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Abstract: Anaerobic co-digestion (ACoD) of cow dung (CD) and maize cob (MC) may be envisaged
as the best way to enhance biomethane formation and production of nutrient-enriched fertilizer for
the implementation of a circular bio-economic system. The study aimed to find out the optimum ratio
for the highest biogas production to produce heat and energy and also the generation of nutrient-
enriched organic fertilizer to use in crop land. A batch study was carried out for 99 days in an
incubator maintaining 35 ± 1 ◦C temperature for seven different test groups of CD and MC (100:0,
90:10, 70:30, 50:50, 30:70, 10:90, and 0:100). The highest biogas production (356.6 ± 21.2 mL/gVS) was
at 50:50 ratio with 138.05% and 32.02% increments compared to the digestion of CD and MC alone,
respectively. Kinetic modeling showed the best fit using a Logistic model to evaluate ACoD of CD and
MC mathematically. ACoD of available CD and MC in Bangladesh could produce 716.63 GWh/yr
electricity for consumption and a large volume of nitrogen-enriched fertilizer to use in nitrogen-
deficit soil. There was no significant difference in nutrient enrichment among different test groups.
Awareness about ACoD technology and proper use of digestate might bring this technology to
field-level utilization and thus help to implement the circular bio-economic concept through zero
waste generation.

Keywords: co-digestion; circular bio-economy; cow dung; maize cob; quality digestate; kinetic
modeling

1. Introduction

The livestock sector plays a significant role in the development of a country by meeting
the demand of nutrients and facilitating improved livelihood [1]. The livestock sector in a
developing country like Bangladesh includes animals, namely cow, goat, sheep, buffalo,
poultry, etc. [2]. This sector has around 1.85% contribution to the GDP of Bangladesh [3].
Dairy farming among various subsectors of livestock farming in Bangladesh has become a
significant source of fulfilling protein demand and reducing poverty [4]. In Bangladesh,
the annual production of cows is nearly 29.45 million. On average, dairy farming produces
around 12.3 million tons of cow dung annually [5]. Managing such a huge amount of cow
dung has become a great concern. Some indigenous cow dung management practices
include burning, cleaning material, and insect repellent [6]. Cow dung burning in open
stoves causes the emission of greenhouse gases (GHGs), organic substances, and particulate
materials [7]. Direct contact of air with cow dung due to open dumping and use as cleaning
material or insect repellent causes GHG emission, odor problems, water pollution, and
negative impacts on the environment [8,9].
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The sustainable and proper management of cow dung is important to ensure a safe
and quality environment for animals and plants. Anaerobic digestion is a green energy
generation process that facilitates biogas production from cow dung along with quality
digestate. Cathy et al. [9], Olaoye et al. [10], Saibur et al. [11], Onwukeme et al. [12], Putri
et al. [13], and Ukpai et al. [14] reported cow dung as a suitable substrate for anaerobic
digestion to produce bio-energy. However, mono-digestion of cow dung results in lower
gas yield due to nutrient imbalance, presence of significant non-biodegradable materials
on dairy manure composition, and poor microbial activity [15]. The performance of
AD technology largely depends on biogas yield, process stability, degradation rate of
organic matter, digestate quality, and proper digestate management [16]. So, anaerobic
co-digestion (ACoD) of cow dung with another carbon-enriched substrate may increase
biogas yield through nutrient balancing and enhancing microbial activity. ACoD is a
technique in which microbial breakdown of two or more substrates occurs simultaneously
in the absence of oxygen when substrates are mixed to augment the digestion process
and improve gas yield. Co-digestion increases biogas yield and improves the quality
of biogas and digestate through nutrient balancing by mixing substrates at an optimum
ratio while using different additives [17–21], enhancing the digestion process. It is further
observed that co-digestion not only increases biogas yield but also maintains digestate
stability [22]. Nowadays, researchers are focusing on ACoD due to its superiority [23–25].
Several studies showed that anaerobic co-digestion of cow dung with fruit waste [26], waste
leaf [27], elephant grass [28], food waste [29], lignocellulosic crop residue [30], and aquatic
waste [31], respectively, enhanced biogas and methane yield. Lignocellulosic crop residues
contain a higher percentage of carbon; on the other hand, cow dung contains a higher
percentage of nitrogen, so anaerobic co-digestion of these two wastes may be best suited for
nutrient balancing and enhancing biogas yield from cow dung. Major crop production in
Bangladesh includes rice, wheat, maize, jute, sugarcane, pulse, and vegetables [32], which
causes the production of lignocellulosic residues like rice straw, wheat straw, maize cob,
etc. Rice straw and wheat straw can be used as animal feed and animal bedding, but open
dumping and burning of maize cob is a common practice in Bangladesh. Every year, vast
amounts of lignocellulosic waste like maize cob are produced during maize cultivation
in developing countries like Bangladesh. Around 4.26 million metric tons of maize was
produced in Bangladesh [2], which results in 0.92 million ton of maize cob waste. Maize
cob is a hard and less biodegradable lignocellulosic waste that has lower contribution
as soil amendments [33] and burning it for cooking causes GHG emissions. This high-
carbon-contained maize cob can be used as a co-substrate during manure digestion [34].
Increased volume of biogas from anaerobic co-digestion of cow dung and maize cob can
be used for lighting, heating, and cooking, and upgraded biogas can also be injected into
the national gas grid. Digestate slurry produced from co-digestion can also be utilized as
nutrient-enriched soil amendments, which will indirectly help in increasing crop yield, and
a solid portion of digestate can be used for animal bedding. Multiple uses of bio-energy
and digestate from anaerobic co-digestion for living beings’ welfare and environment will
transform the linear system of the waste managing system into a circular bio-economic
system. Circular bio-economy is a system of material recovery in which waste from one
production system is used as input material for another system [35]. So, ACoD of CD and
MC can promote circular bio-economy by using waste from agricultural production systems
as the input material for bio-energy production systems and fulfill sustainable development
goal 7 (Affordable and Clean Energy). Abdoli et al. [36] and Adebayo et al. [37] reported
that co-digestion of maize with CD and maize cob with pig manure enhances biogas
generation, respectively. Adebayo et al. [38] found that co-digestion of CD and MC at
a mesophilic condition increased biogas production significantly along with enhanced
biomethane generation.

However, comprehensive studies showed a lack of information about the proper
mixing ratio of CD and MC to maximize the biogas yield and nutrient quality of the
digested slurry along with the contribution to the circularity of the bio-economic system.
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Forecasting of biomethane generation from ACoD is also limited. Hence, this study aimed
to find the optimum ratio for biogas production from ACoD of CD and MC, forecasting the
ACoD process and investigating the contribution of ACoD of CD and MC in the circularity
of bio-economy based on the proposed approach.

2. Materials and Methods
2.1. Process Description

An anaerobic co-digestion process-based circular bio-economic system is illustrated in
Figure 1. During maize cultivation, maize cob is produced as by product and maize leave
can be used as dairy feed. Maize cob and cow dung from dairy farm can be co-digested to
maximize biogas production through nutrient balancing and due to synergy of digestion
process. This increased volume of biogas can be used in CHP (Combined Heat and Power)
unit for electricity and heat generation. Waste heat from CHP can be used to maintain
optimum temperature in digester. Electricity produced from CHP unit can be used in
animal farm and household of village. Heat produced from CHP can also be used for
drying of grain. Biogas can also be used directly for cooking and up-gradation of biogas,
facilitating contribution to natural gas grid. Digestate produced in ACoD can also be an
input in production systems such as nutrient-enriched fertilizer in crop fields. Hence,
co-digestion may create a close nexus of crop and livestock production along with energy
production and facilitate the implementation of a circular bio-economy.
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2.2. Collection of Substrate and Inoculum

This batch study was conducted at the Green Energy Knowledge Hub (GEKH), De-
partment of Farm Power and Machinery, Bangladesh Agricultural University (BAU), My-
mensingh, Bangladesh. Cow dung was collected from the dairy farm, BAU. Maize cob
was collected from the local market of Jamalpur, Bangladesh. Sludge of 30-day-digested
cow dung from Continuous Stirred Tank Reactor of GEKH, BAU, was used as inoculum.
The inoculum was kept in an incubator for 15 days to inhibit methane production from the
inoculum during the batch study. Pretreatment of the substrate increased surface area and
degradability rate [39], which is why maize cob was ground to reduce particle size before it
was used as feedstock for faster hydrolysis during digestion.

2.3. Analytical Methods

Characteristics of substrates were analyzed including pH, total solid (TS), volatile
solid (VS), ash, nitrogen (N), total ammonium nitrogen (TAN), and carbon: nitrogen (C/N)
ratio. pH of all biomass was measured using pH meter (MW 150 Milwaukee pH meter). TS,
VS, and ash were determined following the procedure described by APHA [40]. The micro-
Kjeldahl method [41] was used to determine N, P and K of substrates were determined
following the colorimetric method [42] and flame emission spectrophotometric method [43],
respectively. TAN was measured using a photometer (NOVA 60, Memmert, Germany).
C/N was determined following Equation (1) [44].

C/N = VSdb(%)/1.76 × N (1)

where VSdb(%) is the dry basis volatile solid.
Glass syringe (SGC, Australia, capacity: 500 mL) was used to determine the volume of

biogas, periodically. The biomethane potentiality of each biomass was analyzed using a
gas analyzer (Optima 7 Biogas MRU Instruments, Inc., Humble, TX, USA) for methane (%),
carbon dioxide (%), hydrogen sulphide (ppm), and a trace amount of oxygen (%) present
in biogas produced during AD of biomass. Periodical biogas volume and gas composition
were recorded in MS Excel sheet for further data interpretation to know each biomass’s
biomethane potential.

2.4. Experimental Setup

Anaerobic digestion of all biomass was carried out using 500 mL batch bottles as
digesters. Batch bottles were air-tightened using butyl rubber stoppers. The amount of
biomass was calculated following Equation (2) [24].

Pi = Mi × Ci/Ms × Cs (2)

where Pi is VS ratio, which is equal to 1. M and C denote mass (g) and VS (g). The subscripts
i and s are denoted for inoculum and substrate, respectively. Oxygen was removed by
nitrogen flushing for 2 min.

Biomass was added with 250 g inoculum homogeneously. Then, closing with butyl
rubber stopper batch, bottles were flushed with nitrogen gas for two minutes to maintain
anaerobic condition. All the samples were triplicated for this experiment. Batch bottles were
placed in an incubator (Model: ICP 110; manufacturer: Merck, Germany; volume: 108 L)
maintaining mesophilic condition (35 ± 1 ◦C) for 71 days of digestion period. Methane
production from inoculum was subtracted from methane production of each substrate
during the experiment. The actual biomethane potential of each biomass was calculated
using Equation (3) [5].

BMPobserved =
V(ino+biomass) − Vino

mVSbiomass
(3)

where BMPobserved is the biomethane (mL/gVS) potential of biomass, V(ino+biomass) is the
volume of methane (mL) from biomass with inoculum, Vino is the volume of methane
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(mL) from inoculum, and mVSbiomass (gVS) is the mass of volatile solid of biomass added
during AD.

2.5. Kinetic Analysis

Kinetic modeling of biogas production trends with digestion times helps to forecast
biogas production potentiality and AD efficiency [45]. BMP potentials from all biomass
were fitted with first-order model (4) [24], cone model Equation (5) [24], modified Gompertz
model Equation (6) [46], and logistic model Equation (7) [47], respectively, to know different
kinetic parameters related to AD process of organic substrates.

B(t) = Bo ×
(

1 − e−kt
)

(4)

B(t) =
Bo

1 + (Kt)−n (5)

B(t) = Boexp
{
−exp

[
Rmax × e

Bo
(λ− t) + 1

]}
(6)

B(t) =
Bo

1 + exp
[
4Rmax

(λ−t)
Bo

+ 2
] (7)

where B(t) is biomethane potential at time t (d) (mL/gVS), Bo is the highest biomethane
potential of a biomass (mL/gVS), k is degradation rate (d−1), the value of e is 2.7183, n is the
shape factor, Rmax is the highest biomethane potential of substrates per day (mL/gVS d−1),
and λ is lag phase (d). Kinetic models were fitted for experimental data using nonlinear
curve fitting toolbox of MATLAB (R2018a).

2.6. Electricity and Heat Production

Heat and electricity generation are the typical uses of biogas generated from anaerobic
co-digestion in commercial scale biogas plants to mitigate the energy shortage issue. Thus,
with a sustainable renewable energy source and efficient waste-to-energy conversion, the
process can convert to a circular bio-economic system. Potential waste production during
animal farming and maize cultivation were calculated following Equations (8) and (9) [48].

Wc = N × RGR (8)

Wm = P × RYR × RRF × SAF (9)

where Wc is the net cow dung production (kg/yr), Wm is the net available maize cob
(kg/yr), N is the number of cows available in Bangladesh, RGR is the CD production rate
(kg/yr), P is the maize production in Bangladesh, RYR is the MC-to-maize yield ratio, RRF
is the MC recovery factor, and SAF is the surplus MC availability factor. In this study, RGR
was considered based on 8.87 kg/day CD production per cow [49]. The values of RYR,
RRF, and SAF for substrates were considered from Rahman et al. [48] during calculation.

Potential biogas electricity and heat production from co-digestion of CD and MC were
calculated following Equations (10)–(12), respectively.

BG = bg × Wcm × VScm (10)

Electricity
(

MJ
yr

)
= BG × Cv o f biogas × Electrical e f f icieny o f CHP unit (11)

Heat
(

MJ
yr

)
= BG × Cv o f biogas × Heat e f f icieny o f CHP unit (12)

where BG is the potential biogas production from co-digestion of available CD and MC at
optimum ratio (m3/yr), bg is the cumulative biogas production potential from ACoD of
CD and MC from this batch study (m3/kgVS), Wcm is the mass of CD and MC (available in
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Bangladesh) at optimum ratio, VScm is the volatile solid content of CD and MC at optimum
ratio, and Cv is the calorific value of biogas. In this study, heat and electricity generation
from anaerobic co-digestion of cow dung and maize cob available in Bangladesh was
calculated based on the CHP unit (GE Jenbacher gas) with 36.3% electrical and 44.4% heat
efficiency [50]. Calorific value of biogas was considered as 22 MJ/m3 [51]. Waste heat
produced during CHP operation was not calculated. During calculation of energy and heat
generation, the energy requirement for CHP operation was not considered.

2.7. Nutrient Analysis of Digestate

Anaerobic co-digestion is a technology which increases the nutrient quality of digestate
compared to raw substrate [35]. Nutrient-enriched digestate could be used in crop fields,
which will facilitate the conversion of waste to nutrients for plants and reduce the use
of organic fertilizer, thus developing a circular bio-economic system. Nutrient content of
digestate was found following Equation (13).

NC = Digestate × TS (%)× nc (%) (13)

where NC is the nutrient content (kg/yr), Digestate is the amount of slurry after digestion
(kg/yr), TS (%) is the total solid percentage of digestate, and nc (%) is the nutrient percentage
in digestate based on total solid.

3. Results and Discussion
3.1. Characterization of Substrate during ACoD

The physical and chemical composition of substrates and feedstock (substrates with
inoculum) are listed in Table 1. Biomethane generation largely influenced by the initial
properties of substrates and inoculums. In this batch assay, pH levels of raw CD and MC
were about 7.59 and 7.55 (Table 1), respectively. Previous studies resulted in pH levels
of CD and MC of 7.08 [44] and 6.83 [52], respectively, which were close to the value of
the samples used in this experiment. This slight difference might be due to the source of
waste collection. The production of biogas from ACoD significantly depends on the C/N
ratio [24]. TS of cow dung and maize cob (Table 1) was nearest to the previous study with
percentages of 17.30% [44] and 82.85% [53]. The C/N ratio of CD and MC were 32.15 and
42.72, respectively. According to previous studies, the C/N ratios of CD and MC were
25 [54] and 49.19 [55], respectively. The C/N ratio might be due to difference in feed of cow
dung, source of maize cob collection, and method of C and N determination. Comparison
of characteristics of substrates and feedstock showed that when substrates mixed with
inoculums, the physical and chemical characteristics changed. The addition of inoculum
brought the pH of all test groups in between 7.20 and 7.5, which was the nearest to optimum
for ACoD, as Rabi et al. [23] reported optimum pH for biogas production is between 6.5
and 7.2. When substrates were mixed with inoculums, the TSs of all test groups were in
between 8 and 11.5% (Table 1), which was favorable for biogas production, as according to
Budiyono et al. [56], optimum TS for biogas production is from 7 to 9%. TAN, which has
an adverse effect on AD process, was also reduced when substrates mixed with inoculum.
The addition of inoculum brought the C/N ratio of substrates in between 31.83 and 39.84,
which is slightly higher than the optimum range (20–30). This might not cause any major
impact as optimum range of C/N ratio may vary depending on the substrates from 9 to 50,
as reported by Guarino et al. [57]. Furthermore, Rahman et at. [5] observed optimum gas
production at 32.02 C/N ratio during co-digestion of poultry droppings and wheat straw.

Characteristics of digestate after 99 days of digestion are shown in Table 2. Comparison
of Tables 1 and 2 showed a lower value of VS in digestate, which indicated degradation of
substrates and production of biogas. An overall increase in the N percentage was observed
in digestate (Table 2) compared to that of parent feedstock (Table 1). This implies that
nutrient concentrations are getting higher in digestate for ACoD under these conditions.
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Table 1. Characteristics of raw substrates and feedstock.

Characteristics of raw substrates

Substrates pH TS (%) VSwb (%) Ash (%) TAN (g/L) N (%) C/N

CD 7.59 ± 0.02 13.45 ± 0.37 11.30 ± 0.31 15.98 ± 0.05 4.15 ± 0 1.49 32.15 ± 0.92
MC 6.55 ± 0.04 87.77 ± 1.42 83.16 ± 1.29 5.26 ± 1.24 0.68 ± 0 1.26 42.72 ± 0.64

Inoculum 7.29 ± 0.02 7.01 ± 0.29 4.85 ± 0.15 30.83 ± 0.16 2.18 ± 0.01 1.26 31.19 ± 0.93

Characteristics of feedstock

Mixing Ratio pH TS (%) VSwb (%) Ash (%) TAN (g/L) N (%) C/N

CD:MC

100:0 7.41 ± 0.05 9.07 ± 0.15 6.75 ± 0.30 2.32 ± 0.15 2.75 ± 0.02 1.328 31.83 ± 0.94
90:10 7.34 ± 0.04 8.65 ± 0.34 6.56 ± 0.22 2.09 ± 0.12 2.65 ± 0.01 1.300 33.13 ± 0.22
70:30 7.28 ± 0.07 9.10 ± 0.14 7.42 ± 0.08 1.68 ± 0.05 2.33 ± 0.03 1.280 36.18 ± 0.19
50:50 7.32 ± 0.03 9.24 ± 0.05 7.74 ± 0.04 1.51 ± 0.01 1.98 ± 0.02 1.270 37.44 ± 0.03
30:70 7.24 ± 0.06 10.00 ± 16 8.62 ± 0.04 1.38 ± 0.02 1.83 ± 0.01 1.265 38.71 ± 0.02
10:90 7.24 ± 0.03 11.22 ± 0.03 9.92 ± 0.01 1.30 ± 0.01 1.88 ± 0.03 1.261 39.84 ± 0.05
0:100 7.20 ± 0.07 10.68 ± 0.06 9.02 ± 0.11 1.65 ± 0.05 2.08 ± 0.02 1.260 38.10 ± 0.29

Table 2. Characteristics of digestate.

Mixing Ratio pH TS (%) VSwb (%) Ash (%) TAN (g/L) N (%) C/N

CD:MC

100:0± 6.92 ± 03 7.22 ± 0.47 5.42 ± 0.47 1.80 ± 0.16 2.13 ± 0.02 1.71 24.96 ± 0.81
90:10± 6.83 ± 0.08 6.30 ± 0.21 4.84 ± 0.17 1.46 ± 0.06 1.98 ± 0.01 1.48 29.40 ± 0.25
70:30± 6.73 ± 0.05 6.41 ± 0.19 4.93 ± 0.16 1.48 ± 0.06 1.75 ± 0.02 1.62 26.90 ± 0.24
50:50± 6.80 ± 0.06 6.82 ± 0.29 5.48 ± 0.0.28 1.33 ± 0.04 1.60 ± 0.03 1.76 25.91 ± 0.23
30:70± 6.86 ± 0.07 7.14 ± 7.14 5.74 ± 0.28 1.39 ± 0.02 1.78 ± 0.01 1.09 41.86 ± 0.16
10:90± 6.91 ± 0.04 7.86 ± 0.15 7.42 ± 0.24 1.47 ± 0.08 1.73 ± 0.02 1.57 29.46 ± 0.45
0:100± 6.87 ± 0.05 6.26 ± 0.36 4.94 ± 0.37 1.31 ± 0.02 1.78 ± 0.03 1.62 27.63 ± 0.47

3.2. Analysis of Biogas Composition

Biogas composition including methane, carbon dioxide, and hydrogen sulphide are
demonstrated in Figure 2a–c, respectively. Methane and carbon dioxide have a major por-
tion in biogas mixture, and the other components are present in small amounts depending
on substrate characteristics, as Czekała et al. [58] reported substrates with higher portions
of carbohydrate and protein have a high hydrolysis rate, but substrates with fat have a
comparatively high methane content in biogas. Methane contents of biogas produced from
100:0, 90:10, 70:30, 50:50, 30:70, 10:90, and 0:100 test groups were 52.78%, 51.80%, 51.68%,
51.76%, 51.25%, 51.15%, and 51.61%, respectively (Figure 2c). Khatun et al. [24] found
methane content in a range of 36–58% during co-digestion of animal manure and fruit
waste. So, methane content of biogas during anaerobic co-digestion was within the range for
using an energy source, which is in accordance with the findings of Fagerström et al. [59].
Percentages of carbon dioxide of all test groups of CD and MC were in between 45% and
55% (Figure 2b). Nandi et al. [44] also reported carbon dioxide content in between 25%
and 50% during digestion of cow dung at different temperatures. Carbon dioxide content
was suddenly increased in between 92 and 99 days of digestion, and it might be due to the
poor activity of methanogenic microbial group that converts carbon dioxide into methane.
Co-digestion significantly reduced the hydrogen sulphide content of biogas for all test
groups (Figure 2c), which was beneficial as hydrogen sulphide hinders the growth of
methanogenic bacteria [60].



Sustainability 2024, 16, 104 8 of 18

Sustainability 2024, 16, 104 8 of 19 
 

for all test groups (Figure 2c), which was beneficial as hydrogen sulphide hinders the 
growth of methanogenic bacteria [60]. 

 
Figure 2. Composition of biogas (a) methane, (b) carbon dioxide, and (c) hydrogen sulphide. 

3.3. Daily Biogas and Methane Production 
Biogas and methane production from all test groups of CD and MC per day during 

ACoD process is demonstrated in Figure 3a,b, respectively. Daily methane production 
followed a similar trend to biogas yield (Figure 3a,b). From Figure 3, the biogas produc-
tion was low at 5 days of digestion time and then increased significantly. An initial lower 
biogas might be due to slower activity of microorganism and lower hydrolysis rate, as raw 
substrates were used as feedstock without any chemical or biological pretreatment to 
speed up hydrolysis in the lignocellulose. Biogas yield was high for all test groups in be-
tween 10 and 50 days and then reduced gradually. The conversion of volatile solids into 
biogas might be the cause of the reduced daily production after 50 days. The highest daily 
biogas and methane yield was found in the 10th and 36th days of digestion (Figure 3). 
These peaks might be due to breakdown of carbohydrates and complex organic com-
pounds, respectively. Wang et al. [47] also reported two peaks during biogas production 
from cow dung for carbohydrates decomposition and breakdown of organic molecules, 
respectively. 

 
Figure 3. Daily (a) biogas and (b) methane yield during ACoD of CD and MC. 

3.4. Biogas and Methane Production Potential from ACoD 
Cumulative biogas and methane yield from this co-digestion study for all test groups 

of CD and MC is demonstrated in Figure 4a and Figure 4b, respectively. Biogas production 

Figure 2. Composition of biogas (a) methane, (b) carbon dioxide, and (c) hydrogen sulphide.

3.3. Daily Biogas and Methane Production

Biogas and methane production from all test groups of CD and MC per day during
ACoD process is demonstrated in Figure 3a,b, respectively. Daily methane production
followed a similar trend to biogas yield (Figure 3a,b). From Figure 3, the biogas production
was low at 5 days of digestion time and then increased significantly. An initial lower
biogas might be due to slower activity of microorganism and lower hydrolysis rate, as raw
substrates were used as feedstock without any chemical or biological pretreatment to speed
up hydrolysis in the lignocellulose. Biogas yield was high for all test groups in between
10 and 50 days and then reduced gradually. The conversion of volatile solids into biogas
might be the cause of the reduced daily production after 50 days. The highest daily biogas
and methane yield was found in the 10th and 36th days of digestion (Figure 3). These
peaks might be due to breakdown of carbohydrates and complex organic compounds,
respectively. Wang et al. [47] also reported two peaks during biogas production from cow
dung for carbohydrates decomposition and breakdown of organic molecules, respectively.
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3.4. Biogas and Methane Production Potential from ACoD

Cumulative biogas and methane yield from this co-digestion study for all test groups
of CD and MC is demonstrated in Figures 4a and 4b, respectively. Biogas production
from 100:0, 90:10, 70:30, 50:50, 30:70, 10:90, and 0:100 test groups of CD and MC were
149.8 ± 36.1, 260.0 ± 16.7, 261.3 ± 38.5, 356.6 ± 21.2, 276.8 ± 56.7, 245.6 ± 34.9, and
270.1 ± 20.6 mL/gVS, respectively. Biomethane generation followed a similar trend with
78.9 ± 18.5, 136.24 ± 8.63, 134.7 ± 20.8, 187.14 ± 10.84, 141.5 ± 31.0, 128.3 ± 16.0, and
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140.39 ± 10.17 mL/gVS methane yield from 100:0, 90:10, 70:30, 50:50, 30:70, 10:90, and
0:100 ratios of CD and MC, respectively. Shah and Tabassum [61] found 136.8 mL/gVS
methane yield from chemically pretreated maize cob, which was slightly lower than the
gas yield (Figure 4b) from this experiment. Difference in gas production might be due to
source of waste and type of pretreatment used for maize cob before using it as feedstock for
anaerobic digestion. Methane yield from mono-digestion of CD was comparatively lower
than the results Li et al. [62] found during anaerobic digestion of cow dung (146 mL/gVS),
and the difference in biogas yield might be due to difference in feedstock property of cattle,
characteristics of CD used, and method of anaerobic digestion. The highest biogas and
methane production (Figure 4a,b) was found at 50:50 ratio of CD and MC. This might be due
to the optimum pH (7.32), TS (9.2%), and C/N ratio of feedstock. Kelly [63] reported that
10% total solid in feedstock is best suited for wet anaerobic digestion. Biogas production
was 138.05% and 32.02% higher than mono-digestion of CD and MC, respectively. Methane
yields also showed 137.18% and 33.30% higher increments than digestion of CD and MC
alone. Biogas production from all other test groups (90:10, 70:30, 30:70, and 10:90) also
increased with time but not as much as 50:50 ratio. This might be due to higher degradation
of volatile solid (Tables 1 and 2) and higher positive synergy of 50:50 ratio during anaerobic
digestion. Khatun et al. [24] also reported maximum biomethane potential at 50:50 ratio
of banana peel and poultry droppings due to optimum process parameters and positive
synergy of co-digestion. Biogas production at 50:50 ratio was 2.38, 1.37, 0.137, 1.29, 1.45,
and 1.32 times higher than 100:0, 90:10, 70:30, 30:70, 10:90, and 0:100 ratios of CD and
MC, respectively.
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3.5. Prediction of ACoD of CD and MC from Kinetic Modeling

Kinetic analysis of biogas yield ensures the accuracy of data from the anaerobic
digestion process [18]. Predicted kinetics parameters based on total methane yield during
99 days of digestion time are listed in Table 3. All four kinetic models showed the coefficient
of correlation value (R2) for model fitting was greater than 0.9. But, the predicted methane
yield of the first-order model did not follow the similar trend of the methane yield in the
cases of 100:0 (Figure 5a), 70:30 (Figure 5c), and 30:70 (Figure 5e), and the value of R2 was
also lower for all test groups than the other models. So, this was not the best-suited model
for predicting the ACoD process. Cone model fitting for 100:0, 90:10, 70:30, 50:50, 30:70,
10:90, and 0:100 resulted in maximum biomethane production (Bo), and they were 153.39%,
36.66%, 78.17%, 41.81%, 205.02%, 84.74%, and 24.67% higher than the experimental yield,
respectively (Table 3 and Figure 4b). Such a huge difference makes it difficult to forecast
accurate biomethane generation and resulted in invalid parameters. Both the modified
Gompertz models and Logistic model showed that lag phase reduced during co-digestion of
CD and MC at 50:50 ratio, which indicates faster degradation during ACoD. The addition of
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substrates at proper ratio reduces lag phase due to nutrient balancing and active microbial
growth. Li et al. [18] found that using additives at proper percentages reduced the lag
phase for ACoD systems. Although the R2 values of the modified Gompertz model and
Logistic model were almost the same and the RMSE of the modified Gompertz model
was slightly lower, the modified Gompertz model showed 42.53%, 4.59%, 15.33%, 4.78%,
10.82%, 13.31%, and 13.25% deviations (for predicted methane yield) from experimental
methane yield for 100:0, 90:10, 70:30, 50:50, 30:70, 10:90, and 0:100 test groups of CD
and MC, respectively. This model was also not accurate enough, as Raposo et al. [64]
reported a deviation greater than 10% that indicated the invalidation of proposed model.
The Logistic model showed comparatively better performance with higher R2 (>0.93) and
lower difference between predicted and experimental methane yield (<10%), with an
exception for mono-digestion of CD alone. However, this result was contradicted with
Wang et al. [47], where they reported a lower deviation of predicted and experimental yield
using the modified Gompertz model compared to the logistic model (2.1–5.3%) in the case
of anaerobic digestion of cattle manure adding binary and ternary trace elements. This
contradiction might be due to the type of substrate and trend of biomethane production.
Both the modified Gompertz model and logistic model revealed that the time required
for initialization of methanization (λ) during co-digestion was lower than mono-digestion,
except for the 30:70 ratio, which might be due to the antagonistic effect of mixing substrate
at this ratio and process instability. Therefore, among these four models, the logistic model
should be used to predict biomethane production from anaerobic co-digestion.

Table 3. Parameters from different kinetic modeling.

Name of Kinetic Model Parameters 100:0 90:10 70:30 50:50 30:70 10:90 0:100

First-Order Model

Bo 100.00 229.00 200.10 316.50 177.80 195.50 602.40
K 0.01 0.01 0.01 0.01 0.01 0.01 0.00
R2 0.94 0.97 0.96 0.98 0.93 0.96 0.99

RMSE 6.42 7.79 9.33 9.94 13.66 8.49 5.25

Cone Model

Bo 200.00 186.20 239.90 265.40 198.60 391.40 259.20
K 0.01 0.02 0.01 0.02 0.02 0.01 0.01
n 1.31 1.54 1.52 1.47 1.92 0.94 1.42

R2 0.98 0.98 0.99 0.98 0.99 0.96 0.99
RMSE 3.53 6.84 3.96 8.85 2.63 8.70 4.02

Modified Gompertz
Model

Bo 112.50 142.50 155.30 196.10 156.80 145.40 158.90
Rmax 0.90 2.09 1.83 2.79 2.12 1.50 1.89
λ 6.85 3.92 8.37 3.45 11.87 −3.53 6.76

R2 0.98 0.98 0.99 0.98 0.99 0.94 0.99
RMSE 3.74 6.84 4.36 9.45 2.64 10.07 5.25

Logistic Model

Bo 90.26 133.60 138.30 183.90 141.60 134.70 143.10
Rmax 0.97 2.15 1.96 2.84 2.29 1.49 1.99
λ 11.11 6.04 11.99 5.33 15.40 −2.22 10.02

R2 0.98 0.98 0.99 0.97 0.99 0.93 0.98
RMSE 4.28 7.71 5.66 11.04 4.55 11.03 6.92
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3.6. Nutrient Increments of Digestate from ACoD

N, P, and K contents of feedstock and digestate are shown in Figure 6a, Figure 6b,
and Figure 6c, respectively. N content was increased for all test groups after digestion
(Figure 5a). The 50:50 ratio has the highest increment of N, which might be due to improved
mineralization of organic matter. N content of 50:50 ratio was found to be 1.746% after
digestion, and according to Abbas et al. [15], the N content of soil and fertilizer were 0.5%
and 1.71%, respectively. So, digestate of ACoD at 50:50 ratio of CD and MC can be used
in nitrogen-deficit soil. According to Wang et al. [47], AD of substrates increases nutrient
content of fertilizer such as N, P, and K. The P content of all test groups increased after
digestion, except for the 100:0 ratio, which might be due to nutrient imbalance as it was
mono-digestion of CD. Möller and Müller [65] also reported that manure digestion has
a negative influence on P content availability to plant. As cow dung was mixed with
maize cob at a 50:50 ratio, that is why an increment in P content was also lower in this
ratio compared to MC alone. The K content was increased for CD and MC alone but
there was no significant change in the 50:50 ratio of CD and MC after digestion. This
might be due to microbial activity. Total nutrient content (NPK) after 99 days digestion of
different test groups is illustrated in Figure 7. Total nutrient content after digestion did not
show significant differences during co-digestion. This result might be contradictory with
Abbas et al. [15], who found that co-digestion of cow manure with food waste increased
nutrient content after digestion when compared to mono-digestion. This difference in
results might be due to the type of co-substrates, as Edith et al. [66] also did not find
significant difference in P and K contents between digestate of urine with manioc effluent
and digestate of mixture of urine and cow dung with manioc effluent. This batch study
showed percent increments of total nutrient after the digestion 100:0, 50:50, and 0:100
ratios were 14.39%, 21.12%, and 15.20%, respectively, compared to feedstock (Figure 6).
This implies that anaerobic co-digestion can not only enhance the biogas production but
can also produce nitrogen-enriched digestate, which can be used in nitrogen-deficit soil.
Further enhancement of digestate quality is also possible with the addition of suitable
additives including composite [67], vermiculite [68], bio-based carbon [69], and different
salts of iron [70].
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3.7. Circular Bio-Economy and Anaerobic Co-Digestion of CD and MC

Contribution of biogas and digestate produced from anaerobic co-digestion of cow
dung and maize cob at optimum ratio (50:50 of CD and MC) is demonstrated in Figure 8
based on the biogas and digestate production in this batch study. Every year, use of
maize cob waste and cow dung for anaerobic co-digestion could produce a high volume
of biogas. Full-scale use of maize cob produced in Bangladesh with abundant cow dung
produced around 3.23 × 108 m3 biogas annually (Figure 8). Among various uses, this
biogas could be converted into 3.15 × 106 GJ heat and 716.63 GWh electricity using CHP
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(Combined Heat and Electricity) (Figure 8). Such vast amounts of heat could be used for
heating animal farms, drying grain and storage of food product maintaining optimum
temperature, and such use of heat would reduce cost of extra heat generation and may
contribute to the national energy security of the country. Electricity produced from biogas
may also contribute to the electricity supply chain reducing the dependence on fossil fuel
sources. During co-digestion, along with biogas, around 1.00 × 109 kg solid digestates are
produced annually, which contain 176.74 × 104, 5.96 × 104, and 104.57 × 104 kg nitrogen
phosphorus, and potassium, respectively (Figure 8). Proper use of digestate might also
reduce production and use of organic fertilizer. Use of digestate as fertilizer and electricity
produced from biogas for animal farming and other purposes might decrease both crop
and livestock production cost, which would ultimately define circular bio-economy with
zero waste generation, as waste was converted into energy and organic fertilizer.
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SWOT analysis is a structured method to develop strategy of an organization to achieve
its objectives considering all the factors affecting the system including strength, weakness,
opportunity, and threats to achieve the goal [71]. So, SWOT analysis results of the anaerobic
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digestion system showed the possibility and future of implementing this system in field
levels with probable risk and benefits. SWOT analysis results of ACoD of CD and MC for
circular economy are demonstrated in Figure 9. Abundant production of CD and MC per
year [3] was considered as the main motivation along with management of vast amounts
of waste to reduce greenhouse gas emissions. Major strengths included implementation
of circular bio-economy through contributing renewable energy sources by maximizing
gas production (Figure 4) and providing nutrient-enriched fertilizer (Figures 7 and 8).
Weaknesses of ACoD of CD and MC included construction of plant, as Nsair et al. [72]
reported biogas plant design considers type of substrate used as feedstock, mixing type, dry
matter content, and organic loading rate. Pretreatment of substrates is another weakness
of ACoD, as in this experiment, mechanical pretreatment of MC was required for faster
degradation, which involves energy requirement for large-scale digestion plant. In fact,
longer retention time is also required in the case of lignocellulosic waste (up to 99 days
were required in this study). But, there will be a difference in all of these factors in the case
of construction of a plant for ACoD instead of AD. Until now, dominance of fossil fuel is
observed in Bangladesh, and Saha et al. [73] reported AD of animal manure is practiced.
So, creating awareness for implementing ACoD technology at the field level is also a great
threat. Moreover, the collection issue due to the segregated generation of waste over the
whole country poses a threat to the successful implementation of the ACoD system. In fact,
waste collection from different areas also increases the cost involved in the ACoD process.
In this experiment MC was collected from Jamalpur, Bangladesh, where incineration is the
traditional practice. So, incineration of MC is also a threat.
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Figure 9. SWOT analysis of using ACoD of CD and MC for circular bio-economy.

4. Conclusions

Production of gigantic agricultural waste causes faster proliferation of pollution. This
batch assay on ACoD of CD and MC resulted in better gas yield in co-digestion compared
to mono-digestion of substrates. Biogas production at a 50:50 ratio resulted in maximum
gas yield for optimum process parameters and synergy. Kinetic modeling showed lag
phase was reduced during co-digestion at a 50:50 ratio, and the logistic model was best
suited with higher R2 and lower deviation between predicted and estimated biogas yield.
Biogas production from co-digestion of CD with annually produced MC could result in
a great contribution to electricity generation and heat production, which can be used
in various sectors for human livelihood and animal farming. Digestate produced from
50:50 ratio had no significant difference than the other ratios, but its nutrient increment
efficiency was higher than mono-digestion, which promoted the co-digestion at this ration.
Percentage nitrogen increment was also high during co-digestion, which indicated use
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of digestate in nitrogen-deficit soil. Such a system of waste management may contribute
in the establishment of circular bio-economy with production of renewable energy and
fertilizer by converting waste to energy. Hence, co-digestion not only increased biogas
production but also produced nutrient-enriched fertilizer, representing the circular bio-
economic model. These results will also help policy makers in implementing the circular
bio-economic model worldwide. Further research on pretreatment of maize cob may help to
enhance biomethane production, and the use of biogas and digestate as fertilizer in the field
will provide an idea about the extent of implementation of the circular economic system.
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