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Abstract: This study investigates the effectiveness of a range of timber-based solutions for the
seismic and energy retrofitting of existing masonry buildings. These solutions are designed not only
to prevent structural collapse during earthquakes but also to create integrated interventions that
enhance thermo-physical performance and reduce emissions in existing buildings. Various case
scenarios were considered and both mechanical and energetic behaviour post-intervention were
evaluated. Timber-engineered products serve as foundational components for the retrofit approach,
encompassing one-dimensional vertical elements (strong-backs) and various types of panels (cross-
laminated timber panels, laminated veneer lumber panels, and oriented strand board panels). The
analyzed retrofit techniques share a common principle involving the attachment of these timber-
based elements to the building’s wall surfaces through mechanical point-to-point connections. The
proposed solutions integrate strong-backs and timber panels with membranes and insulation layers,
yielding cohesive, and highly effective interventions. Finite element modeling was employed to
analyze the mechanical and thermal responses of the retrofitted walls. A comprehensive comparative
analysis of various techniques was conducted to determine the most effective solution for each
specific scenario.

Keywords: unreinforced masonry; seismic retrofit; energy efficiency; timber panels; timber strong-backs;
thermal transmittance U-value; periodic thermal properties; transient method; response factors

1. Introduction

In recent decades, Europe’s construction sector has undergone a profound transfor-
mation, shifting its focus from the construction of new buildings to the enhancement of
existing building stock. With many buildings nearing the end of their design lifespan, the
need to address energy inefficiencies and structural vulnerabilities has become increasingly
evident. Retrofitting initiatives have gained prominence, offering a crucial means to not
only enhance the overall performance of existing structures but also to fortify sustainability
and resilience within the built environment [1,2].

Seismic safety holds paramount importance, especially in regions across Europe prone
to earthquakes. The seismic vulnerability of existing masonry structures has emerged as a
pressing concern, with profound implications for human safety, infrastructure resilience,
and cultural heritage preservation. Many masonry buildings were constructed before
modern seismic design standards and exhibit inherent vulnerabilities that pose risks during
seismic events. Those vulnerabilities become particularly evident in regions prone to
seismic activity where ground motions can lead to extensive damage, economic losses,
and, tragically, the loss of lives [3–5]. Moreover, these events threaten cultural heritage by
placing historical masonry buildings at risk, and therefore necessitate careful consideration
of retrofitting and preservation strategies.

Simultaneously, thermal comfort and energy-saving measures are mandated by Euro-
pean legislation [6]. These requirements significantly impact occupant well-being, construc-
tion costs, and environmental sustainability. Existing buildings, particularly historical ones,
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contribute substantially to Europe’s energy consumption and carbon emissions. Improving
their performance can dramatically mitigate environmental effects and operational costs,
and enhance the decarbonization (reduction of CO2 emissions) of the building sector to
reach the goal of Net Zero Emissions (NZE) by 2050 [7]. Additionally, rising energy prices
increase the risk of energy poverty. Refurbishment of these highly inefficient buildings
could therefore help to tackle this problem and improve the lives of their inhabitants.

When designing a retrofit intervention, structural, energetic, and architectural aspects
must be considered simultaneously to obtain a cost-optimal renovation. The present
study investigates the effectiveness of timber-based coating retrofit solutions aimed at
reducing the seismic vulnerability of existing unreinforced masonry (URM) structures
while improving the energy performance. The mechanical retrofit is provided by timber
products fixed to the masonry wall using dry fasteners spreading along the walls surface
which guarantee fast execution and reversibility of the intervention. Insulation layers and
membranes were added to improve the hygro-thermal performance and the durability of
the system.

Timber-based retrofit solutions for existing masonry buildings have emerged as a
promising and innovative approach to address the seismic vulnerability of these historical
structures while preserving their cultural heritage, offering a compelling alternative to
conventional retrofitting techniques [8]. In recent decades, timber has reemerged as a
sustainable and versatile material, garnering attention for its potential uses. Timber’s
inherent properties, including high strength-to-weight ratio, flexibility, and renewable
nature, make it an ideal choice for retrofitting interventions that seek to fortify existing
masonry buildings against seismic forces. The first step in such a direction could be
that of using timber to strengthen those structural components in traditional buildings
that often are already made of timber, such as roof and floor diaphragms [9]. Mirra
and Ravenhorst [10] have shown that adopting a plywood overlay to strengthen existing
diaphragms can remarkably enhance the seismic performance of URM buildings. As
alternatives to plywood overlays, additional layers of diagonal timber boards/planks [11]
and CLT panels [12] have also proven to be effective in increasing the in-plane strength
and stiffness of timber diaphragms and positively influencing the building response to
earthquakes [13,14]. In the case of strong seismic hazards, even when the diaphragms
and their connection to the walls have been improved, favouring the so-called “box-like
behaviour”, the full capacity of the masonry walls may be exceeded, and consequently,
wall strengthening is due.

Various authors in the literature on this topic have examined the mechanical perfor-
mance of diverse timber-based retrofit solutions. Research contributions include experi-
mental investigations of the properties of timber-to-masonry wall connections performed
by Riccadonna et al. [15] and Rizzi et al. [16] considering dry and adhesive connections,
respectively. Additionally, Giongo et al. [17] conducted full-scale onsite testing of masonry
walls retrofitted with cross-laminated timber (CLT) panels, measuring 6 cm in thickness
and fixed using the dry fasteners previously examined by Riccadonna et al. [15]. Further
insights into the effectiveness of this CLT-based coating have been provided by Cassol
et al. [18,19] by means of parametric simulations considering the behaviour of the retrofit
applied on masonry piers, walls with openings, and buildings. Further insight into the
experimental and numerical behaviour of masonry walls retrofitted with timber panels has
also been provided by Borri et al. [20], Pozza et al. [21], Lucchini et al. [22], Iuorio et al. [23],
and Sustersic and Dujic [24].

In parallel, the behaviour of masonry walls retrofitted with timber strong-backs (verti-
cal timber elements) to improve the wall out-of-plane response has been tested by Giaretton
et al. [25] and Cassol et al. [26]. Damiani et al. [27], Guerrini et al. [28], and Miglietta
et al. [29] tested the effectiveness on the in-plane behaviour of a strengthening strategy that
sees vertical timber strong-backs supplemented with horizontal timber blocking elements
to create a frame that is then sheathed by oriented timber-based sheets (OSB panels). The
experimental campaigns included in-plane quasi-static cyclic tests performed on masonry
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piers and shake-table tests performed on full-scale building prototypes, tested in bare and
retrofitted conditions, respectively.

Further numerical simulations were performed by Busselli et al. [30] and Cassol
et al. [31] to evaluate both the seismic and the thermo-physical properties of various
aforementioned timber-based retrofit solutions, with the aim of designing integrated retrofit
interventions. In this context, an alternative solution named Nested Building Approach was
studied by Valluzzi et al. [32]. The analyzed solution consisted of removing the building
internal elements and inserting a new inner structure realized with CLT panels coupled
with insulation and finishing layers. In this case, both the improvement of the seismic and
hygrothermal performances were numerically investigated.

2. Retrofit Solutions

The retrofit solutions studied herein consist of connecting timber-based products
(panels and strong-backs) to the surface of the walls of a building using mechanical point-to-
point connections, with the aim of improving the in-plane and the out-of-plane capacity of
the URM walls. Insulation layers, membranes, and finishing layers were added to guarantee
the durability of the timber elements and to improve the thermophysical performance of
the retrofits. Four solutions were analyzed with the structural retrofit provided by cross
laminated timber (CLT) panels, laminated veneer lumber (LVL) panels, or by two different
combinations of timber strong-backs and oriented strand boards (OSB) panels (referred
to as “frame and sheathing” solutions). Two configurations of the non-structural layers
were designed for each solution, acknowledging that the intervention could be applied
to either the internal or external side of the masonry walls (see Figure 1). The selected
thicknesses of the timber panels were compatible with those used for the in situ campaigns
performed by [15–17], while the timber strong-back cross-sections were selected based on
the experimental campaigns reported in [25,26].

For the internal solutions, expanded rigid polyurethane foam (PIR) panels were em-
ployed for the insulation, a vapor barrier was applied close to the inner finishing layer
(plasterboard sheets), and a breathable and waterproof membrane was installed on the
masonry wall surface to avoid imbibition of the timber elements. For the external installa-
tions, PIR panels, covered on both sides by saturated fibreglass facers, were used to create
an external thermal insulation composite system (ETICS). A breathable, waterproof, and
reflective membrane was applied to the outer surface of the timber elements to hinder
the passage of sunrays while a waterproof membrane was installed between the masonry
wall and the timber elements, similarly to what was conducted for the internal solutions.
Both internal and external retrofit solutions considered either vapor barriers or breathable
membranes in order to increase the timber durability as suggested by [33]. A maximum
value of 125 mm was assumed as the limit for the retrofit thickness in the case of internal ap-
plication, with the aim of limiting the reduction of internal volume due to the intervention.
This value acknowledges previous research on the seismic performance of timber-based
retrofits for masonry. Cassol et al. [18] have shown in a parametric study that 60 mm
thick CLT panels can significantly improve the in-plane capacity of walls from 250 mm
to 600 mm thick (increments up to ≈70%), while Guerrini et al. [28] have used a 60 mm
thick timber frame sheathed with 18 mm OSB sheets (for a total thickness of 78 mm) to
successfully increase the lateral strength (by 35%) and the displacement capacity (by 167%)
of 100 mm thick calcium silicate brick walls. The thickness of the insultation layers of the
external solutions was calculated analytically based on the maximum thermal transmit-
tance (U = 0.28 W m−2 K−1) allowed by the Italian regulation [34] for existing buildings,
considering the climatic zone E.
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Figure 1. Timber-based retrofit solutions. Legend: (1) masonry wall; (2) breathable membrane; (3) 
CLT panel (thickness 60 mm); (4) expanded rigid polyurethane foam (PIR) panel (thickness A 40 
mm, B 60 mm, C 90 mm); (5) vapour barrier; (6) plasterboard (thickness A 12 mm, B 24 mm); (7) 
waterproof, breathable, and reflective membrane; (8) PIR panel for ETICS application (thickness A 
40 mm, B 80 mm, C 90 mm); (9) strong-back (cross section A 45 mm × 90 mm, B 90 mm × 45 mm); 
(10) LVL panel (thickness 40 mm); (11) OSB panel (thickness 15 mm); (12) skim coating (thickness 
10 mm); (13) fibre cement board (thickness 15 mm). 

The effectiveness of the integrated retrofit interventions was evaluated considering 
the improvement of both mechanical and energy performance. In particular, as regards 
the seismic behaviour, increases in lateral capacity and displacement capacity in the plane 
direction of the reinforced walls were assessed through nonlinear static analysis. The ef-
fectiveness of the various retrofits in improving the out-of-plane wall response was not 
directly investigated in this study, however, it can be inferred from the out-of-plane per-
formance of the strong-back technique tested in [26]. The “frame and sheathing” solutions 
studied here see the strong-backs as integral components of the retrofit. Regarding the 
“panel-based” techniques, the timber-to-masonry connection has comparable perfor-
mance to that used for the strong-backs, and the out-of-plane inertia of the panels is con-
sistent, when not larger, than that of all the strong-backs applied to the wall. The enhance-
ment of the wall thermo-physical properties was evaluated in terms of the reduction of 
steady-state thermal transmittance (U) for winter performance and periodic thermal 

Figure 1. Timber-based retrofit solutions. Legend: (1) masonry wall; (2) breathable membrane;
(3) CLT panel (thickness 60 mm); (4) expanded rigid polyurethane foam (PIR) panel (thickness A
40 mm, B 60 mm, C 90 mm); (5) vapour barrier; (6) plasterboard (thickness A 12 mm, B 24 mm);
(7) waterproof, breathable, and reflective membrane; (8) PIR panel for ETICS application (thickness A
40 mm, B 80 mm, C 90 mm); (9) strong-back (cross section A 45 mm × 90 mm, B 90 mm × 45 mm);
(10) LVL panel (thickness 40 mm); (11) OSB panel (thickness 15 mm); (12) skim coating (thickness
10 mm); (13) fibre cement board (thickness 15 mm).

The effectiveness of the integrated retrofit interventions was evaluated considering
the improvement of both mechanical and energy performance. In particular, as regards
the seismic behaviour, increases in lateral capacity and displacement capacity in the plane
direction of the reinforced walls were assessed through nonlinear static analysis. The
effectiveness of the various retrofits in improving the out-of-plane wall response was not
directly investigated in this study, however, it can be inferred from the out-of-plane perfor-
mance of the strong-back technique tested in [26]. The “frame and sheathing” solutions
studied here see the strong-backs as integral components of the retrofit. Regarding the
“panel-based” techniques, the timber-to-masonry connection has comparable performance
to that used for the strong-backs, and the out-of-plane inertia of the panels is consistent,
when not larger, than that of all the strong-backs applied to the wall. The enhancement of
the wall thermo-physical properties was evaluated in terms of the reduction of steady-state
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thermal transmittance (U) for winter performance and periodic thermal transmittance (Yie),
as well as the increase in phase shift (∆t) for summer performance using FEM simulations.
Additionally, the response factor curves of each analyzed configuration were provided.

3. Seismic Analyses
3.1. Numerical Model

The numerical models were realized using the finite element software Abaqus/Sta-
ndard [35]. A simplified micro modelling approach was adopted for simulating the masonry
wall. In this approach, the size of the masonry units (i.e., bricks) is expanded to incorporate
the mortar joints. The expanded masonry units are modelled as continuum elements and the
interaction between such elements is reproduced by selecting proper interface properties.
The expanded masonry units (EMU) were modelled with an equivalent, homogeneous, and
isotropic material. The EMU elastic modulus EEMU was determined considering the elastic
modulus, the thickness of the bricks (Eb and hb), and the mortar joints (Em, hm), as indicated
in Equation (1). The EMU nonlinear behaviour was described by the concrete damage
plasticity (CDP) constitutive model. This model was developed by Lubiner et al. [36] and
was further elaborated by Lee and Fenves [37]. It allows for the simulation of the post
cracked behaviour of quasi brittle materials such as masonry. The tensile and compressive
behaviours of the EMU under axial loading were implemented using bilinear and parabolic
stress–strain relations, respectively. The EMU compressive strength fc,EMU was calculated
as indicated in Eurocode 6 [38] (see Equation (2)), while the EMU tensile strength ft,EMU was
defined as equal to the brick tensile strength ft,b. The fracture energy values governing the
post cracked behaviour of the EMU were calculated as recommended by Lourenço and
João [39].

EEMU =
(hb + hm)·Eb·Em

hb·Em + hm·Eb
(1)

fc,EMU = 0.45· fc,b
0.7· fc,m

0.3 (2)

The horizontal mortar joints (i.e., bed joints) and the vertical mortar joints (i.e., head
joints) are characterized by different properties and, consequently, their contribution was
accounted for by adopting different approaches. The interfaces simulating the head joints
were provided with a hard-contact interaction property which allows for compression
stress transfer only. The head joints were assumed to be cracked (e.g., due to shrinkage),
which meant that both the cohesive and the friction contributions from these interfaces
were neglected. The modelling approach adopted for the bed joints can simulate both the
tensile and the shear-cracking failure modes. Contact properties such as traction separation,
cohesive, and tangential friction were used to model the joint interfaces. The uncoupled
stiffness coefficients for the normal direction (kn) and tangential directions (ks and kt) were
determined considering the mortar and brick elastic moduli and dimensions as indicated in
Equations (3) and (4). The quadratic traction stress criterion [35] was used to define damage
initiation, as shown in Equation (5) where the Macauly brackets indicate that, in the normal
direction, only the tensile stresses were considered. The maximum normal strength (tn,max)
and shear strengths (ts,max and tt,max) were assumed to be equal to the tensile strength
(fm,t) and the cohesion (c) of the masonry joints. The post cracked behaviour was defined
assuming a linear damage evolution based on the energy dissipated during the crack
propagation. The tensile and shear fracture energy values were calculated as recommended
by Lourenço and João [39]. The mixed mode damage evolution was modelled according to
the Benzeggagh–Kenane (BK) law, which is suitable for representing the damage evolution
when the shear behaviour is the same along the two reference directions of the shear
plane, assuming a BK exponent equal to two. The viscosity coefficient for the damage
stabilization was assumed equal to 0.02. In the tangential direction, a further contribution
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due to friction was considered. The friction coefficient was assumed equal to 30◦ and a
limit to the maximum value of the shear stress fv,lim was fixed (fv,lim = 0.065 fc,b [40]).

kn =
Eb·Em

hm·(Eb − Em)
(3)

ks = kt =
Gb·Gm

hm·(Gb − Gm)
(4)

(
⟨tn⟩

tn,max

)2
+

(
ts

ts,max

)2
+

(
tt

tt,max

)2
= 1 (5)

Timber was modelled as an orthotropic material where inelastic phenomena, such
as compression crushing at the panel’s toe, were simulated using a plastic constitutive
model. The CLT panels were modelled as three-layer solids, while the LVL panels and
the OSB sheets were simulated using equivalent orthotropic materials. The point-to-point
connections between the timber elements and the masonry wall, as well as the anchoring
connections and the timber-to-timber connections, were modelled using one-dimensional
wire elements. The properties of such elements were calibrated on the outcomes of different
experimental campaigns, while the wire extremities were fixed to the timber and the
masonry using coupling constraints with adequate influence radii. A regular mesh pattern
with eight nodes and three-dimensional elements (C3D8R) was used. The selected mesh
size (30 mm) is the maximum size that allows describing of the behaviour of the EMU with
adequate accuracy (for the validation process, please refer to Section 3.2). The horizontal
and the vertical loads were applied as uniform pressures, and the geometric nonlinearities
were considered. Quasi-static analyses were performed to improve the convergence and
reduce the computational cost of the simulations.

3.2. Model Validation

The models reproducing the unreinforced masonry (URM) condition and the retrofitted
condition with the retrofit provided by the application of a CLT panel were validated on
the results from in situ full-scale semi-cyclic shear-compression testing of triple-leaf clay
brick masonry walls performed by Giongo et al. [17]. The specimens, which measured
1800 mm × 1800 mm × 340 mm, were isolated from the internal walls of a clay-brick ver-
tical addition constructed in the 1920s on top of a three-story masonry hotel, originally
built in the nineteenth century in northern Italy (Comano Terme bath area in the Trentino
province) and now decommissioned. Before starting the lateral loading, a vertical stress of
≈0.2 MPa was applied on top of the specimens to simulate the stress level at the base of the
walls of 2- or 3-story buildings and to ensure activation of the pier shear failure. The retrofit
scheme comprised a three-layer CLT panel that was 60 mm thick and was fixed to the
masonry surface using twenty-five double-threaded screw anchors (≈8 fasteners/m2). The
specimens were characterized by a composite failure mode with an initial phase of rocking
followed by diagonal shear failure. The application of the retrofit produced an increase
of 41% in the load-bearing capacity, while the initial stiffness of the wall appeared not to
be modified. Figure 2 presents the comparison between the experimental and numerical
results. Two numerical models were used: a simplified model (M1), which was realized
adopting equivalent masonry units six times the size of a brick to reduce the computational
effort of the simulations, and a detailed model (M2) implemented considering the actual
brick pattern and size. It can be observed that the numerical outcomes are consistent
with the experimental data in terms of failure mechanism, initial stiffness, and lateral
load capacity.
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3.3. Results

The effectiveness of the proposed retrofit solution was further investigated using
the modelling approaches described in the previous sections. The timber retrofits were
applied to two double-leaf clay brick masonry walls characterized by different aspect
ratios (i.e., b/h 0.58 and 1.08) and failure modes (i.e., rocking and shear). Such walls were
3000 mm high and 250 mm thick. The bricks’ dimensions were 240 × 120 × 75 mm, and
the bed joints were 15 mm thick. The overburden was applied as a uniform pressure of
0.1 MPa, a conservative value representing the vertical load typically encountered in a
three-story URM building. The horizontal load was applied to the side of the masonry
walls at an average height from the base of 2565 mm, targeting the blocks within the
third, fourth, and fifth rows from the top. The adopted masonry properties are shown
in Table 1. The retrofit was provided by a single timber panel as long as the wall for
the slender wall (wall 1) and by three side-by-side panels for the stocky and longer wall
(wall 2). The panel-to-panel side connection for the solutions where CLT and LVL panels
were used was realized by inserting fully threaded timber screws at an angle of 45◦ to the
joint line (8 mm diameter screws spaced at 200 mm). The layout of the masonry-to-timber
connections was the same for all the investigated retrofit configurations matching that of the
experimental campaign reported in [17] (≈4 fasteners/m2, horizontal spacing = 500 mm,
vertical spacing = 540 mm). The timber strong-backs and the horizontal timber “blocking”
elements were fixed to the masonry wall by adopting the same fastener spacing used
for the solutions with the timber panels. The OSB sheets were connected to the timber
frames with nailed connections (fastener spacing = 100 mm) and, if multiple OSB sheets
were used, the sheet-to-sheet joints were realized in correspondence with the strong-back
location. Tensile anchors (i.e., hold-downs) were fixed next to the wall’s corner while a
single shear anchor (angle bracket) for each timber panel was used. The timber properties
were determined assuming a timber grade C24 for the boards of the CLT panels [41] and
a timber grade C18 for the strong-backs [41]. The properties of the equivalent materials
used to simulate the LVL panels and OSB sheets were defined as indicated in [42] (LVL-X)
and [43] (OSB 3). The timber-to-masonry connection properties were calibrated on the
experimental outcomes reported in [15], the properties of the anchors were defined based
on the experimental results reported in [44], the timber panel-to-panel side connections
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were modelled as recommended by [45], and the OSB panels-to-timber connections were
implemented considering the experimental results reported in [46].

Table 1. Masonry properties.

Material E [MPa] G [MPa] fc [MPa] ft [MPa] c [MPa]

Clay bricks 3000 1200 20.00 2.00 -
Mortar 300 120 1.30 0.05 0.15

Figure 3 shows the lateral load-displacement curves of the retrofitted masonry walls.
All the analyzed retrofit solutions increased the load bearing and displacement capacities of
the masonry walls considerably. The ultimate displacement of the walls was evaluated as
the displacement corresponding to a strength degradation of 20% of the maximum lateral
capacity [47]. In the case of rocking behaviour (wall 1), the failure of the retrofitted walls
occurred when the ultimate strength of the tensile anchors was reached and, consequently,
the four analyzed solutions provided the same load bearing capacity (71 kN, with an
increase of 145%). The stiffness of the retrofit is responsible for the displacement required to
engage the maximum load-bearing capacity and the displacement capacity of the solutions.
The response of the timber panel retrofit solutions (CLT and LVL) was very similar due
to the comparable stiffness of the timber panels. Such solutions reached the maximum
load-bearing capacity at a drift of 1.15%, while the increase in displacement capacities
was 70% (at a drift of 2.25%). Expectedly, the solutions with the strong-backs and the
OSB sheets (SB90 and SB45) proved more deformable than the panel solutions due to the
reduced stiffness of the retrofit. The maximum load-bearing capacity was engaged at a
drift of 1.83% (SB45) and 2.14% (SB90), while the increase in the displacement capacity
was 115% (SB45) and 133% (SB90). In the case of shear behaviour (wall 2), the failure of
the walls retrofitted with timber panels (CLT and LVL) was determined by the capacity of
the timber-to-masonry connections being exceeded. The CLT and LVL solutions allowed
an increase in the load-bearing capacity of 52% and in the displacement capacity of 226%
(drift = 2.50%). The SB45 and SB90 solutions were less effective than the timber panel
ones due to the reduced stiffness of the timber retrofit and the limited strength of the OSB
panel-to-strong-back nailed connections. The solutions with the strong-backs and the OSB
sheets, when applied to squat masonry walls (wall 2), improved only the displacement
capacity with increases of 265% (SB45) and 300% (SB90), and drift values of 2.80% (SB45)
and 3.07% (SB90). SB45 appeared to be slightly more effective than SB90 due to the bigger
inertia modulus of the SB45 strong-backs in the direction parallel to the wall.
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4. Energy Performance Analyses

A numerical model of the analyzed components was developed in COMSOL Multiph-
ysics® [48] to assess the thermal performance of the retrofit solutions both in winter and
summer seasons. At first, a steady-state heat transfer model was created for the different
configurations. This allowed the calculation of solutions’ thermal transmittances consid-
ering the structure’s minor thermal bridges. Then, a time-dependent heat transfer model
was created to simulate a typical temperature pattern occurring during the summer season.
This analysis allows for the evaluation of the periodic thermal properties often used in
regulatory requirements. Finally, the response factors [49–55] of the retrofit solutions were
simulated in order to obtain the thermal response in terms of specific heat flux on the
internal side after the application of a triangular temperature excitation. Response factors
underlie the calculation methods used by many building energy simulation software (e.g.,
EnergyPlus™ [56], TRNSYS [57]). Thus, an experimental assessment of such factors could
result in a more accurate simulation of the real behaviour of walls. Moreover, recent ex-
perimental techniques [58] show how the exploitation of triangular pulses applied on one
side of a wall can be adopted in the assessment of the U-value of the wall, both under
controlled conditions and in situ, by significantly reducing the test time. Preliminary results
show good agreement between U-values obtained with the pulse method and the U-value
calculated with the standard stationary procedure suggested by [59,60].

4.1. Numerical Model
4.1.1. Geometry and Materials

The bi-dimensional geometry of the masonry wall and of the eight retrofit solutions
was first created in order to build the model in COMSOL Multiphysics®. Figure 4 shows
the different geometric models of the nine configurations that were modelled, obtained by
replicating the retrofit stratigraphy seen in Figure 4. To each closed element, a material was
associated. Thermophysical properties of the adopted materials are the ones reported in Table 2.
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Table 2. Thermophysical properties of the materials.

Materials Thickness [mm] ρ [kg/m3] 1 λ [W/(mK)] 2 cp [J/(kgK)] 3

Clay brick masonry 250 1800 0.800 840
CLT panel 60 420 0.120 1600
LVL panel 40 530 0.130 2720
OSB panel 15 650 0.130 1700
PIR 40–60–90 36 0.022 1453
PIR (ETICS application) 40–80–90 35 0.028–0.026 1464
Plaster 12 1000 0.250 2000
Fibre-cement board 15 950 0.300 1000
Skim-coating 10 950 0.310 950
Plasterboard 12–24 1800 0.900 910
Vapour barrier 0.02 500 0.390 1700
Breathable membrane 0.03 250 0.300 1800
Breathable and
reflective membrane 0.05 300 0.300 1800

1 Density. 2 Conductivity. 3 Mass specific heat at constant pressure.
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4.1.2. Model Description

The governing heat transfer mechanisms consisted of (i) heat conduction across the
wall and (ii) heat convection on the surfaces. The Newton–Robin boundary condition
on the two vertical surfaces was set by defining the heat transfer coefficient and the air’s
temperature (see Equation (6)).

q0 = h · (TAIR − Ts) (6)

where q0 [W m−2] is the boundary convective heat flux, h [W m−2 K−1] is the heat
transfer coefficient, TAIR [◦C] is the air’s temperature, and Ts [◦C] is the temperature
of the wall surface. For the internal side, the heat transfer coefficient was set equal to
hint = 7.69 W m−2 K−1, while for the external side hext was set equal to 25 W m−2 K−1,
according to the Standard EN ISO 6946:2018 [61]. Conversely, the two horizontal surfaces
were set as adiabatic. The air’s temperature was defined according to the study being
performed, either stationary or periodic, as described in the following sections.

4.1.3. Steady-State Regime

A stationary analysis was run to determine the thermal transmittance of the different
retrofit solutions. As a matter of fact, constant air temperatures at the internal and external
sides were set, namely TAIR,i = 20 ◦C and TAIR,e = 0 ◦C, with a thermal gradient of 20 K. The
steady-state study was run considering a relative tolerance of the solver equal to 0.001.

Starting from numerical results, it was possible to calculate the thermal transmittance.
At first, the thermal resistance of the wall Rwall [m2 K W−1] was determined according
to Equation (7). Then the thermal transmittance U of each retrofit solution, expressed in
W m−2 K−1, was assessed through Equation (8).

Rwall =
Tsi − Tse

.
q

(7)

U =
1

Rsi + Rwall + Rse
(8)

where Tsi [◦C] and Tse [◦C] are the internal and external surface temperatures calculated as
the line average on each surface, respectively.

.
q [W m−2] is the specific heat flux obtained

as the line average on each one of the vertical surfaces.

4.1.4. Periodic Regime

A dynamic periodic study is required to analyze the summer performance. The se-
lected regime was a periodic one, in which the internal air’s temperature was set constantly
equal to TAIR,i = 16 ◦C, while the external TAIR,e was forced to follow a sinusoidal func-
tion with 10 K of semi-amplitude, 16 ◦C of average temperature, and a period of 24 h
(Equation (9)).

TAIR,e = 16 ◦C + 10 · sin
2 π · τ

T
(9)

where τ [s] is the time expressed in [s] and T is the 24 h period of solicitation. The initial
condition in the solid domain was taken equal to the wall’s average temperature, which
was 16 ◦C. In this way, the transient period of the simulation was reduced.

The relative and absolute tolerances of the time-dependent solver were stricter than
the stationary study and were set equal to 10−4 and 10−5, respectively. Those values were
necessary in order to obtain accurate results in the time-dependent study. Simulations were
run for a period of 10 days with 1 min time-step, and the Runge–Kutta method was chosen
as the resolution method, which is extremely suitable for oscillatory problems.

Periodic thermal parameters were calculated starting from the numerical results, in
terms of temperatures and specific heat fluxes, analyzing them in a 24 h period in the
stabilized regime, thus, after the transient time. The periodic thermal transmittance Yie
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[W m−2 K−1] was calculated by taking the ratio of the semi-amplitude of the specific heat
flux function over the semi-amplitude of the external air’s temperature function, both
considered in the same period of one day. The decrement factor f [-] was calculated by
taking the periodic thermal transmittance Yie and dividing it by the U-value. The phase shift
∆τie, expressed in hours, was determined as the difference between the moments at which
the maximum values of the specific heat flux and of the external air’s temperature occur.

4.1.5. Dynamic Regime

Among dynamic studies, it is also possible to analyze the thermal behaviour of the
retrofit solutions by applying a temperature impulse on the external side and investigating
the response in time in terms of internal heat flux. This is known as response factor [49–55].
In particular, the external air’s temperature was forced to follow a triangular function, as
shown in Equation (10), while the internal air’s temperature was kept equal to 16 ◦C. The
initial condition was set equal to 16 ◦C in the whole solid domain.

TAIR,E = 16 + 10 · t, 0 < t ≤ 1 h
TAIR,E = 26 − 10 · (t − 1), 1 < t ≤ 2 h
TAIR,E = 16, 2 < t ≤ 96 h

(10)

Notwithstanding, the theory [49–55] defines response factors as responses to a unitary
temperature solicitation of 1 K, however the simulation was run by setting the temperature
increment to 10 K. Indeed, a unit change in temperature would produce heat fluxes that
are not graphically appreciable, especially for the retrofit solutions. Heat fluxes were then
divided by 10 K with the aim of obtaining a unitary response X (W m−2 K−1), and values
were reported for each hour over a period of 4 days (as seen in Equation (11)). This range of
time is also the simulation time selected for the analysis, and it was obtained by considering
the analyzed component that had shown the longest thermal response in order to not
neglect significant terms in the series.

Xj =

.
qs,

∆T
(11)

where j is the time-index (with j = 1, 2, . . ., N),
.

qs, is the specific heat flux on the internal side
(W m−2 K−1), and ∆T [K] is the temperature magnitude equal to 10 K. The response factor
series starts from 1, which is the moment at which the peak of the temperature excitation
occurs.

4.1.6. Mesh Selection

To numerically solve the heat transfer problem, it was necessary to discretize the
domain into non-overlapping triangles. However, to assess the effect that different dis-
cretization levels of the geometry have on the results, a sensitivity analysis of the mesh was
performed for each retrofit configuration. By running the stationary study and changing the
user-defined mesh from normal (i.e., maximum size = 7.04 cm, minimum size = 0.03 cm)
to extremely fine (i.e., maximum size = 1.05 cm, minimum size = 0.002 cm), changes in
the results were analyzed. Table 3 shows the percentage differences of the specific heat
flux across the different configurations obtained as the difference in the result considering
successive meshes. It can be noticed that the mesh does not have any influence on the
simulation results. Only the two timber-frame retrofits (internal and external) showed a
slight difference between meshes, which can be explained by the non-planar geometry
in correspondence with the strong-back. Nevertheless, differences are negligible (−0.02%
to −0.01%). For this reason, domains were discretized with a normal mesh, with the
advantage of reducing the computational time.
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Table 3. Percentage variation of the steady-state specific heat flux as a function of the mesh size and
of the retrofit solution (beyond the URM wall).

Configuration
Mesh Size

Normal Fine Finer Extra Fine Extremely Fine

URM - 0.00% 0.00% 0.00% 0.00%

Internal
Retrofit

CLT - 0.00% 0.00% 0.00% 0.00%
LVL - 0.00% 0.00% 0.00% 0.00%
SB90 - 0.00% 0.00% −0.01% −0.02%
SB45 - 0.00% 0.00% −0.01% −0.02%

External
Retrofit

CLT - 0.00% 0.00% 0.00% 0.00%
LVL - 0.00% 0.00% 0.00% 0.00%
SB90 - 0.00% 0.00% 0.00% −0.01%
SB45 - 0.00% 0.00% 0.00% −0.01%

4.2. Results and Discussion

Results of the complete energetic analysis, both in terms of thermal transmittance and
in terms of periodic thermal parameters of the different retrofit solutions and the URM
wall, are shown in Table 4.

Table 4. Results of the energetic analysis.

Configuration
Stationary Periodic

U (W m−2 K−1) Yie (W m−2 K−1) f (-) ∆τie (h)

URM 2.072 0.894 0.432 7.4

Internal
Retrofit

CLT 0.354 0.052 0.148 12.9
LVL 0.282 0.037 0.131 13.2
SB90 0.297 0.052 0.176 11.9
SB45 0.270 0.035 0.129 13.2

External
Retrofit

CLT 0.244 0.023 0.094 13.0
LVL 0.257 0.023 0.089 12.9
SB90 0.316 0.038 0.119 12.3
SB45 0.319 0.030 0.095 13.0

The heat flow by heat transmission across opaque components is known to be one of
the main shares of the total thermal load of a building. The quantity of energy transferred
between internal and external environments depends on both the component type and
the temperature differential. In winter design scenarios, this heat flow is assessed under
steady-state conditions, where temperature remains constant over time. Thus, the thermal
parameter associated with the winter thermal performance is the thermal transmittance.
According to Table 4, it can be noticed that all the retrofit solutions, both internal and
external, show improvements in the thermal insulation with respect to the URM wall
(with U-value equal to 2.072 W m−2 K−1). On average, all U-values are lower than the
initial case, and in these specific examples, best winter performances were obtained for the
CLT-ext and the LVL-ext, which resulted being very effective with values equal to 0.244
and 0.257 W m−2 K−1, respectively. It can be noticed that for the CLT and LVL structural
layers, passing from internal to external insulation, the U-value decreases, which can be
explained by the greater total thickness, despite the higher value of thermal conductivity
adopted in the external configuration (i.e., 0.026–0.028 W m−2 K−1 for the PIR ETICS). On
the contrary, in the timber-frame structure, both SB90 and SB45, an increase in U-value
is noticed by placing the insulation layer on the external side instead of the internal one.
This is because, on average, thermal transmittances of external timber-frame solutions
have a less thermal resistant insulation layer. As a result of comparing analytical U-values
rather than the numerical ones, it can be noticed that CLT and LVL retrofit solutions do not
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significantly change (errors lower than 0.05%), while a relevant difference was obtained
for timber-frame solutions. As a matter of fact, U-values increase by 30% to 40% for the
SB90 (internal and external) and by 17% to 21% for the SB45 retrofit solutions (internal and
external) when considering numerical U-values, instead of analytical ones. This increase
is due to the thermal bridges caused by the strong-backs. Almost all solutions exceed the
U-value prescribed by the standard when taking into account thermal bridge effects, except
for the SB45-int, CLT-ext, and LVL-ext.

When it comes to cooling periods, external climatic conditions such as air temperature
can undergo remarkable changes, differently from those assumed in winter seasons. For
this reason, the thermal behaviour of opaque components must be evaluated under non-
stationary conditions. Following the results of Table 4, it can be seen that the retrofit
solutions exhibit a significantly better performance than the URM. In fact, Figure 5 shows
the specific heat flux on the internal side for the URM wall (in black) and the other retrofit
solutions (in grey) as a function of the time. On the right, the external solicitation in terms of
air temperature is reported. It is evident that both attenuation and phase shift are enhanced.
The goal of the retrofit solution, from the energetic point of view, is to obtain lower values
of periodic thermal transmittance, as well as of the decrement factor, while, in terms of
phase shift, the higher the value, the better the solution.
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Figure 5. Stabilized periodic regime: Internal specific heat flux (W m−2) trend in the 24 h period for
the URM wall (in black) and for the other retrofit solutions (in grey). On the right, the external air
temperature function is expressed in ◦C as a function of the time.

On average, installing the insulation layer on the external side is more effective in
attenuating and shifting the heat flux. The best performance was obtained for the CLT-ext
and the LVL-ext. The massive presence of either cross-lam or laminated veneer lumber
gives a lower thermal diffusivity to the configuration than the timber-frame solutions. This
can also be noticed in Figure 6, which represents the internal specific heat flux (W m−2) as
a function of the time for the external retrofit solutions. On the right side, the external air
temperature function expressed in ◦C is reported over a period of 24 h. In regards to the
timber-frame solutions, the SB45 configuration attenuates more the heat flux than the SB90
one. Despite the slightly lower total thickness of the SB45 (i.e., 36 cm vs. 38 cm), both of the
4 cm insulation layers installed with a layer of OSB in the middle can greatly dump and
shift the external solicitation in comparison to a single 9 cm layer of PIR ETICS.

On the other hand, when the insulation layer is applied on the internal side of the
masonry wall, a different behaviour is noticed. The most effective solutions become the
LVL-int and the SB45-int, as seen in Figure 7. The only difference between the two is in
terms of attenuation, while the phase shift is comparable.
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Smaller performance enhancements were obtained for the SB90-int solutions, where
the highest oscillation in terms of internal heat flux and the lowest phase shift was noticed
(11.9 h). The presence of 90 mm of PIR insulation, which is characterized by higher thermal
diffusivity than bulk layers like either CLT or LVL, leads to higher values of periodic
thermal transmittance (Yie) and decrement factor (f), and lower phase shift (∆τie).

By considering all the retrofit solutions, it can be stated that the most effective solutions
in terms of energy retrofit (both in winter and summer seasons) are the CLT-ext and the LVL-
ext with external insulation. The external configuration can be convenient during a retrofit,
especially because it does not affect the indoor space of the building. While, if restrictions
on the external façade are present, it is suggested to adopt either the LVL-int or the SB45-int
retrofit solutions in order to enhance the thermal performance. Both configurations show
higher attenuation and longest phase shifting among internal retrofit solutions.

Figures 8–10 summarize the results in terms of specific heat flux after the impulsive
temperature excitation. Figure 8 represents all the heat fluxes comprising the behaviour
of the URM wall. Figures 9 and 10 give instead the heat fluxes obtained on the internal
side, separately for external and internal retrofit solutions, respectively. Results on the left
side are displayed for a period of 96 h, while the temperature profile spans just 24 h for the
sake of clarity. The temperature was maintained constant at 16 ◦C after the temperature
impulse until the end of the simulation. Figures 11 and 12 represent the response factor on
the non-excited side on the wall after the application of a unitary temperature excitation on
the opposite side, obtained by dividing the internal specific heat flux by the magnitude of
the temperature excitation (i.e., 10 K) and then by sampling the data series every hour.
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In order to verify the accuracy of simulation results related to the dynamic regime, a
summation of the response factor series over time was performed for each analyzed compo-
nent. The result was compared to the U-value obtained from the stationary simulation [54],
as seen in Equation (12).

j = 96 h

∑
j = 0

Xj = U (12)

According to the response factor theory [54], and since the response factor is defined
as a time-series, it is infinite, thus, the summation must be performed for an infinite period.
However, after some time, values become extremely small and no longer significantly
influence the summation. In this study, the sum was conducted for a period of 96 h (i.e.,
simulation period). As a result of this study, negligible differences (about <5%) with respect
to the steady-state thermal transmittance were found, as visible in Table 5. Larger differ-
ences are registered for the external retrofit solutions than the internal ones (i.e., −5.29%
for the LVL-ext and −0.29% for the CLT-int). This is explained by the longer thermal re-
sponse obtained in retrofit solutions with external insulation rather than internal. However,
these values are far below the uncertainty of the thermal transmittance measurements
(approximately 10%), thus, the analysis is considered correct. The determination of the
U-value through the response factor theory can bring advantages especially in situations
in which boundary conditions cannot be kept constant, such as, in situ. This result is
extremely useful in retrofit analysis where the current energetic state of the building must
be evaluated in order to find retrofit solutions.

Table 5. The sum of the 96 terms of the response factor series for each analyzed component and their
percentage differences with respect to the stationary U-value.

Configurations
Response Factor

∑
96 h

Xj (W·m−2·K−1) Error (%)

URM 2.072 −0.02%

Internal
Retrofit

CLT 0.351 −0.29%
LVL 0.279 −1.25%
SB90 0.296 −0.35%
SB45 0.268 −0.77%

External
Retrofit

CLT 0.235 −4.02%
LVL 0.244 −5.27%
SB90 0.309 −2.18%
SB45 0.310 −2.95%
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5. Conclusions

The retrofit solutions studied herein were designed and analyzed considering both
structural and energetic aspects, with the aim of realizing integrated interventions charac-
terized by low impact and fast execution. The outcomes obtained for the various techniques
were compared to individuate the best performing solution for any given scenario. The
following conclusions were drawn:

• The timber panel retrofits (i.e., CLT and LVL panels) proved to be more effective than
the solutions with the timber frame and the OSB sheathing (i.e., SB90 and SB45) in
improving the in-plane mechanical behaviour of double-leaf masonry brick-walls.
Increases in lateral load-carrying capacity of 145% and 52% and in displacement
capacities of 70% and 226% were obtained for the timber panel retrofits in the cases of
rocking and shear failure modes, respectively.

• In the case of rocking behaviour, the solutions with the timber frame and the OSB
sheathing exhibited the same load carrying capacity as the panel-based retrofits (as
the wall capacity was limited by the strength of the tension anchors at the base) even
though the maximum capacity was engaged at larger drift values (>1.80%), exceeding
the limits typically adopted for masonry structures. In the case of shear failure, the
solutions SB45 and SB90 produced a considerable increase in the wall displacement
capacity (increases > 265%, up to drift values of ≈3%), with limited impact on the
load-carrying capacity.

• The energy performance of the masonry walls was noticeably improved by the appli-
cation of the retrofit solutions. Reductions in the thermal transmittance (U) up to 87%
and of the periodic thermal transmittance (Yie) up to 97% were noticed.

• The most effective solutions in terms of energy retrofit (both in winter and summer
seasons) are the external solutions CLT-ext and the LVL-ext. However, if the retrofit is
applied on the internal side, it is suggested to adopt either the LVL-int or the SB45-int
solutions. As expected, the thickness of the insulation layer plays a major role in
determining the effectiveness of the solutions. Consequently, if a limitation to the
total thickness of the intervention is considered (i.e., for the internal solutions), the
possibility of inserting the insulation layers between the timber elements allows larger
improvements in the wall thermophysical properties.

• The adoption of the response factor theory, specifically utilizing a triangular air tem-
perature profile, presents a promising approach to evaluate U-values, particularly
in experimental settings where stationary boundary conditions cannot be kept, for
example, for in situ measurements. This result is extremely useful in retrofit analy-
sis where the current energetic state of the building must be evaluated. Deviations
from the stationary U-values are minimal for less massive walls, such as the internal
retrofit solutions, while they get more pronounced in the case of external retrofit due
to the longer response time. However, these deviations consistently remain below the
threshold of measurement uncertainty.

• The retrofit solution with the LVL panels appeared to be the best performing, im-
proving both the mechanical and the thermophysical properties of the URM walls
considerably. However, all the analyzed solutions can be considered quite promising
and worthy of further study.

In summary, the comprehensive evaluation of retrofit solutions presented in this
study evidences the significance of integrating structural and energetic considerations for
achieving interventions that offer minimal impact and swift implementation. The findings,
highlighting the superior performance of timber panel retrofits in enhancing mechanical
behaviour and energy efficiency, signify promising directions for future research and
practical applications. These results emphasize the importance of integrated approaches in
retrofitting, paving the way for more resilient and energy-efficient structures.
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