell-activated
carbon as a means of removing direct yellow DY-12 dyes. The study demonstrates that the
adsorption process is particularly effective under acidic pH conditions. The findings of the
study indicate that the process of adsorption exhibits heterogeneity, characterized by the
formation of many layers. Furthermore, the adsorption process was seen to be endothermic
in nature and occurred spontaneously [130]. Once tea has been prepared, the residual leaves
are classified as waste, similar to other forms of biomass. The abundant availability of this
waste has led to the increased interest in utilizing discarded tea leaves as an adsorbent [140].
Given the abundance and easy accessibility of this trash, its conversion into an adsorbent is
economically viable, offering the added benefit of waste management. The utilization of raw
tea waste, as well as its chemically and magnetically modified forms, in conjunction with
activated carbon, has been widely employed for the remediation of water contaminated
with dyes. In this study, a batch scale reactor was utilized to manufacture and apply tea
powder for the purpose of removing MB from an aqueous solution. The effectiveness
of adsorption was seen to improve with longer contact time, higher solution pH values,
and increasing dose of waste black tea powder [141]. The residual tea waste possesses a
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significant calorific value, making it suitable for utilization in steam generation within the
textile sector following appropriate saturation [142].

The different form of chitosan (i.e., nanoparticles, derivatives, nanofilms, and nanofibers)
is employed as a bio adsorbent. This application aims to substitute activated carbon in
the pre-treatment of textile effluent, with a specific focus on the removal of metal ions,
particularly chromium, as well as colors (Figure 5a). The ability to repeatedly utilize
these bio adsorbents with diluted NaOH while maintaining the same level of efficacy
is noted, rendering it an intriguing aspect [143]. Cactus juice and aloe vera juice were
employed as flocculants for the treatment of textile effluent [144]. The color removal
efficiency achieved above 85%. Furthermore, the removal efficiencies for total solids,
suspended particles, and dissolved solids were found to be 90% [145]. The efficacy of
water chestnut peel in the removal of cationic RhB shows promising results [146] Table 2
provides a comprehensive overview of the prior studies conducted on the treatment of
textile wastewater using bioadsorbents. In recent studies, researchers have shown that
chitosan modified cellulosic non-woven fabric has superior color removal capabilities for
Reactive Red 198 [147]. Additionally, these non-woven fabrics have shown great potential
as materials for dye removal in the future [148,149].

Various plant-based waste materials and biomasses have been found to have signifi-
cant efficacy in the adsorption and retention of dyes (Figure 5b). The primary constituents
of plant leaves encompass cellulose, hemicellulose, pectins, and lignin, and additionally it
contains many functional groups, such as carboxyl, hydroxyl, carbonyl, amino, and nitro,
which can interact with the functional groups of the dyes [150]. The adsorption of Acid
Orange 52 (AO-52) dye using Paulownia tomentosa Steud leaves biomass showed promising
results [151]. In a separate investigation, the adsorption of Acid Red 27 (AR-27), an anionic
dye, was examined utilizing hyacinth leaves [152]. Basic Red 46 (BR-46) dye exhibited
strong affinity towards pine tree leaf-based adsorbents [153]. Ashoka leaf powder exhibited
interactive behavior towards rhodamine B (RhB), Malachite Green, and Brilliant Green
dyes [154]. A novel lignocellulosic biosorbent material, obtained from fully developed
leaves of the sour cherry plant (Prunus cerasus L.), has remarkable efficacy in the removal of
Methylene Blue and crystal violet dyes [155]. The coffee waste demonstrates a characteristic
three-dimensional carbon structure, with a rough surface and a porous system that allows
it to function as a promising adsorbent for the removal of anionic CR and RB5 dyes from
aqueous solutions [156]. The experimental findings indicate that the utilization of pow-
dered lemon leaves resulted in the removal of Malachite Green up to a maximum efficiency
of 82.21%. The highest sorption capacity (qmax) of lemon leaf powders is 8.08 mg/g [157].
In another study, the cationic amino modified banana leaves show the excellent sorption for
Congo Red (CR) dyes [158]. Table 2 presents a comprehensive overview of recently studied
bio adsorbents, including their respective adsorbent capacities in relation to various dyes.
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Table 2. Studies on bio adsorbents on textile wastewater treatment.

Name of Adsorbents Performed Dyes Adsorption
Conditions Removal (mg/g) Refs.

Potato peel-based sorbent Direct Blue 71 pH 3 1704 [161]

Rice husk ash Brilliant Green dye pH 4–10 66 [162]

Sunflower stalk Basic Red 9 dye - 317 [163]

Cane pith Basic Red 22 dye pH 4.1 941.7 [164]

Bagasse Basic Red 22 dye pH 4 942 [165]

Enosis siliqua shell powder - - 797 [166]

Glutaraldehyde cross-linked magnetic chitosan beads Direct Red 23 pH 4 1250 [167]

Popcorn derived activated carbon Methyl Orange pH 2–11 2090 [168]

Carboxymethyl cellulose-g-poly(2-(dimethylamino)
ethyl methacrylate) hydrogel Methyl Orange pH 2 1825 [169]

Non-cross-linked and cross-linked chitosan fibers Acid Orange 7 pH 7 4523 [170]

Chitosan grafted with diethylenetriamine Acid Orange 7 - 2108 [171]

Chitosan grafted with poly(methyl methacrylate) Reactive Blue 19 pH 3 1498 [172,173]

Chitin nanofiber-/nanowhisker-based hydrogels Reactive Blue 19 pH 1 1331 [172]

Cationic cellulose nanocrystals-chitosan
film (nanocomposite) Reactive Blue 19 pH 3 1320 [174]

Hollow zein nanoparticles Reactive Blue 19 pH 9 1016 [175]

Chitosan films Reactive Blue 19 pH 6.8 822.4 [176]

Template ECH cross-linked chitosan nanoparticles Reactive Black 5 pH 3 2941 [177–179]

Chitosan beads cross-linked with epichlorohydrin Reactive Black 5 pH 3 2043 [180,181]

Glutaraldehyde cross-linked chitosan
beads/microparticles Reactive Black 5 pH 10 1927 [182]

Chitosan cross-linked with sodium edetate Reactive Black 5 pH 3 1648 [183]

Chitosan hydrogel Reactive Black 5 - 1560 [184,185]

Mango bark powder Malachite Green dye pH > 6 4.22 × 103 mol/g [186]

Calcium-rich biochar Malachite Green dye Neutral and
alkaline pH 12,502 [187]

Pigments-extracted macro algae derived biochar Methylene Blue - 5306.2 [188]

Azolla-derived hierarchical nanoporous carbons Methylene Blue - 4448 [189]

Banana
Reactive Blue 235

Methyl Red,
Malachite Green

- - [190]

Activated surface of banana and orange peels Reactive Red 24 - - [191]

Waste tea residue Acid Blue 25 - - [142]

Palladium nanoparticles synthesized from peel waste
of cotton boll Toxic azo dye - - [192]

Wheat husk waste Textile effluent water - - [193]

4.2. Dye Removal by Biological Methods

Although it is true that certain microorganisms can degrade auxochromes and chro-
mophores found in dyes, hence facilitating the removal of organic materials from textile
waste, it is worth noting that some of these microorganisms are also capable of mineralizing
colors into carbon dioxide and water (see Figure 6). The rationality of color removal in
biological processes, even conventional ones, has not been empirically shown Figure 6.
The rate of removal is contingent upon several factors, including the concentration of
O2, the ratio of organic load to microorganism load and dye load, and the temperature
range [58,194]. Table S1 presents a comprehensive compilation of the merits and demerits
associated with diverse biological techniques employed in the elimination of dyes.
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4.2.1. Biological Route of Dye Decolorization

Enzymes are employed in the field of biological remediation because to their mul-
tifunctionality, effectiveness, and capacity to break down organic waste materials. The
effectiveness of oxidative enzymes, such as laccases, peroxidases, and tyrosinases, has been
demonstrated in the conversion of hazardous waste into insoluble compounds that may be
easily separated [12,57,58,195]. The utilization of microbial enzymes for the degradation of
azo dyes has been extensively investigated. Laccases are a class of enzymes that possess
copper ions within their active sites, enabling them to facilitate the oxidation reactions
of phenolic compounds and aromatic amines. Peroxidases are a class of enzymes that
include heme and facilitate the oxidation of organic molecules using hydrogen peroxide
as a co-substrate. In contrast, azoreductases are a class of enzymes capable of reducing
azo dyes to their respective aromatic amines, resulting in reduced toxicity compared to the
original molecules [196,197]. Laccases have demonstrated significant promise in facilitating
the oxidation of a wide range of substituted phenolic and non-phenolic chemicals [198].
These organisms are found in several ecosystems, encompassing fungi, plants, and bacteria,
exhibiting a broad distribution. Laccases are enzymes that exhibit a notable characteristic
of not necessitating peroxidases for their catalytic activity. Instead, they employ molecular
oxygen as the primary electron acceptor, rendering them highly prevalent in the enzymatic
breakdown of azo dyes. Nevertheless, the economic viability of enzymes has been hin-
dered by their inherent instability, variable activity, and labile characteristics. Enzymatic
treatment of effluent water has the potential to achieve a significant reduction in coloration,
with removal rates of up to 90% [199].

Bacteria can be employed to remove dye decolorization in specific cases, resulting in
a 30% reduction in effluent toxicity [200,201]. Bacteria and fungi exhibit short lifespans
and instability, while enzymes, although more effective, are associated with higher costs.
However, stability concerns persist in both bacteria and fungi as well [83,202]. In the
context of bacterial color biosorption, it has been shown that corynebacterium glutamicum
exhibits potential as a biosorbent for Reactive Black-5, with a sorption capacity of 257 mg/g
at a pH4 [203]. There exist two prevalent categories of microscopic organisms, namely
Gram positive and Gram negative. Microscopic organisms participate in the formation of a
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dense peptidoglycan layer that is interconnected by amino-acidic linkages. Polyalcohols,
which are lipids linked to form lipoteichoic acids known as Gram positive, are present
within the cell divider [204]. The degradation of dyes by different bacterial biomass is
comprehensively elucidated in the provided Table S2.

Numerous research groups have investigated the ability of microorganisms to digest
azo dyes. Pseudomonas bacteria do not readily use azo dyes in aerobic environments.
Despite the interruption of metabolic pathways by the intermediates generated during
these degradative steps, the trash was not subjected to mineralization. In environments
without oxygen, a multitude of microorganisms are known to enzymatically degrade
azo dyes through the activity of soluble, unspecified cytoplasmic reductase enzymes,
commonly referred to as azoreductases. Enzymes facilitate the production of colorless
aromatic amines, which have the potential to exhibit mutagenic, fatal, and potentially
carcinogenic effects on organisms. The existing body of research suggests that there are
many supplementary methods that may be employed for the reduction of azo dyes. A
wide range of microorganisms have the ability to biodegrade both sulfonated and non-
sulfonated azo dyes under anaerobic conditions. Furthermore, a multitude of highly
charged atomic, polymeric, and sulfonated azo dyes have an inability to traverse the cell
membrane. Therefore, the capacity to remove dye is not attributed to the intracellular
accessibility of the azo dye [204].

4.2.2. Fungi

Fungal mycelia possess an advantage over unicellular organisms due to their ability to
solubilize insoluble substrates, hence producing extracellular enzyme catalysts. Organisms
have enhanced enzymatic and physical interactions with their environment because of an
increased ratio of cell surface area to volume [205,206]. Several types of fungi, including
white-rot fungi, Aspergillus niger [206], Rhizopus arrhizus [207], and Rhizopus oryzae [208],
have been found to possess the ability to degrade a wide range of colors.

4.2.3. Algae

Algae possess an abundance of enzymes and other compounds that contribute to the
process of dye decolorization in textile effluent. Some algae can metabolize dyes through
enzymatic processes, leading to the breakdown and detoxification of these substances.
Chlorella vulgaris has been effectively used to remove dyes, including Congo Red, Brilliant
Blue R, and Remazol Brilliant Blue R, from wastewater. Algae have unique metabolic
abilities that enable them to efficiently remove or break down contaminants, such as
dyes [209,210]. Cosmorium sp. has been investigated as a biosorbent for the removal
of Malachite green (MG) dye, resulting in a significant removal efficiency of 92% [211].
Several studies have demonstrated the considerable influence of algae on the process of
decolorization. For instance, Cosmarium sp. achieved a noteworthy 74% elimination of
malachite green [212]. Similarly, Azolla rong pong exhibited decolorization rates of 30% for
Acid Green-3 [213] and 43% for Acid Blue-15 [214]. In a separate investigation, Ulva prolifera
demonstrated a remarkable 96% efficacy in the removal of Acid Red-274 colorant [215].

4.2.4. Enzymes

Enzymes are frequently employed for effective dye removal from wastewater, with
fungi being the primary source of these enzymes. Additionally, laccase is an enzymatic
protein that belongs to the class of copper-containing polyphenol oxidases, which are
synthesized by many species of bacteria and fungi. The utilization of this technology has
been employed for the decolorization of azo dyes. Peroxidase is an enzymatic catalyst
responsible for the decomposition of hydrogen peroxide (H2O2) and the promotion of
oxidation reactions involving various substrates through the use of molecular oxygen. The
utilization of lignin peroxidase has been previously applied for the purpose of remov-
ing CR dye. Furthermore, it has been utilized for the purpose of decolorizing Reactive
Orange 16 [216–219].
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The mutant laccase enzyme was elevated in Escherichia coli, resulting in the decol-
orization of indigo carmine by more than 92% (see Figure 7a) [220]. Azoreductases are
a distinct class of flavoenzymes that have the potential to facilitate the reduction of azo
bonds (–N=N–) present in the aromatic dyes by hydrolysis of azo bonds in the presence
of oxygen or in the absence of oxygen, hence participating in the metabolic breakdown of
dyes (see Figure 7b) [221]. This process yields aromatic amines, which are subsequently
eliminated by microbial enzymes including mono- and di-oxygenases, as well as hydro-
lases [222]. In addition, azo dyes are capable of reducing the toxicity of nitro-aromatic
compounds by reducing their concentration. Azoreductases are typically pH-stable within
the range of 5–9, and their activity is at its peak under physiological conditions [197]. In
2019, Dong et al. [223] determined that the use of azoreductases derived from Strepto-
myces species shown efficacy in the elimination of MR from wastewater. In the same year,
Sherifah et al. [224] employed the utilization of Kluyveromyces dobzhanskii bacterial lac-
case for the purpose of enzymatically degrading MG and MR dyes. In a separate in-
vestigation, yeast laccase derived from Yarrowia lipolytica was utilized to enzymatically
degrade Bromocresol Purple, Safranin, Bromothymol Blue, and Phenol Red. Additionally,
the process of isolating laccase from the edible fungi species Agaricus bisporus was con-
ducted, with the intention of using this enzyme for the purpose of enzymatically degrading
Acid Blue [225].
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4.2.5. Bacteria

Bacterial isolates provide a viable and ecologically sustainable approach for the break-
down of dyes. Bacterial isolates possess enzymatic systems that enable them to eliminate
dyes via degradation or biosorption mechanisms [226]. Bacterial organisms have the
advantageous characteristic of exhibiting shorter development durations, in addition to
their capability to breakdown and mineralize dyes [227]. Numerous investigations have
employed bacterial strains for the purpose of degrading and decolorizing diverse textile
effluents that contain azo dyes, such as MO (i.e., color removal of 95%), Reactive Yellow
(84%), and Reactive Black 5 (100%) [228–233]. Additionally, it shows better color removal
with anthraquinone-based dyes like Remazol Brilliant Blue R [234], disperse blue 2BLN
(decolorization rate of 93.3%) [235].

4.3. Membrane Separation

Membrane separation technology is commonly employed for the treatment of effluents
generated by textile dyeing processes. During the filtering process, the micropores included
in the membrane filter effectively separate the organic compounds from the effluent by
utilizing selective membrane permeability. The classification of this phenomenon encom-
passes four distinct categories, namely ultrafiltration (UF), nanofiltration (NF), reverse
osmosis (RO), and forward osmosis. The process of separation may be effectively achieved
by the utilization of UF, which has shown great potential as a technique. The elimination of
dissolved compounds occurs at a reduced transmembrane pressure through the utilization
of UF. The utilization of polyelectrolyte complexes, in conjunction with cellulose acetate and
inert polymers, is applied in the production of UF membranes that exhibit the capacity to
efficiently regulate flow. The normal range for pore size is between 0.001 and 0.02 µm. NF
is an intermediate technique between reverse osmosis and ultrafiltration, characterized by
the use of membranes with nanometer-scale pores (0.5–10 nm) and operating at pressures
of 5–40 bar. NF is a very sophisticated membrane-based technique that demonstrates re-
markable efficacy in the removal of heavy metals [236–238]. The membranes of NF possess
a thin outer layer that is typically non-porous, operating at the nanoscale, and exhibiting
a high level of permeability [62]. One of the primary benefits of NF is its reduced energy
consumption, which leads to a higher efficiency in the removal of contaminants [239].
Presently, several textile industries employ RO as a means of treating their effluent. RO
is categorized as a membrane-based technique. The RO membranes effectively capture
suspended particles through their small pores, hence mitigating fouling. The pre-treatment
procedure plays a crucial role in the regulation of turbidity levels and fouling tenden-
cies [62]. Figure 8 illustrates the classification of membrane filtering techniques together
with their respective advantages and disadvantages.
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Figure 9 depicts the design of a textile wastewater treatment plant, presenting a
comparative analysis between the conventional approach and the membrane bioreactor-
nanofiltration (MBR-NF) technique. The use of a plant-based system that incorporates
membrane bioreactor (MBR) and NF technology has promise in reducing the dependence
on anaerobic, aerobic, coagulation, and decolorization dosing/sedimentation tanks [240].
The introduction and utilization of an MBR-NF treatment facility has resulted in a substan-
tial decrease in operational costs. Moreover, this sophisticated technology has the benefit of
occupying a smaller physical footprint when compared to conventional treatment facili-
ties. Figure S1 illustrates the application of combined coagulation–flotation with forward
osmosis technology for wastewater treatment. The removal efficiency in this method is
characterized by its high-water flow and high recovery rate. The extent of membrane
fouling is rather little; yet it engenders adverse consequences on the environment. The ex-
perimental setup employed in the forward osmosis system involved the use of a fabricated
forward osmosis membrane, namely a plate-and-frame configuration, with a surface area
of 10 cm2 [241]. A spacer-free rectangular canal is installed on both sides of the membranes.
In the first stages of forward osmosis, the amount of wastewater is reduced by employing
osmosis to extract water from the wastewater, hence increasing the concentration of dye in
the remaining solution [242].
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4.3.1. Ion Exchange

The term “ion exchange” refers to the reversible process of exchanging ions between a
liquid and a solid, without causing any significant alteration to the solid’s structure. Ion
exchange is a widely employed method for the widespread removal of inorganic salts and
organic anionic constituents, such as antibiotics, amino acids, organic acids, and small
compounds [67]. The classification of ion exchange resins is based on the functional groups
present, resulting in three main types: anion exchange resin, cation exchange resin, and
chelating exchange resin. The substance in question may be categorized as either natural
or synthetic, and it possesses several notable advantages, including affordability, minimal
equipment requirements, straightforward operation, and the absence of solvents [67].
One significant limitation of this process is the extended duration required for production,
as well as the substandard quality of the resulting product. Additionally, the high pH levels
and the potential transfer of dirt and contaminants from the effluent to the sludge pose
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further challenges. Furthermore, the introduction of chemicals for sludge regeneration
exacerbates these issues [67,68,243].

4.3.2. Evaporation

During the evaporation process, the concentrated textile effluent is subjected to various
evaporator systems and steam within the evaporator. The attainment of the desired salt
concentration or specific density is achieved only by the recirculation of the liquid during
the evaporation process. The condenser is responsible for gathering the vapor and steam,
and the evaporator temperature is subject to variation based on the length of the tubes.
Textile effluent is commonly subjected to evaporation through two primary methods,
namely solar evaporation and mechanical evaporation [195,236].

4.4. Other Techniques
4.4.1. Granular Activated Carbon (GAC)

Carbon is a non-metallic element that is abundantly present in nature and finds
extensive use across many applications in daily human existence. Graphite has a wide range
of applications, including as a source of fuel, lubrication, material for pencils, electrodes,
and as a means of water filtration [244]. Activated carbon refers to a kind of carbon that
has been specifically engineered to possess small, low-volume holes and a significantly
increased surface area. This enhanced surface area facilitates the process of adsorption
or chemical reactions, hence enabling the purification of both liquids and gases. GAC
refers to a specific form of carbon that is capable of being retained in a 50-mesh sieve [245–
247]. This type of carbon can be obtained from various sources by different extraction
procedures and with varying degrees of activation. The substance is offered in many forms,
including granules, powder, and pellets. Activated carbon is commonly derived from
many sources such as coconut shell, hard and soft wood, peat, olive pits, lignite, and
bituminous coal using chemical or steam-based processes. The activated carbon has a
surface area of 500 m2/g, indicating its porous characteristics. Various studies have been
conducted utilizing a range of biomass materials such as bagasse, coal, rice husk, coconut
husk, nutshell, lemongrass, sawdust, cocoa shells, grape peels, and cassava peels. These
biomass materials have been subjected to activation processes involving ZnCl2, phosphoric
acid, microwave assistance, microwave assistance combined with KOH activation, and
steam pressure. The objective of these studies is to investigate the efficacy of these activated
biomass materials in the removal of dye from effluent water [245–248].

4.4.2. The Advanced Oxidation Process (AOP)

The AOP is mostly observed in the field of water purification, but more recently, it has
been employed for the remediation of textile effluents. Hydroxyl or sulphate radicals are
liberated in sufficient amounts to facilitate the elimination of both organic and inorganic
substances, pollutants, and to enhance the water’s biodegradability. In comparison to
chlorine and ozone, these substances exhibit superior performance in terms of water
decontamination and disinfection. Various categories utilize the hydroxyl radical. Various
methods have been employed in the field of environmental remediation, including UV-
based processes, ozone treatment, Fenton reactions, and the utilization of sulphate radicals,
among others, additionally UV has advantages for disinfection properties. The different
advanced oxidation processes are illustrated in Figure 10a. The AOP is well recognized as a
prominent technique for the treatment of industrial wastewater, owing to the considerable
oxidative potential shown by ozone and the resulting generation of hydroxyl radicals
(OH) [249]. Extensive research has been conducted on the application of ozone-based AOPs
in both simulated and actual environmental circumstances. The use of auxiliary agents in
the dye and their impact on dye degradation, as well as the influence of different salts on the
process of ozonation, were investigated through the application of the AOP [250]. The AOP
has gained significant popularity in the field of leachate treatment and water reuse [251].
There exist several forms of AOPs, including ozone, ozone/hydrogen peroxide, ozone/UV,
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UV/TiO2, UV/hydrogen peroxide, Fenton reactions, Photo-Fenton reactions, ultrasonic
irradiation, heat/persulfate, UV/persulfate, Fe(II)/persulfate, and OH-/persulfate [252].

4.4.3. Color Removal by Fenton Oxidation

The Fenton oxidation method is a very promising technique for the treatment of
textile wastewater due to its cost-effectiveness and ease of implementation [48]. The major
objective of Fenton oxidation is the decolorization of the effluent, although it also possesses
the ability to degrade organic pollutants (Figure 10b). Hydrogen peroxide can be employed
as an oxidizing agent, either in the presence or absence of a catalyst. Notable catalysts
that can be utilized include ferrous salts, Al3+, and Cu2+ [49]. The efficacy of Fenton’s
reagent has been demonstrated in the treatment of many types of industrial effluent as well
as a wide range of dyes. The Fenton process demonstrates a high level of effectiveness
in removing color, with an efficiency of 98% achieved at a pH of 3. Similarly, the Fenton
process exhibits a significant capability for removing COD, with an efficiency of 85%
achieved at a pH of 3 [49,51]. The most efficient decolorization of effluent for all dyestuffs
occurs at a pH value of 3, within the range of 2.5–4. The utilization of this reduced value is
attributed to the substantial production of OH [51]. When H2O2 and (Fe2+) are combined
under these specific pH conditions, hydroxide ions (OH−) are generated by a complicated
series of interconnected reactions [51,253]. Figure 10c illustrated the decolorization of an
indigo-dyed pollutant to colorless.
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Figure 10. Different advanced oxidation processes (a) reaction during Fenton and hydrogen peroxide-
based oxidation (b) and the color removal with different time spans of the reactions with Fenton
oxidation (c) (reprinted [254] with the permission of Springer Publications).

4.4.4. Color Removal by Peroxide (H2O2)

Hydrogen peroxide has a high degree of efficiency and contains the OH− radical,
which is accountable for both the chemical breakdown and mineralization of organic
molecules, and is generated by the reaction involving another oxidant, H2O2. Furthermore,
treatment of halogenated substances results in the generation of non-hazardous halide ions
and non-toxic molecules, including carbon dioxide (CO2) and H2O [255]. A notable obser-
vation is that the efficiency of H2O2 addition in a recirculated photoreactor is significantly
higher when performed in a single-step manner, as opposed to multiple-step addition [255].
Due to its short lifespan, the generation of OH− occurs in situ by the reaction induced by
UV irradiation, as follows,
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H2O2 + UV = 2 OH− (1)

The breakdown of organic pollutants is facilitated by the OH− radical through four
primary routes, radical addition, hydrogen abstraction, electron transfer, and radical com-
bination [256,257]. The application of H2O2-UV results in the degradation of the chro-
mophore configuration of the dye, leading to its decomposition in normal environmental
circumstances. This process generates O2, which may be effectively utilized for aerobic
treatment [256]. The effectiveness of wastewater decolorization is enhanced in an acidic
environment [256,257]. H2O2 is utilized in the oxidation of alkali, resulting in the formation
of O2 and H2O. This process generates accessible hydrogen peroxide for the hydroxyl
radical (OH−). The reduction in radical production leads to a decrease in decolorization
efficiency [256].

4.4.5. Ozonation

Ozonation is considered as an environmentally sustainable method for treating wastew-
ater owing to its lack of residue production and absence of chlorinated byproducts, which
are known to be toxic. This process effectively oxidizes color, odor, and bacteria without
generating any detrimental substances [258–260]. The decomposition of organic com-
pounds, detergents, and phenols into smaller molecular components is aided by the process
of oxidation, which may be achieved using commercially available sodium hypochlorite.
As a potential alternative, the implementation of ozonation might be regarded as a feasible
solution to supplant the utilization of hypochlorite [40,261–264]. Typically, the process is
conducted at alkaline conditions, characterized by a pH greater than 9, as the degrada-
tion of ozone in water is enhanced under such circumstances. The process of oxidizing
inorganic compounds and dissolved organic molecules with ozone involves two distinct
processes. The direct reaction of ozone molecules exhibits a higher degree of selectivity,
characterized by a relatively slow reaction rate. This reaction is particularly advantageous
in acidic conditions. The indirect response exhibited by free radicals, including OH−

and HOO, is characterized by reduced selectivity and a preference for basic conditions.
Another noteworthy characteristic is that the reactivity of the dye is enhanced when it
possesses an electron-donating group at its ortho and para locations, as opposed to an
electron-withdrawing group [71,265,266]. The ozonation process is impeded by the pres-
ence of salts, such as NaCl or Na2SO4. However, it is worth noting that the presence of
NaCl is more undesirable compared to Na2SO4. This is since Na2SO4 generates sulfate
or peroxysulfate radicals, which might somewhat facilitate the ozonation process [259].
The use of an ozonation membrane biological reactor offers a means to enhance the re-
moval of harmful substances such as pesticides, while simultaneously reducing the reliance
on traditional coagulation methods. This innovative approach also lowers the need for
additional biological treatment, resulting in a simplified operational procedure [41,267].
In many instances, ozone is employed in conjunction with UV or hydrogen peroxide to
achieve enhanced efficacy. The utilization of ozone in conjunction with UV radiation
facilitates the activation of ozone molecules, hence facilitating the creation of hydroxyl
radicals (OH−). UV radiation assists in expediting the oxidation process by aiding in the
completion of the process. The exclusive use of O3 may result in incomplete conversion
of organic compounds into CO2 and H2O in some cases. In addition, the intermediate
process involving H2O2 undergoes photolysis, resulting in the formation of a hydroxyl
radical which subsequently decomposes the dye molecules. When H2O2 is employed in
conjunction with ozone for oxidation applications, it functions as a catalyst to enhance the
generation of hydroxyl radicals (OH−) through the breakdown of ozone. The interaction
between hydrogen peroxide H2O2 and O3 has a sluggish rate under acidic pH conditions,
but it undergoes a significant acceleration the in-reaction rate at elevated pH levels.
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4.4.6. Photocatalytic Oxidation

The photocatalytic process is often regarded as the predominant method for treating
textile effluent water due to its distinct advantage of optical absorption, a characteristic not
shared by other AOPs. Photocatalysts could be stimulated by radiation, resulting in the gener-
ation of exceptionally reactive photo-induced charge carriers (free radicals, notably hydroxyl
radicals (OH·) that engage in chemical reactions with contaminants [90,91,268]. These free
radicals facilitate the oxidation of organic molecules, leading to their full conversion into
non-toxic chemicals, such as carbon dioxide CO2 and H2O by the absorption of photons.
The mitigation of pollutants carried out under ambient temperature and pressure condi-
tions has the potential to successfully address the issue of excessive energy consumption
associated with conventional approaches, such as electrochemical technology. The system-
atic exploration of photocatalysis research started in the early 1970s. The Honda–Fujishima
effect was investigated by Fujishima et al. [269], who employed solar energy and titanium
dioxide as photocatalysts to carry out water breakdown and hydrogen reduction activities.
The utilization of light as an essential factor in this process allows for the possibility of
designing the reactor or photocatalyst in a manner that enables the utilization of sunlight
as a cost-effective energy source to drive the reaction [270]. The photocatalysts utilized
in this study must possess characteristics that are conducive to their practical application.
These characteristics include ready accessibility, reproducibility, photoactivity, non-toxicity,
non-corrosiveness, biological or chemical inertness, affordability, and compatibility with
near UV or visible light wavelengths.

4.4.7. The Sequencing Batch Reactor (SBR)

The implementation of the Sequencing Batch Reactor (SBR) was undertaken with
the objective of mitigating the presence of nitrogen and phosphorus in piggery waste, as
well as facilitating the biodegradation of sulfonated azo and diazo reactive colors found
in textile effluent [271–273]. The study has presented findings on the effectiveness of
SBR in the elimination of azo dye. It has been proposed that the inclusion of aerobic
bacteria capable of degrading amines in the SBR system might enhance the complete
mineralization of reactive azo dye under anaerobic conditions [272,274]. According to
reports, it was observed that the decolorization reached a maximum of 97%, while the
elimination of COD reached up to 98%. It was also suggested that the rate at which dyes are
removed by SBR is influenced by the volumetric dye loading rate [275]. At present, bipolar
membrane electrodialysis (BMED) presents itself as an environmentally conscious and
sustainable method for commercial implementation. This is achieved by the integration of
the traditional electrodialysis process with water dissociation within a bipolar membrane.
The process of converting salt into base and acid by BMED from wastewater with elevated
salinity and organic content presents a novel approach to the recycling of raw materials
and achieving zero liquid discharge [276,277].

4.5. Treatment of Dyes Using Hybrid Technologies

In recent times, there has been a growing interest in hybridized techniques. The
importance of a process that combines elements from a blend process measure may be
described as “synergistic” and “combinatorial” in nature. These solutions are characterized
by their efficiency since they include the utilization of a single container to execute several
tasks. The technique shown in Figure 11 is an integrated or blended approach for the
treatment of dye waste. Furthermore, it is important to clearly articulate and acknowledge
significant modifications in the advantages of hybrid methodologies. The subdivision of
the hybrid technique, along with its associated benefits, is presented in Table S3.
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4.5.1. Physiochemical Methods

The addition of chemical-physical techniques is a further consideration to be con-
sidered in the removal of textile effluents. A photocatalytic/membrane separation (PMS)
system consists of a photocatalyst, TiO2, dispersed on a membrane, which is then placed in
a photoreactor. Blended submerged membrane photoreactor (sMPR) frameworks exhibit
superior photocatalytic removal efficiency compared to PMS due to the utilization of im-
mobilized TiO2 on the membrane surface. The PMS framework facilitates the separation
of TiO2 particles for the purpose of reuse. The hybrid process, known as PMS, utilizes a
compact reactor and demonstrates energy efficiency while effectively eliminating complex
and toxic pollutants [278,279]. This study investigates the photodegradation of Reactive
Black 5 (RB5) in a slurry membrane reactor, examining both batch and continuous opera-
tional modes. The rate of color removal is higher at lower initial dye concentrations, and it
increases as the concentration of ZnO increases up to 1.25 mg/L. The highest rate of RB5
removal, close to 100% within 60 min, was observed at pH 11 due to the combined effects
of dye photolysis and the photoactivity of ZnO [280].

4.5.2. Biochemical Methods

Biological approaches represent costly and ecologically sustainable techniques for
the removal of intricate azo dyes from waste effluents. However, their efficacy is limited
when it comes to the elimination of various dye kinds. In contrast, it has been shown
that aromatic amines, namely the molecules of dyes, exhibit a notable level of resistance
against the process of biodegradation. The presence of degraded byproducts from azo dye
effluents has been observed to impede cell motility and metabolic activity, hence hindering
the efficacy of biological treatment approaches [281,282].

4.5.3. Combination-Based Hybrid Chemical–Chemical Scheme

In recent times, there has been a growing interest in the utilization of chemical method-
ologies in combination. Various AOPs, such as coagulation, utilization of Fenton chemicals,
sono-photocatalysis, and the implementation of the photocatalytic hybrid Z-scheme, have
demonstrated efficacy in the degradation of diverse hazardous and organic pollutants.
Photocatalysis, specifically AOPs, facilitates the acceleration of a photoreaction by the ab-
sorption of photons from light. This absorption leads to the generation of electron (e−)/hole
(h+) pairs, which actively engage in the redox reaction responsible for the degradation of
pollutants [283–285].
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4.5.4. The Z-Scheme Strategy

Despite the development of several wastewater treatment systems, there are still
obstacles in the pursuit of efficient approaches to address pollution from complex waste
effluents containing organic molecules and heavy metal ions, among other substances. The
hybrid Z-scheme system is acquired by the careful selection of two semiconductors based on
their suitable bandgap structure, as illustrated in Figure 12a. The design of highly effective
Z-scheme heterojunction photocatalysts is a crucial and formidable task in the realm of
wastewater purification utilizing solar energy. According to reports, organic pollutants
such as dyes, phenol derivatives, and antibiotics can undergo effective degradation by
oxidation by photogenerated holes (h+), superoxide radicals (O2

−), and hydroxyl radicals
(OH) [286–290].

Sustainability 2024, 16, x FOR PEER REVIEW 23 of 43 
 

4.5.4. The Z-Scheme Strategy 

Despite the development of several wastewater treatment systems, there are still ob-

stacles in the pursuit of efficient approaches to address pollution from complex waste ef-

fluents containing organic molecules and heavy metal ions, among other substances. The 

hybrid Z-scheme system is acquired by the careful selection of two semiconductors based 

on their suitable bandgap structure, as illustrated in Figure 12a. The design of highly ef-

fective Z-scheme heterojunction photocatalysts is a crucial and formidable task in the 

realm of wastewater purification utilizing solar energy. According to reports, organic pol-

lutants such as dyes, phenol derivatives, and antibiotics can undergo effective degradation 

by oxidation by photogenerated holes (h+), superoxide radicals (O2−), and hydroxyl radi-

cals (OH) [286–290]. 

 

Figure 12. Schematic illustration of semiconductor heterojunction (a) before contact; (b) after con-

tact; and (c) hybrid Z-scheme of photogenerated charge carriers (reprinted from [291]). 

When two semiconductors are brought into contact, there is a phenomenon of charge 

separation that takes place at the interfaces. This separation is primarily caused by the 

difference in Fermi levels between the two semiconductors, as seen in Figure 12b. The 

semiconductor denoted as S1, which possesses a relatively low Fermi energy level, under-

goes the acceptance of electrons from the semiconductor denoted as S2, which has a higher 

Fermi energy level. Consequently, an internal electric field is established at the interface, 

directing the flow of electrons from S2 to S1, as seen in Figure 12b. As depicted in Figure 

12c, the interface exhibits an electric field that exerts a propulsive influence on the recom-

bination of non-utilizable photogenerated electrons in the conduction band of S1 and non-

utilizable photogenerated holes in the valence band of S2. Additionally, this electric field 

retains the electrons and holes, thereby enhancing their capacity to engage in the redox 

reaction within the conduction band of S2 and the valence band of S1, respectively. Con-

sequently, these processes contribute significantly to the photocatalytic activity [291]. 

4.6. Sustainable Sludge Management 

Sludge refers to the leftover, semi-solid substance that remains after the treatment of 

wastewater generated from textile processes. During the physical-chemical treatment pro-

cess, the release of heavy metal concentration results in the formation of a chemical sludge. 

In contrast, impoverished soils might experience an additional advantage through the ap-

plication of nutrient-rich biological sludge, which contains nitrogen and phosphorus, as 

well as useful organic matter. The primary issue is in the expeditious and forceful way 

sludge contaminates water sources. However, it is worth noting that certain locations 

within developing nations continue to dispose of sludge in inappropriate and environ-

mentally unfriendly ways, such as through land disposal or by releasing it into the sea. To 

Figure 12. Schematic illustration of semiconductor heterojunction (a) before contact; (b) after contact;
and (c) hybrid Z-scheme of photogenerated charge carriers (reprinted from [291]).

When two semiconductors are brought into contact, there is a phenomenon of charge
separation that takes place at the interfaces. This separation is primarily caused by the
difference in Fermi levels between the two semiconductors, as seen in Figure 12b. The
semiconductor denoted as S1, which possesses a relatively low Fermi energy level, un-
dergoes the acceptance of electrons from the semiconductor denoted as S2, which has a
higher Fermi energy level. Consequently, an internal electric field is established at the
interface, directing the flow of electrons from S2 to S1, as seen in Figure 12b. As depicted in
Figure 12c, the interface exhibits an electric field that exerts a propulsive influence on the
recombination of non-utilizable photogenerated electrons in the conduction band of S1 and
non-utilizable photogenerated holes in the valence band of S2. Additionally, this electric
field retains the electrons and holes, thereby enhancing their capacity to engage in the
redox reaction within the conduction band of S2 and the valence band of S1, respectively.
Consequently, these processes contribute significantly to the photocatalytic activity [291].

4.6. Sustainable Sludge Management

Sludge refers to the leftover, semi-solid substance that remains after the treatment
of wastewater generated from textile processes. During the physical-chemical treatment
process, the release of heavy metal concentration results in the formation of a chemical
sludge. In contrast, impoverished soils might experience an additional advantage through
the application of nutrient-rich biological sludge, which contains nitrogen and phosphorus,
as well as useful organic matter. The primary issue is in the expeditious and forceful way
sludge contaminates water sources. However, it is worth noting that certain locations within
developing nations continue to dispose of sludge in inappropriate and environmentally
unfriendly ways, such as through land disposal or by releasing it into the sea. To attain
sustainable development, it is imperative to employ efficient recycling methods and utilize
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waste materials properly, rather than resorting to burning or landfilling, which can result
in the deposition of hazardous substances such as heavy metals. Practicing prudent
management is crucial when it comes to the disposal of sludge, notwithstanding the
inherent challenges involved. Various elements play a significant role in the management
of sludge, including local and national geographical considerations, agronomic issues,
economic aspects, and stakeholder perception [292,293].

Methods of Sludge Treatment

Anaerobic digestion refers to the process of decomposing sludge in an atmosphere
devoid of oxygen. The significant characteristics of anaerobic digestion are the reduction in
mass, formation of methane, and enhancement of dewatering qualities in the fermented
sludge [292–297]. A higher level of investment in the digesting chamber is associated
with a slower pace of deterioration. To enhance the biodegradability of sludge, several
pre-treatment methods may be employed. These include thermal pre-treatment, enzymatic
treatment, ozonation, chemical solubilization by acidification or alkaline hydrolysis, as well
as mechanical sludge disintegration and ultrasonic pre-treatment [298,299]. The hypothesis
posits that the process of anaerobic digestion of textile waste leads to the generation of
biogas, as evidenced by the works [300–302]. This relationship is depicted in Figure 13.
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Aerobic digestion refers to the utilization of microorganisms within an oxygen-rich en-
vironment to facilitate the oxidation and decomposition of organic matter sludge. Aerobic
sludge digestion is a procedure employed to decrease the levels of organic and inorganic
constituents, as well as the overall volume, of sludge. The process under consideration
exhibits temperature sensitivity and is susceptible to the presence of heavy metals, among
other factors. However, it is noteworthy that despite its significant energy requirements,
this process does not generate byproducts such as methane [303–305]. The pace of anaerobic
digestion is constrained by the hydrolysis of organic materials in sludge, which subse-
quently leads to an increase in biogas output. This process serves as a pre-treatment
technique that enhances the dewatering characteristics of the digested sludge [306]. The
process of stabilizing sludge solids involves the application of several chemical treatments
to the sludge in diverse manners. The application of polyelectrolytes as a conditioning
agent for sludge dewatering operations has gained popularity due to its ability to enhance
process yields [306–308].

4.7. Roadmap towards ZLD: Focus on Recovery and Reuse

Due to heightened environmental consciousness, escalating expenses related to wastewa-
ter treatment, and challenges pertaining to its disposal, there has been a perceptible shift in
the public’s perspective on wastewater. Presently, zero liquid discharge (ZLD) is emerging
as a prospective preventative measure that plays a significant role in safeguarding the
environment against the adverse impacts of industrial activity. The ZLD method in the
textile industry focuses on achieving the goal of eliminating any disposal of liquid waste
resulting from various waste-generating processes [94,309]. It is transitioning from being
perceived as a nuisance that is conveniently ignored to being recognized as a potential av-
enue for the reclamation of precious resources. This phenomenon is manifesting as a direct
consequence of the confluence of these variables. Figure 14 illustrates a graphical depiction
of the fundamental factors that drive ZLD, along with its numerous beneficial results.
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The practice of reusing and recycling wastewater has the potential to not only mitigate
the demand for freshwater resources, but also facilitate the reduction in waste and surplus
resources. The textile-processing sector is known for its significant use of colorants, chemi-
cals, and other additives. Consequently, it has significant promise for several approaches to
intense chemical recovery and water recycling. The process of recycling has become essen-
tial to the industrial sector due to the imposition of constraints on accessible water sources
and regulations managing wastewater. Prior to commencing the treatment procedure, all
potential avenues for recovery and recycling have been thoroughly explored and utilized
to their fullest extent.

4.7.1. Electrolyte Recovery from Reactive Dye Effluent

Electrolytes are frequently employed in the dyeing process within the industry to
help with the exhaustion of reactive and direct dyes. In some cases, the concentration of
electrolytes employed might reach approximately 90 g/L, leading to substantial increases
in the amounts of TDS and chlorides. These substances are known to display resistance
to biodegradation. The dye bath and the first rinse bath are responsible for the liberation
of approximately 80% of these salts [310]. In the given circumstances, empirical evidence
has demonstrated that thermal evaporation treatment is the sole feasible alternative. Ther-
mal evaporation is widely acknowledged as a very efficient technique employed in the
wastewater treatment for the textile industry to removing salt and dissolved solids from
concentrated effluent, as well as extraction of water. In the context of salt recovery, it is
worth noting that the salts obtained following the evaporation process may be effectively
employed in dyeing processes (i.e., same color), so contributing to a reduction in the uti-
lization of virgin resources [311–313]; however, there are main drawback of this system
can provide the mixture of colorants and salts. The partitioning of dye molecules and
salts, particularly monovalent salts, can occur using a NF membrane. This approach effec-
tively mitigates the release of detrimental substances into the surrounding ecosystem while
concurrently reducing resource use, hence resulting in financial benefits [311,314,315].

4.7.2. Alkali Recovery

Mercerization is a significant textile finishing technique performed on cotton fabric,
including the application of a concentrated sodium hydroxide solution (ranging from 20%
to 30%) [316,317]. This procedure aims to enhance several characteristics of the fabric,
such as its luster, tactile qualities, and other pertinent features. The hygroscopicity of
the material is enhanced, resulting in increased strength and improved dye affinity. The
recovery of NaOH is crucial when employing a high concentration of alkali. The reduction
in effluent load and the recovery of NaOH is a very straightforward operation, as it does
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not include the presence of additional chemicals, such as dyes. Membrane systems are
considered very suitable for the treatment of effluents and the subsequent recovery of
NaOH during the initial phases of fiber removal. Polymeric NF membranes allow for the
passage of small molecules and ions without the need for mercerization. Nevertheless,
several studies employ an ultrafiltration/microfiltration pre-treatment process due to the
susceptibility of NF membranes to fouling, which might result in decreased penetration
effectiveness [314,318–322]. The proposed approach involves a two-stage combination
membrane design, incorporating a ceramic membrane in the first step and a polymeric
membrane in the second phase. The recovery of sodium hydroxide from the procedure was
found above 90%, recovered NaOH has the potential to be recycled into the process [318].
A separate investigation involved the utilization of microfiltration (MF) membranes with a
pore size of 0.2 µm, followed by the implementation of UF membranes with a pore size of
100 kDa [319].

4.7.3. Dye Recovery

The effluent from dyebaths also results in the discharge of significant amounts of
unabsorbed dyes, leading to a decrease in dissolved oxygen levels and the generation of
high COD [71,323–325]. Moreover, the treatment of wastewater containing dyes poses a
significant challenge in the field of wastewater management. Mariya et al. [326] aimed
to assess the possibility for reusing colors obtained from denim and polyester dyebath
effluents. In this investigation, tetraethylammonium bromide was employed as a draw
solution. The findings of the study revealed that the forward osmosis membrane exhibited
complete rejection of dyes, with a dye reconcentration ranging from 82% to 98%.

4.8. The Need for Technoeconomic Analysis

The discharge of effluent originating from the textile sector is resulting in substan-
tial contamination due to the extensive use of colorants and hazardous chemicals, which
are the primary contributors to water pollution and the escalating ecological risks. The
escalating expenses associated with dye treatment facilities and the management of waste
effluents are generating heightened public concern for environmental sustainability. The
effective management and recovery of dyes and other chemical substances can contribute
to the attainment of environmental sustainability and foster economic advancement. Fur-
thermore, the substantial consumption of water underscores the imperative to engage in
wastewater recycling. This has the potential to reduce the release of harmful compounds
and create an atmosphere that is both safe and conducive to good health. The wastewa-
ters under consideration consist of colors that include harmful and hazardous substances,
such as pesticides, surfactants, and heavy metals. The cost of wastewater treatment often
varies based on factors such as the specific treatment procedure employed, the spatial de-
mands of the equipment, and the catalysts necessary for effectively removing contaminants.
Furthermore, the operating expenses of the system encompass both personnel costs and
maintenance expenditures. However, the prevailing price is contingent upon the region’s
authoritative needs, the availability of feedstock, and the labor force [291,327]. However,
it should be noted that relying only on a single treatment procedure may not be a viable
approach for effectively degrading extremely contaminated dyes. This is mostly due to
the development of intermediates during the treatment, which afterwards necessitate an
additional treatment step. Consequently, this supplementary treatment incurs additional
costs, thereby impacting the overall feasibility of the process. Hence, the implementation of
a plan that combines several approaches will be crucial in addressing efficiency. However,
these procedures include the integration of two treatment approaches and offer greater
advantages in terms of pollutant degradation.

4.9. Life Cycle Assessment (LCA) in WWTPs

A life cycle assessment (LCA) is a comprehensive approach used to evaluate the total
environmental impact of a product or process across its entire life cycle, from raw material
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extraction to disposal [328–331]. The primary goal of the LCA is to assess the whole range
of environmental impacts resulting from the operation of the textile wastewater treatment
facility. It is often essential to define the precise limits of the LCA investigation. The “Gate-
to-Gate” methodology is a frequently used strategy in which different stages of the process
are designated as gates. For example, we may classify the industry that emits pollutants
as the first gate, and the release of cleaned effluent as the second gate. Furthermore, the
analysis may also include the use of treated effluent in the textile sector. Moreover, it is
crucial to establish a precise demarcation of the extent of the LCA studies carried out on
wastewater treatment facilities (WWTPs). This encompasses delineating the parameters
of the study, establishing the operational components, summarizing the LCA approach
utilized, showcasing the life cycle inventory (LCI) information, and acknowledging the
constraints, presumptions, and uncertainties linked to the examination.

LCA serves as a beneficial quantitative ecological assessment approach for examining
various prospective functioning scenarios in the context of crucial water area planning. One
of the advantages of LCA is in its ability to detect and quantify the impacts and influences
of different process sequences, as well as assess the environmental effects of treatment
technologies. LCA also facilitates the examination of pollution connections and aids in the
achievement of effluent-free product creation. The LCA methodology was employed to
conduct a comparative analysis of synthetic colors and natural colors, as well as synthetic
finishes and biobased finishes, from an environmental perspective. Additionally, the study
investigated the potential impacts of these materials on WWTPs. LCA offers decision
makers and policy makers a consistent and transparent means to understand and interpret
the ecological performance data of WWTPs in the textile sector. Hence, the utilization
of LCA may facilitate the identification of research and development goals and provide
guidance for enhancing innovation by mitigating challenges related to waste disposal and
the discharge of hazardous chemicals. Figure 15 depicts the typical LCA framework on the
WWTPs for the textile industry.
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5. Conclusions

The textile industry is responsible for generating effluents that contain significant
quantities of hazardous and persistent compounds, including dyes, chemicals, aromatic
compounds, formaldehyde, flame retardants, and fluorocarbons. These substances have
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detrimental impacts on both the environment and human health, as well as on aquatic
organisms. This review paper demonstrated the comprehensive literature analysis of
several techniques for sustainable treatment of textile wastewater, with a specific focus
on bioadsorbents, biological approaches, membrane technology, ion exchange, advanced
oxidation processes, as well as physicochemical and biochemical processes. The tabulation
of different bioadsorbents and their respective adsorbent capacities has been conducted,
including a discussion on energy-efficient and cost-effective membranes and other treat-
ment systems. Furthermore, this paper focused on strategies that result in zero liquid
discharge (ZLD) and the subsequent retrieval of significant resources, such as dyes, alkalis,
and electrolytes, which are produced in huge quantities during wastewater treatment
plants. In recent times, there has been a growing interest in the recovery of dyes from textile
waste. Consequently, dye recovery has emerged as a significant subject within the context
of textile circular economy and industrial urban symbiosis. Furthermore, this review paper
analyzes the management of sludge, conducts a technoeconomic analysis, and highlights
their significance within the textile value chain. It is important to perform a life cycle
analysis of wastewater treatment plants to ensure the efficient management of their reuse,
reduction, and disposal processes.

In this situation, the idea of prevention being more effective than treatments remains
valid. The use of biomaterials for functionalization, such as coloring (i.e., mass colorations)
and surface changes, has been widely investigated in the literature [73,332–335]. By in-
corporating more biobased fibers, including natural and regenerated fibers, as well as
other biobased and biodegradable polymers, it is possible to mitigate the overall pollution
burden on wastewater treatment plants. Furthermore, the application of mass coloring or
mass functionalization in the process of melt extrusion, namely in the case of polylactic
acid, or in manmade fibers like viscose, infinna, spinnova, renewcell and ioncel has the
potential to decrease the pollution burden associated with both synthetic and regenerate
fibers [336–339].

The textile industry uses effluent treatment to separate water and other substances,
with water recovery being easier than salt or residues. Highly polluting effluents, such as
dye bath discharge, make up 10% of total effluent discharge, while 90% comes from low-
polluting streams like wash water. Sustainable wastewater treatment can be applied to both
streams but requires careful selection of highly polluting effluent streams. Rejecting reverse
osmosis, nano- and ultrafiltration, the advanced oxidation process and granular activated
carbon should be used to treat highly polluting effluent streams. Sustainable wastewater
treatment produces less sludge, but it does not comply with norms and standards. In
certain cases, using multiple methods could improve pollutant removal efficiency.

Sustainable wastewater treatments have several advantageous attributes, indicating
their preference for minimizing chemical use in wastewater treatment plants, reducing en-
ergy consumption, and mitigating the carbon impact, among other benefits. The promotion
of initiatives aimed at showcasing sustainable wastewater treatments at the industrial level
is vital to mitigate the environmental impact produced by wastewater treatment plants.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/su16020495/s1, Table S1. Advantages and disadvantages
of biological methods for dye removal; Table S2. Dye degradation by various bacterial biomass;
Table S3. Advantages of combination-based (hybrid) processes; Figure S1. Schematic representation
of the forward osmosis process [47,59,66,340–351].
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