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Abstract: The evolution of a terminal lake at the end of a river not only reflects the climate change
characteristics within the basin but also the impact of regional human activities, especially in arid areas.
In the Hexi Interior of China, three terminal lakes (e.g., Halaqi Lake, East Juyanhai Lake, and Qingtu
Lake) situated in the Shule River, Heihe River and Shiyang River, respectively, have been increasingly
studied to support regional ecological protection and sustainable oasis development. In this study,
Landsat TM/ETM+/OLI and Sentinel-2 MSI imagery were used to examine Halaqi Lake spanning from
2017 to 2022, East Juyanhai Lake from 1990 to 2022, and Qingtu Lake from 2009 to 2022. The focus of
this investigation was to characterize changes in lake area and the impact of climate change and human
activities. The results revealed a dramatic change in Halaqi Lake, which suddenly emerged in 2017,
initially covering an area of 13.49 km2, gradually vanishing nearly in 2021, and reappearing in 2022
with a reduced area of 9.53 km2. The area of East Juyanhai Lake was 54.39 km2 in 1990 but reduced to
40.84 km2 by 2022. Throughout this period, it encountered episodes of drying up in 1992, 1995, 2001, and
2002. Qingtu Lake emerged in 2009, with an area of 0.09 km2, and subsequently expanded to 2.60 km2

by 2022. Climate change and human activities collectively influence the area fluctuations of these three
terminal lakes. Among these factors, temperature changes have a greater impact on the lake area in East
Juyanhai. Global warming has worsened glacier melting in the Qilian Mountains, resulting in increased
inflow in certain years and substantial lake area expansion. Human activities are the primary drivers of
changes in Halaqi Lake and Qingtu Lake. Industrial water consumption is the key factor influencing
area changes in Halaqi Lake, whereas water usage in forestry, animal husbandry, and fisheries plays a
dominant role in the area changes of Qingtu Lake. Furthermore, the introduction of ecological water
conveyance projects has had an indispensable effect on rejuvenating and preserving the watershed
areas of these three terminal lakes. It is important to emphasize that human-driven water resource
management is the primary cause of sudden changes in the lake areas.

Keywords: terminal lake; climate change; ecological water conveyance; Hexi Interior

1. Introduction

Terminal lakes are crucial to the terrestrial water cycle, serve as pronounced indicators
of climate change, and show high susceptibility to anthropogenic environmental shifts [1].
Terminal lakes often reside in interior areas far from the ocean and typically exist within arid
climates with underdeveloped water systems [2]. These lakes form at the mouths of rivers that
cannot flow out, earning names such as “terminal lakes”, “river mouth lakes”, or “endorheic
lakes.” Belonging to the categories of inland and non-draining lakes, these bodies of water
are predominantly saline due to their low elevations, extremely arid climate, limited rainfall,
and high evaporation rates. River runoff serves as the primary water source for these lakes,
with short intermittent streams flowing into them and providing limited replenishment [3].
Terminal lakes heavily rely on upstream mountain regions for water sources and locate
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themselves at the very end of the river basin. They are profoundly influenced by human
activities in the middle and lower reaches of the basin [4]. Nevertheless, terminal lakes also
demonstrate remarkable sensitivity to climate change. The shaping of these lakes is driven
by the combined effects of climatic shifts and human interventions [5], with the latter often
inducing significant hydrological pattern alterations [6]. Many interior basins shift from a
natural water cycle to one heavily influenced by human activities [7]. Particularly in arid zones
with ecologically vulnerable lakes, human activities have a pronounced impact [8]. Activities
like land reclamation [9], dam construction [10], urban water consumption [11], and mineral
extraction [12] significantly influence lake dynamics. These actions influence lake reduction
rates, salinization, and lead to challenges such as habitat degradation and the emergence of
sand and dust storms [13]. Regional authorities initiate conservation measures and water
management strategies in response to the ecological threats from these developments [14].

The Hexi Interior is central to China’s Silk Road Economic Belt and plays a vital role
in water sourcing for the arid northwestern region [15]. Terminal lakes in this region play a
critical role in ecological balance and biodiversity preservation. Halaqi Lake, East Juyanhai
Lake, and Qingtu Lake receive water from the Shule, Heihe, and Shiyang Rivers, respec-
tively, which originate in the Qilian Mountains. The glacial and snowmelt water originating
from the Qilian Mountains serves as a crucial source of replenishment for rivers in the
area [6]. These rivers supply water that benefits urban areas, agriculture, and reservoirs
while traversing diverse channels [16]. Yet, the over-allocation of surface water reduces
inflow to the lakes, which compromises the lakes’ essential ecological functions, such as
windbreak, sand stabilization, and biodiversity sustenance [11]. The ecological significance
of the terminal lakes in the Hexi Interior underscores the importance of understanding
their dynamics and the external factors influencing them to ensure effective conservation.

To elucidate the hydrological evolution of interior basins in the Northwest Arid Zone,
some studies have been conducted to examine changes in water resources within the basins
using remote-sensing image data. These studies also analyze the influence of meteorological
data and human activities on the water balance. As an illustration, it was observed that
from 1960 to 2018, climate change played a predominant role in shaping the runoff in the
upper Heihe River, while human activities had a relatively minor impact. In contrast, the
runoff in the mid-river region was less influenced by climate change, with human activities
emerging as the dominant factor [17]. While the ecological water conveyance project
in the Heihe River Basin has aided the expansion of the East Juyanhai Lake, challenges
persist. The average groundwater level in the basin’s middle reaches keeps declining, water
distribution disparity between the middle and lower reaches grows, and the program falls
short of ensuring ecological restoration and sustainable development across the basin [18].
The runoff of the Shiyang River witnessed a decline from 1956 to 2009. The fluctuations in
the Caiqi Hydrological Station runoff before 1968 were primarily attributable to climate
change. However, the alterations in Caiqi Hydrological Station runoff after 1968 were the
outcome of the combined influence of both climate and land-use changes. Importantly, it
was observed that land-use change had a considerably larger impact on runoff compared
to climate change during this period [19]. After the ecological water conveyance, the
groundwater depth in Qingtu Lake at the Shiyang River’s terminal increased, progressively
extending from the water’s edge to the desert boundary. Additionally, there was a notable
augmentation in the overall vegetation cover throughout the region [20].

Halaqi Lake, East Juyanhai Lake, and Qingtu Lake, as terminal lakes in arid regions, all
possess unique water sources and ecological environments. These lakes rely not only on river
surface runoff and atmospheric precipitation but also on glacial meltwater from the Qilian
Mountains to maintain their water levels. Simultaneously, the hydrology and ecosystems of
these lakes are significantly influenced by upstream oasis cities. The use and management
of water resources in oasis cities directly affect the quantity and quality of water in the lakes,
thereby impacting the ecological health and stability of the lakes. Moreover, the changing
trends and driving factors of these three lakes generally show similarities. While previous
studies concentrated on changes in individual terminal lakes, an overall analysis of changes in
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multiple terminal lakes in the region and the influencing factors remains lacking. This study
employs a quantitative approach to examine changes in terminal lake areas using diverse
remote-sensing data. It also investigates the factors behind these changes by integrating
meteorological, hydrological, and human activity data. The ultimate goal is to furnish a solid
scientific foundation for water resource allocation and policymaking in the region.

2. Study Area

The Hexi Interior Basin (93◦ E–104◦ E, 37◦ N–42◦ N) lies in the northwest of Gansu
Province and extends from the Wushao Ridge in the east to the southern regions of the Qilian
Mountains and the Altun Mountains watershed. It borders the Xinjiang Uygur Autonomous
Region to the west and reaches northward to the border of the Inner Mongolia Autonomous
Region and Mongolia [21] (Figure 1). From west to east, the distribution encompasses three
major water systems: the Shule River, Heihe River, and Shiyang River. All these systems
originate in the Qilian Mountains, with glacier snowmelt acting as the primary source of
recharge. The region in a temperate continental arid climate zone has a gradient of decreasing
precipitation from east to west, high potential evaporation rates, and pronounced temperature
variations [22]. The three primary water systems undergo consumption via infiltration and
irrigation and converge into terminal lakes in depressions. These lakes are identified as Halaqi
Lake, East Juyanhai Lake, and Qingtu Lake. Halaqi Lake (92◦52′ E–92◦54′ E, 40◦17′ N–40◦22′ N),
at the terminal of the Shule River, marks the intersection of the western boundary of the
Dunhuang West Lake National Nature Reserve and the eastern edge of the Kumtag Desert [23].
East Juyanhai Lake (101◦11′ E–101◦19′ E, 42◦15′ N–42◦20′ N), also known as Subo Naoer,
is the terminal of the Heihe River and lies in the Alxa League’s Ejin Banner. Historically,
Juyanhai Lake was one of the largest lakes in the Northwestern Region [24]. Qingtu Lake
(103◦34′ E–103◦39′ E, 39◦04′ N–39◦10′ N) is situated at the conclusion of the Shiyang River.
In antiquity, it was part of the Xiutu Lake group of lakes and boasted a water area second
in size only to Qinghai Lake [25]. Environmental transformations and human activities have
led to successive size reductions and even complete desiccation of the three terminal lakes.
This has given rise to progressively severe ecological issues, including land cover degradation,
frequent occurrences of sandstorms, and prolonged periods of drought. Recent climate patterns
with warming and increased humidity, along with human interventions, have been pivotal in
preventing further deterioration of the lake environments.
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3. Data and Methods
3.1. Data Sources
3.1.1. Landsat and Sentinel Series Images

This research utilized Landsat TM/ETM+/OLI images and Sentinel-2 MSI images
from the Google Earth Engine platform (https://earthengine.google.com, accessed on
24 July 2023) that span from January to December and cover the years 1990 to 2022. These
images were used for the purpose of delineating the lake boundaries. Between 1990
and 2022, a total of 819 images were downloaded. The specific distribution of Landsat
TM/ETM+/OLI and Sentinel-2 MSI images acquired during this period is illustrated in
Figure 2. Among them, there were 237 scenes of Landsat TM images from 1990 to 2011,
28 scenes of Landsat ETM+ images in 2012, 342 scenes of Landsat OLI images from 2013
to 2022, and 212 scenes of Sentinel-2 MSI images from 2015 to 2021. The images for each
year were acquired in a month-by-month order to obtain lake shoreline information. In
cases where data for specific months were missing, the closest available month within the
same year was used as a substitute. Remote-sensing images with the least cloud cover were
selected for optimal quality. All imagery obtained through the Google Earth Engine (GEE)
platform undergoes a comprehensive pre-processing pipeline, which includes radiometric,
geometric, topographic, and atmospheric corrections. The Sentinel-2 MSI utilizes a spatial
resolution of 10 m for its selected bands, while Landsat TM has a spatial resolution of 30 m
for its selected bands. To enhance the spatial resolution of the images while preserving
their multispectral information, band fusion is applied to the visible and panchromatic
bands of Landsat ETM+ and OLI images to achieve a spatial resolution of 15 m.
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Figure 2. Count of Landsat TM/ETM+/OLI and Sentinel-2 MSI images.

3.1.2. Meteorological Data

Temperature, evapotranspiration, and precipitation are the three main meteorological
factors affecting the water volume of lakes. In lakes recharged by glacial meltwater, warmer
temperatures can have both a positive effect by increasing the recharge of glacial meltwater
to lakes and a negative effect, due to enhanced evapotranspiration. Evapotranspiration is
inversely positively proportional to the water volume of the lakes, while precipitation is
proportional to it. To analyze the effects of climatic factors on Halaqi Lake, East Juyanhai
Lake, and Qingtu Lake, this study used monthly surface climate element data from Dun-
huang meteorological station (2017–2022), Ejina Banner meteorological station (1990–2022),
and Minqin meteorological station (2009–2022) provided by the National Meteorological
and Scientific Data Sharing Service Platform (http://data.cma.cn, accessed on 18 August
2023). The study analyzed the inter-annual trends of mean temperature and precipitation
and calculated potential evapotranspiration to explore the responses of the lake areas to
climate change in a regional climate context. The Dunhuang meteorological station is
situated in the southeast of Halaqi Lake, approximately 150 km away from the lake. The
Ejina and Minqin meteorological stations are located in the southwestern part of East
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Juyanhai Lake and Qingtu Lake, respectively, at distances of approximately 40 km and
70 km from their respective lakes. These meteorological stations effectively represent the
climatic characteristics of the study area.

3.1.3. Water Resource Consumption Data

For terminal lakes that rely on upstream river recharge, the amount of water with-
drawn by the river is an important factor affecting the amount of water in the lake [26].
Amidst severe water resource constraints affecting socio-economic development in the
region, the amount of water used for human production and domestic use has a direct
impact on the amount of water withdrawn from the rivers and, consequently, on the
amount of water in the lakes [27,28]. Water for human production is primarily allocated
to agriculture, industry, forestry, animal husbandry, and fisheries. Domestic water usage
encompasses residential and urban public water, and it also includes ecological water. In
the Hexi Interior Basin, the increasing utilization of water for production and living pre-
dominantly relies on rivers and groundwater. The substantial reduction in replenishment
from the three major inland rivers to terminal lakes has consequently affected lake areas.
Presently, the Hexi region grapples with a severe water resource crisis. This crisis intensifies
the conflict between diminishing lake water resources and rising human water demand.
Consequently, achieving a balance in the allocation of water resources between rivers and
lakes has become a vital theme in the region’s water resource management. The volume
of water utilized for human production and living serves as a foundational dataset for
studies on lake area changes and the dynamic equilibrium of regional water resources. It
provides crucial data support for the rational allocation of regional water resources. The
water resource consumption data includes water consumption for various purposes such
as agricultural irrigation, industrial, residential living, forestry, animal husbandry, and
fisheries, urban public, ecological environment in the Shule River Basin (2017–2021), Heihe
River Basin (1994–2021), and Shiyang River Basin (2009–2021), as well as the ecological wa-
ter conveyance into the three terminal lakes. Building on previous relevant research [29,30],
this study utilized ecological water conveyance data. Data sources included the Danghe
Reservoir for Halaqi Lake; Yingluo Gorge Hydrological Station, Zhengyi Gorge Hydrologi-
cal Station, and Langxinshan Hydrological Station for the East Juyanhai Lake; and the Caiqi
Hydrological Station and Hongyashan Reservoir for Qingtu Lake. Water consumption
data in the Shule River Basin, Heihe River Basin, and Shiyang River Basin were also used
to analyze interannual variations in water consumption and ecological water discharge
resulting from human activities. This analysis aims to elucidate the impact of human
activities on changes in the area of terminal lakes. Water resource consumption data were
sourced from the Gansu Water Resources Bulletin (http://slt.gansu.gov.cn, accessed on
24 August 2023).

3.2. Method
3.2.1. Extraction of Lake Information

The Normalized Difference Water Index (NDWI) is widely employed as the primary
method for delineating the boundaries of water bodies [31]. This study used NDWI for
the extraction of water bodies in the terminal lakes. A triangulation method for image
binarization determined an appropriate threshold value to extract water body information.
The calculation formula for NDWI is as follows:

NDWI =
ρGreen − ρNIR
ρGreen + ρNIR

(1)

where ρGreen and ρNIR represent the reflectance in the green and near-infrared bands, respectively.
Zack, G.W. [32] introduced an adaptive threshold selection method for image bina-

rization. This method aims to determine the optimal threshold based on the histogram
distribution of the image. When the maximum peak of the histogram is closer to the
brightest side, the gray level that maximizes the distance between the base of the triangle

http://slt.gansu.gov.cn
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and the histogram is selected as the optimal threshold. The formula for the triangular
thresholding method is as follows:

(y − y0) =
y1 − y0

x1 − x0
(x − x0) (2)

d =

∣∣∣∣ Ax + By + C√
A2 + B2

∣∣∣∣ (3)

A = (y1 − y0) (4)

B = −(x1 − x0) (5)

where x0 is the grayscale value at the valley bottom, and y0 is the frequency of the histogram
corresponding to the grayscale value at the valley bottom. x1 is the grayscale value at the
peak, and y1 is the frequency of the histogram corresponding to the grayscale value at the
peak. The variable d is used to denote the vertical distance between a specific gray level
and the base of the triangle.

This study extracted the water areas of Halaqi Lake, East Juyanhai Lake, and Qingtu
Lake. The accuracy of the triangulation method and Otsu’s method as two adaptive
thresholding methods were compared for this extraction. The findings indicated that the
areas extracted using the triangulation thresholding method demonstrated higher accuracy
for Halaqi Lake, East Juyanhai Lake, and Qingtu Lake. The alignment of these extracted
water bodies with visually interpreted results produced kappa coefficients of 0.92, 0.92, and
0.81, respectively.

3.2.2. Calculation of Potential Evapotranspiration

Understanding the atmospheric capacity to lose water is pivotal for lake water balance
studies, especially for closed systems like Halaqi Lake, East Juyanhai Lake, and Qingtu Lake,
where evaporation is the primary water loss mechanism. Potential evapotranspiration [33]
is a measure that denotes the total volume of pure water evaporated from the earth’s surface.
It is influenced by factors such as solar radiation, air temperature, relative humidity, and
wind speed. This study employed the Food and Agriculture Organization of the United
Nations (FAO) modified Penman–Monteith equation. This equation, which requires inputs
like temperature (average, maximum, minimum), humidity, sunshine duration, and wind
speed, offers a comprehensive approach to quantifying potential evapotranspiration from
lakes. The potential evapotranspiration formula is as follows:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(6)

where ET0 represents potential evapotranspiration (mm), Rn stands for net radiation
[MJ/(m2·d)], G represents soil heat flux [MJ/(m2·d)], γ is the psychrometric constant,
T is the daily average temperature (◦C), u2 is the 2-m wind speed (m/s), es and ea represent
saturated vapor pressure and actual vapor pressure, respectively (kPa), and ∆ represents
the slope of the saturated vapor pressure curve (kPa/◦C).

4. Results
4.1. Inter-Annual Change

Halaqi Lake, East Juyanhai Lake, and Qingtu Lake do not demonstrate stability and
instead display substantial fluctuations over time. These three lakes exhibited notable
variations in both their lake area and shoreline length (Figure 3). Throughout the 32-year
timeframe, all three terminal lakes underwent rapid expansion subsequent to periods of
drying. However, all these lakes began showing a reduction trend in size starting from
2019. From 1990 (54.39 km2) to 2022 (52.97 km2), the combined area of the three terminal
lakes has decreased by 2.61%. During this period, from 1990 to 2008, Halaqi Lake and
Qingtu Lake remained continuously dry until November 2009 when Qingtu Lake formed a
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water area of 0.09 km2. Halaqi Lake shifted from its stable dry status in September 2017 to
have a water surface area of 13.49 km2.
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and Qingtu Lake (c1–c5).

Halaqi Lake experienced significant size and shoreline length changes between 1990
and 2022. The lake faced a drought from 1990 to 2016 (Figure 4(a1)). It then expanded
rapidly from 2017 (13.49 km2) to 2020 (22.65 km2), peaking in size in 2019, at 23.03 km2.
The year 2021 brought a drastic size reduction to 1.44 km2, marking a 93.75% decline from
its 2019 size. The lake size recovered in 2022, expanding to 9.53 km2 for an increase of
35.14%. Regarding shoreline length, Halaqi Lake expanded rapidly in 2017 to 193.44 km
(Figure 4(b1)). Stability followed from 2017 to 2020, with a length of around 214.24 km. A
sharp reduction to 81.9 km occurred in 2021, a decrease of 61.77%. The shoreline length
recovered in 2022 to 115.08 km, reflecting a 15.49% increase.

In 1990, among the three terminal lakes, only East Juyanhai had water, and it covered
an area of 54.39 km2 (Figure 4(a2)). A significant shrinkage occurred from 1990 to 1991
(31.72 km2), marking a 41.68% decrease. The lake dried up in 1992, 1995, 2000, and 2001.
A growth phase spanned from 2002 (25.07 km2) to 2020 (67.72 km2), with the lake’s area
increasing by 170.12%. Its largest extent was in 2019, at 69.10 km2. A contraction phase
followed in 2021 (45.82 km2) and 2022 (40.84 km2), resulting in a 39.70% size reduction
from 2020. Overall, the lake’s area trend leans towards growth. The shoreline of East
Juyanhai Lake expanded over the years, peaking in 2018 at 721.22 km (Figure 4(b2)), a
190.91% increase from 1990 (247.92 km). Post-2018, the shoreline consistently contracted,
with a significant 70.97% reduction between 2020 (675.76 km) and 2022 (196.2 km).

Qingtu Lake and Halaqi Lake have shown similar trends in area alterations. Qingtu
Lake’s area expanded 27-fold from 2009 (0.09 km2) to 2022 (2.60 km2), and the overall
trend continues to be upward (Figure 4(a3)). From 1990 to 2008, Qingtu Lake experienced
desiccation. A rapid expansion phase followed from 2009 to 2014 (9.69 km2). Fluctuations
in the area occurred between 2015 (9.5 km2) and 2018 (9.83 km2), with the highest value
in 2017, at 11.63 km2. A contraction phase followed post-2018, with a 56.73% decrease
between 2021 (6.02 km2) and 2022. The shoreline of Qingtu Lake generally expanded,
peaking in 2018 at 387.42 km (Figure 4(b3)), a 105-fold increase from 2009 (3.66 km). A
contraction began in 2019 (357.78 km), with a significant 67.96% reduction in shoreline
length between 2021 (293.86 km) and 2022 (94.14 km).
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Figure 4. Changes in the maximum lake area (a1–a3); and maximum shoreline length (b1–b3) of
Halaqi Lake, East Juyanhai Lake, and Qingtu Lake from 1990 to 2022.

4.2. Intra-Annual Change

The images of Halaqi Lake (2017–2022), East Juyanhai Lake (1990–2022), and Qingtu
Lake (2009–2022) were divided into four phases to account for seasonal variations: February
to April, May to July, August to October, and November to the subsequent January. For
each phase, average values of the lake area and shoreline length were determined, with
maximum and minimum values highlighted. Qingtu Lake showed the most pronounced
intra-annual area fluctuations. In contrast, East Juyanhai Lake displayed the least area
fluctuations but the most significant shoreline length variations. The May to July phase
stood out for its area stability across all three terminal lakes (Figure 5).
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Halaqi Lake’s shoreline length experienced its most significant fluctuations from
February to April, and its length peaked during this phase. The May to July phase sees
both the average lake area and shoreline length comparatively smaller, with the least area
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fluctuations. In contrast, August to October has the most substantial area fluctuations.
From November to the subsequent January, the lake area expands to its largest size, but the
shoreline length remains stable. Notably, the shoreline length and lake area changes do not
correlate positively. This discrepancy might arise from counting numerous small, scattered
water bodies in the total shoreline length, causing inconsistent shoreline fluctuations relative
to lake area changes.

East Juyanhai Lake displays the most stable lake area, especially when compared to
Halaqi Lake and Qingtu Lake. Among these, the period from May to July is characterized
by the highest level of lake area stability, with the smallest average area observed during
this time. The values of 69.09 km2, 67.72 km2, and 62.33 km2 represent significant outliers
during this period. An abundance of water in East Juyanhai Lake from 2018 to 2020
accounts for these anomalies, leading to larger lake areas compared to those observed in
the same quarter of other years. From November to the following January, the lake area
undergoes the most substantial fluctuations and represents the period with the largest
lake area. Notably, in East Juyanhai Lake, changes in shoreline length exhibit a positive
correlation with changes in lake area.

Qingtu Lake experiences the most pronounced fluctuations in both area and shoreline
length among the three terminal lakes. The period from February to April represents the
time when the lake area reaches its maximum value within the study period, and it also
has the highest average lake area. In contrast, during the May to July period, Qingtu Lake
exhibits the smallest average lake area, yet it concurrently boasts the longest shoreline
length among the observed phases. During the period from November to the following
January, both the lake area and shoreline changes exhibit the most significant magnitude
among the four phases, and the average shoreline length is the largest.

5. Discussion
5.1. Response of Lakes to Climate Change

Temperature, evaporation, and precipitation are meteorological parameters that exert
influence on alterations in lake surface areas. Nevertheless, distinct lakes exhibit consider-
able variability in their responsiveness to climate fluctuations [34]. Within the Third Pole
region, lakes adjacent to glaciers exhibit a more pronounced expansion trend and larger
area changes when contrasted with non-glacier-fed lakes [35]. In Antarctica’s McMurdo
Dry Valleys, glaciers continuously provide water sources to the terminal lakes at the valley
bottoms after melting, and some terminal lakes formed at the ends of glaciers are continu-
ously expanding [36]. Global warming is causing the melting of glaciers and high-altitude
snow, thereby accelerating the expansion of lakes [37]. The correlation between the surface
area of East Juyanhai Lake (1990–2022) and Qingtu Lake (2009–2022) with temperature
changes is strong (both > 0.60), while it is weaker for Halaqi Lake (2017–2022) (Figure 6).
The distinct geographical locations of the three lakes account for the differences, as these
lead to variations in water supply sources. All three lakes fall within the Qilian Mountains
glacier snowmelt recharge region. Yet, the effects of global warming vary substantially
across regions. The Halaqi Lake region recorded minimal temperature changes from 2017 to
2022, with a rate of 0.01 ◦C/a (Figure 7(a1)). In contrast, the East Juyanhai Lake region from
1990 to 2022 and the Qingtu Lake region from 2009 to 2022 experienced more pronounced
annual average temperature change rates of 0.04 ◦C/a, and 0.09 ◦C/a, respectively. Glaciers
are a vital freshwater resource in the interior of the northern Qilian Mountains region, with
particularly strong resource effects [38]. Studies indicate a decline of 20.88% in the glacier
area and 20.26% in ice storage in the Qilian Mountains from 1956 to 2010 [39]. This notable
reduction in glacier area mainly results from the rapid shrinkage of small glaciers. Notable
temperature changes directly result in accelerated glacier melt and snowmelt, consequently
leading to an increase in water supply sources. This stands as the primary cause behind
the conspicuous expansion of the lakes.
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Figure 6. Correlations between the area of Halaqi Lake (a); East Juyanhai Lake (b) Qingtu Lake
(c). Climate factors (T for temperature, ET for potential evapotranspiration, P for precipitation),
watershed water usage (A for agricultural irrigation, I for industrial, R for residential living, F for
forestry, animal husbandry, and fisheries, U for urban public, E1 for ecological environment), and
ecological water conveyance (E2).
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Figure 7. Changes in temperature and precipitation in the Halaqi Lake region from 2017 to 2022 (a1,c1);
temperature, potential evapotranspiration, and precipitation changes in the East Juyanhai Lake region
from 1990 to 2022 (a2,b2,c2); and temperature, potential evapotranspiration, and precipitation changes
in the Qingtu Lake region from 2009 to 2022 (a3,b3,c3).

Evaporation is a primary factor contributing to water loss in terminal lakes. Insufficient
precipitation or runoff to offset increased evaporation rates leads to a reduction in a lake’s
water level and surface water coverage [40]. The potential evaporation in the East Juyanhai
Lake and Qingtu Lake regions is overall on the rise (Figure 7). With potential evaporation
reaching around 1400 mm per year and significantly exceeding precipitation, the Hexi
region exhibits a drought trend. It is noteworthy that there is no apparent correlation
between potential evaporation and changes in the lake area. This result suggests that
changes in the lake area do not necessarily exhibit sensitivity to individual climate factors.
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Lake shrinkage, or drying, can arise as a result of reduced precipitation, while extreme
precipitation events can directly alter lake water levels [41]. Halaqi Lake (2017–2022) and
East Juyanhai Lake (1990–2022) show a relatively low correlation with precipitation changes.
In contrast, Qingtu Lake’s area (2009–2022) correlates more with precipitation changes. The
Hexi region houses all three lakes and experiences precipitation variations due to terrain
influence. The eastern and southern sectors receive higher precipitation, while the western
and northern zones receive less [42]. Precipitation levels for both Halaqi Lake (2017–2022)
and East Juyanhai Lake (1990–2022) exhibit a declining trend, with rates of change at
−3.16 mm/a and −1.27 mm/a, respectively (Figure 7(c1,c2)). In the Hexi region, the flood
season from May to October accounts for 89.2% of the total annual precipitation [43]. The
2017 flood season saw a notable rise in precipitation in the Shule River Basin, leading
to several flood events in the Shule River that surpassed warning water levels and a
4% increase in rainfall from the previous year. This event had an extremely important
impact on the reappearance of Halaqi Lake in 2017 and the formation of a water surface
covering an area of 2.22 km2. Conversely, East Juyanhai Lake’s area negatively correlates
with precipitation changes due to an 85% drop in annual precipitation over 32 years.
Precipitation reached 77.30 mm in 1995 but dropped to 7.30 mm by 2022, exacerbating the
region’s drought and shrinking the lake area. Qingtu Lake, however, saw an increase in
annual precipitation from 2009 to 2022, growing by 4.38 mm/a, or 35% in total. While 2018
had high precipitation at 171.10 mm, 2020 recorded the lowest amount of precipitation at
81 mm. Precipitation rose again to 163.7 mm in 2021–2022. This increase in precipitation
contributed to the expansion of Qingtu Lake’s water area to some extent.

In summary, area changes in Halaqi Lake, East Juyanhai Lake, and Qingtu Lake exhibit
the most significant correlation with temperature changes—a consensus observed in all
three lakes. However, area changes display different directions of correlation: Halaqi
Lake shows a negative correlation between its area and temperature, while East Juyanhai
Lake and Qingtu Lake exhibit a positive correlation between area and temperature. This
divergence may stem from differing geographical locations, resulting in distinct influences
of climatic factors on each lake’s area.

Fluctuations in lake areas stem from the intricate interplay between climate change
and human activities rather than a single causal factor [44–46]. From a climate change
perspective, global warming resulting in increased temperatures and alterations in precipi-
tation patterns directly impacts lake water volume and surface area. Elevated temperatures
accelerate glacier melt augmenting downstream lake water sources. Concurrently, a warmer
and more humid climate trend may spur heightened rainfall, directly fostering lake area
expansion. Human activities also contribute significantly to lake area dynamics. Increased
human activity intensifies the demand for water resources, leading to overexploitation
and resource utilization. Moreover, direct human interventions in lakes and rivers, such
as dam construction and water transfer projects, disrupt the natural state of water bodies,
influencing natural lake area fluctuations. An intricate interaction exists between climate
change and human activities. For instance, climate-change-induced droughts and reduced
water resources may compel increased human engagement in water resource development
and management. These activities, in turn, may exacerbate local climate changes, forming
a complex feedback loop.

5.2. Impact of Human Activities on Lake Area

Human activities and socioeconomic developments have added complexity to lake
water changes. Such complexities are revealed through an imbalance in lake water resource
supply and demand [47]; disruptions in the native systems coupling lakes and rivers [48];
and rises in lake water levels due to ecological water conveyance policies [49,50]. The Hexi
Interior relies mainly on water from three river basins: the Shule River, the Heihe River, and
the Shiyang River [51]. These rivers and their tributaries play a pivotal role in supplying
water to Halaqi Lake, East Juyanhai Lake, and Qingtu Lake [52,53]. As a result, the areas of
these three terminal lakes are significantly influenced by human activities.
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The correlation analysis (Figure 6) reveals distinct relationships between lake areas and
water consumption types. Halaqi Lake’s area strongly negatively correlates with industrial
water consumption. East Juyanhai Lake’s area has a pronounced positive correlation with
residential water consumption. Qingtu Lake’s area negatively correlates with both agricul-
tural irrigation and residential water consumption, with correlation coefficients surpassing
0.8. Analysis indicates increasing trends in industrial and residential water consumption
in the Shule River Basin, with rates of 2.82 × 106 m3/a and 1.39 × 106 m3/a, respectively
(Figure 8). In the Heihe River and Shiyang River basins, both industrial and residential
water consumption trends are declining. Industrial water consumption is dropping at
rates of 2.82 × 106 m3/a in the Heihe River and 1.73 × 106 m3/a in the Shiyang River.
Residential water consumption is also seeing reductions, with rates of 0.16 × 106 m3/a in
the Heihe River and 1.02 × 106 m3/a in the Shiyang River. Agricultural irrigation water
consumption trends differ. In the Shule River and Shiyang River basins, there is a decline,
with rates of −41.18 × 106 m3/a and −15.91 × 106 m3/a, respectively. In contrast, the
Heihe River basin has seen an increase at 3.06 × 106 m3/a. Rising industrial water demand
in the Shule River Basin conflicts with lake water supply needs and underscores water
resource imbalances. In the Heihe River Basin, decreasing residential water consumption
aids terminal lake expansion. Yet, increased farmland, heightened irrigation water use, and
rising residential water consumption lead to reduced water inflow to the terminal lake and
exacerbate lake drying [54].

Among the the factors of forestry, animal husbandry, and fisheries water consumption,
urban public water consumption, and ecological environmental water consumption, Halaqi
Lake’s area notably correlates with water consumption for forestry, animal husbandry,
fisheries, and ecological purposes. Specifically, there is a strong positive link between
the lake area and water usage for forestry, animal husbandry, and fisheries. East Juyan-
hai Lake’s area correlates more with urban public and ecological environmental water
consumption, both positively. Qingtu Lake’s area correlates strongly with water consump-
tion for forestry, animal husbandry, fisheries, and urban public use. The most significant
correlation is with water consumption for forestry, as shown by a coefficient of 0.91. In
the Shule River, water consumption for forestry, animal husbandry, and fisheries has de-
creased at rates of 3.84 × 106 m3/a, and urban public water consumption has decreased
at a rate of 0.52 × 106 m3/a. In contrast, in the Heihe River and Shiyang River, water
consumption for forestry, animal husbandry, and fisheries, as well as urban public water
consumption, has shown an increasing trend; the rates of change are 3.95 × 106 m3/a,
0.57 × 106 m3/a, 6.37 × 106 m3/a, and 0.29 × 106 m3/a, respectively. Ecological envi-
ronmental water consumption is increasing across all three basins. The rate of increase
for ecological environmental water consumption in the Shule River is 51.64 × 106 m3/a,
while the rates of increase for the Heihe River and Shiyang River are 3.42 × 106 m3/a and
8.31 × 106 m3/a, respectively. The positive correlation between the area of Halaqi Lake and
water consumption for forestry, animal husbandry, and fisheries may arise from a reduction
in water consumption in the Shule River Basin. This reduction could lead to an increase
in river runoff flowing into the terminal lake. Measures of water resource management
that involve wetland restoration and improving water use efficiency in forestry, animal
husbandry, and fisheries might have also played roles. There is a negative correlation
between the lake area and ecological environmental water consumption. As ecological
awareness grows, and efforts to enhance the environment intensify, ecological water con-
sumption rises. This benefits ecosystem restoration but also strains river runoff. The Heihe
River’s increased flow in recent years has augmented the water supply for lakes, human
activities, and ecological improvements. Hence, there is a positive correlation between
urban public water consumption, ecological environmental water consumption, and lake
area in this region. In the Shiyang River Basin, water used for forestry does not return to
surface water bodies or groundwater aquifers. Yet, moisture-absorbing vegetation aids soil
in retaining moisture, promoting precipitation infiltration and groundwater replenishment.
This stability in the water cycle ensures consistent groundwater and river flow volumes.
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Thus, the strongest correlation is between Qingtu Lake’s area and water consumption for
forestry, animal husbandry, and fisheries.

Sustainability 2024, 16, x FOR PEER REVIEW 14 of 20 
 

 

aids terminal lake expansion. Yet, increased farmland, heightened irrigation water use, 
and rising residential water consumption lead to reduced water inflow to the terminal 
lake and exacerbate lake drying [54]. 

 
Figure 8. (a1,b1) Changes in water consumption in the Shule River Basin from 2017 to 2021 (includ-
ing agricultural irrigation, industrial, residential living, forestry, animal husbandry, and fisheries, 
urban public, and ecological environment); (a2,b2) changes in water consumption in the Heihe River 
Basin from 1994 to 2021; and (a3,b3) changes in water consumption in the Shiyang River Basin from 
2009 to 2021. 

Among the the factors of forestry, animal husbandry, and fisheries water consump-
tion, urban public water consumption, and ecological environmental water consumption, 
Halaqi Lake’s area notably correlates with water consumption for forestry, animal hus-
bandry, fisheries, and ecological purposes. Specifically, there is a strong positive link be-
tween the lake area and water usage for forestry, animal husbandry, and fisheries. East 
Juyanhai Lake’s area correlates more with urban public and ecological environmental wa-
ter consumption, both positively. Qingtu Lake’s area correlates strongly with water con-
sumption for forestry, animal husbandry, fisheries, and urban public use. The most sig-
nificant correlation is with water consumption for forestry, as shown by a coefficient of 
0.91. In the Shule River, water consumption for forestry, animal husbandry, and fisheries 
has decreased at rates of 3.84 × 106 m3/a, and urban public water consumption has de-
creased at a rate of 0.52 × 106 m3/a. In contrast, in the Heihe River and Shiyang River, water 
consumption for forestry, animal husbandry, and fisheries, as well as urban public water 
consumption, has shown an increasing trend; the rates of change are 3.95 × 106 m3/a, 0.57 

Figure 8. (a1,b1) Changes in water consumption in the Shule River Basin from 2017 to 2021 (including
agricultural irrigation, industrial, residential living, forestry, animal husbandry, and fisheries, urban
public, and ecological environment); (a2,b2) changes in water consumption in the Heihe River Basin
from 1994 to 2021; and (a3,b3) changes in water consumption in the Shiyang River Basin from 2009
to 2021.

Ecological water conveyance plays a pivotal role in counteracting the impacts of
human-induced water consumption on terminal lakes. In the Hexi Interior, to counter-
balance the challenges posed by excessive water resource development, ecological water
conveyance has emerged as a key strategy for balancing the needs of both the socio-
economic and natural systems [55]. In the Shule River Basin, the local government initiated
an ecological water conveyance project in 2011 and implemented the “Comprehensive
Planning for the Rational Utilization of Water Resources and Ecological Conservation in
Dunhuang” to address water resource management and ecological conservation issues.
As of 2019, the water volume reaching the downstream end North Lake Beach from the
Danghe River was 0.42 × 108 m3, and the water volume reaching the downstream end
North River Mouth from the Shule River was 1.67 × 108 m3. Concurrently, the area of
Halaqi Lake reached its peak at 23.03 km2. During this period, the primary source of water
supply for Halaqi Lake was ecological water conveyance from the Shule River. Similarly, in
the Heihe River Basin and the Shiyang River Basin, ecological water conveyance plans were
jointly implemented, including the “Heihe River Mainstream Flow Allocation Plan” and the
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“Shiyang River Basin Priority Remediation Plan”. In the Heihe River Basin, starting from
the year 2000, ecological water conveyance from the Yingluo Gorge Hydrological Station to
the Zhengyi Gorge Hydrological Station and Langxinshan Hydrological Station amounted
to 14.62 × 108 m3 (Figure 9a), and it increased at a rate of 0.19/a thereafter. As of 2022,
the runoff volume conveyed from Yingluo Gorge Hydrological Station to Zhengyi Gorge
Hydrological Station and Langxinshan Hydrological Station has exceeded 400 × 108 m3.
Concurrently, as the ecological water volume conveyed from Yingluo Gorge Hydrological
Station increased, the inflow into East Juyanhai Lake also grew. From 2002 to 2022, the
inflow into the lake increased by 23%, with a total runoff volume into the lake surpassing
12 × 108 m3. The ecological water conveyance project in the Shiyang River Basin began
implementation in 2008. The conveyed ecological water volume flows through the Caiqi
Hydrological Station into the Hongyashan Reservoir and ultimately enters Qingtu Lake.
During the period from 2008 to 2022, the cumulative total conveyance volume at the Min-
qin Caiqi Hydrological Station exceeded 44 × 108 m3 (Figure 9b), the cumulative total
conveyance volume at the Hongyashan Reservoir exceeded 3 × 108 m3, and the final inflow
volume into Qingtu Lake exceeded 1.9 × 108 m3. There is a significant positive correlation
between ecological water conveyance and changes in lake area, with a correlation coeffi-
cient exceeding 0.75. The inflow volume into the lake expanded with the introduction of
ecological water conveyance, leading to the restoration of the ecological state of Qingtu
Lake. In September 2009, the lake surface area reached 0.09 km2, and by 2022, Qingtu
Lake’s area had stabilized at 2.60 km2. However, despite these efforts, the areas of all three
lakes witnessed a decline in 2021–2022. This suggests that the current water conveyance
strategies might be inadequate to sustain larger lake areas. Among human-influenced
factors, ecological water conveyance shows the strongest correlation with the area of East
Juyanhai Lake and a significant positive correlation with Qingtu Lake’s area. In an era
where human activities are intensifying lake shrinkage, ecological water conveyance stands
out as an essential tool. It not only supports the ecological health of the lakes but also
ensures the stability of surrounding ecosystems and the conservation of biodiversity.
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Figure 9. (a) Ecological water conveyance and inflow volume from Yingluo Gorge, Zhengyi Gorge,
and Langxinshan Hydrological Stations in the Heihe River Basin; and (b) ecological water conveyance
and inflow volume from the Caiqi Hydrological Station and Hongyashan Reservoir in the Shiyang
River Basin.

In terms of the impact of human activities on Halaqi Lake, East Juyanhai Lake, and
Qingtu Lake, different response patterns have emerged. The area change of East Juyanhai
Lake closely links to the volume of ecological water conveyance, indicating that human
water resource management and allocation have a significant impact on the size and health
of the lake. Meanwhile, the changes in the area of Halaqi Lake and Qingtu Lake are primar-
ily attributed to industrial water consumption, as well as water consumption for forestry,
animal husbandry, and fisheries activities in the upper reaches of the basin. This sensi-
tivity arises from lakes transitioning from dry to reappearing, making them particularly
responsive to surrounding water use activities. Industrial water consumption along with
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water for forestry, animal husbandry, and fisheries plays a direct role in determining the
lakes’ existence.

As natural reservoirs, terminal lakes aid in regulating regional water cycles and
climates. Lakes exert a significant impact on local climate through evaporation and infil-
tration, assisting in mitigating extreme temperatures and arid conditions. With unique
hydrological characteristics, these lakes have the capacity to store water during drought
periods, serving as a lifeline for surrounding ecosystems. Terminal lakes also assume a
central role in maintaining biodiversity [56], offering habitats to numerous unique species,
including vegetation and terrestrial animals reliant on aquatic ecosystems. The health of
these ecosystems directly links to regional biodiversity and ecological stability. Terminal
lakes prove pivotal for local livelihoods, providing fishing resources, tourism potential,
and cultural value [57]. Lakes play an irreplaceable role in local economic and social
development. Protecting terminal lakes in ecologically fragile areas goes beyond preserv-
ing individual ecosystems—it is instrumental in safeguarding regional ecological security
and promoting sustainable development. This necessitates comprehensive management
measures to ensure the rational use of water resources and the long-term stability of the
ecological environment.

6. Conclusions

Using the Google Earth Engine (GEE) platform along with Landsat TM/ETM+/OLI
and Sentinel-2 MSI data, this study systematically examined annual changes in Halaqi
Lake (2017–2022), East Juyanhai Lake (1990–2022), and Qingtu Lake (2009–2022) within
the Hexi Interior. The study analyzed spatiotemporal dynamics in lake areas and assessed
the impact of climate change and human activities on these changes. From this analysis,
several main conclusions emerged:

1. Since 1990, the surface areas of Halaqi Lake, East Juyanhai Lake, and Qingtu Lake
have experienced dynamic shifts such as drying, expansion, and contraction. Among
them, Halaqi Lake formed a water surface area of 13.49 km2 in 2017, attained its
peak extent of 23.03 km2 in 2019, and was subsequently reduced to 9.53 km2 by 2022.
East Juyanhai Lake encountered dry conditions in the years 1992, 1995, 2001, and
2002. Subsequently, the lake underwent rapid expansion, achieving its peak area of
69.09 km2 in 2019. Nevertheless, by 2022, the lake’s area had declined to 40.84 km2.
In 2009, Qingtu Lake’s area expanded from 0.00 km2 to 0.09 km2. It reached its
maximum extent in 2017 (11.63 km2). However, from 2017 to 2022, the lake’s area
steadily decreased, with Qingtu Lake’s water surface area diminishing to 2.60 km2

by 2022;
2. The area of the lakes primarily results from the combined influences of climate change

and human activities. East Juyanhai Lake’s area is notably more affected by climate
change, while Halaqi Lake and Qingtu Lake are more impacted by human activities.
Among these lakes, the most prominent factors influencing area changes are industrial
water consumption (0.98) for Halaqi Lake, temperature (0.6) for East Juyanhai Lake,
and water consumption for forestry, animal husbandry, and fisheries (0.91) for Qingtu
Lake. The varying geographical locations led to significant disparities in the corre-
lation between climate and human activities affecting the area of these three lakes.
Nonetheless, it is essential to note that the management of water resources through
human activities stands as the primary cause of sudden area changes in these lakes;

3. Terminal lakes depend on residual water from upstream usage and often do not
receive adequate priority. Therefore, the fundamental approach to the ecological
restoration of terminal lakes is the release of ecological water. The amount of water
released each year needs to be adjusted based on dynamic meteorological conditions
and the lake’s water budget. Different lake management goals and related environ-
mental water requirements should be established under three different meteorological
conditions: wet years, normal years, and dry years. This also involves considering
the evapotranspiration of natural vegetation, the evaporation from the basin, and the
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seepage from lakes and rivers. While these actions have been proven beneficial in the
short term, further measures, such as improving the efficiency of agricultural irriga-
tion, increasing the reuse of industrial water, and expanding wastewater treatment
and reuse can help reduce upstream water withdrawals for production and domestic
use. This will play a significant role in improving the local ecology.
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27. Yıldırım, Ü.; Erdoğan, S.; Uysal, M. Changes in the coastline and water level of the Akşehir and Eber Lakes between 1975 and
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