# Competition between Green and Non-Green Travel Companies: The Role of Governmental Subsidies in Green Travel

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Literature Review

#### 2.1. Pricing and Effort Strategies for Green Travel

#### 2.2. The Competition among Modes of Travel

#### 2.3. Government Subsidies for Green Travel

## 3. Problem Description and Notations

## 4. Decisions without Governmental Subsidies

#### 4.1. Centralized Decision-Making without Governmental Subsidies

**Proposition**

**1.**

**Corollary**

**1.**

**Corollary**

**2.**

**Corollary**

**3.**

#### 4.2. Decentralized Decision-Making without Governmental Subsidies

**Proposition**

**2.**

**Corollary**

**4.**

**Corollary**

**5.**

**Corollary**

**6.**

**Corollary**

**7.**

#### 4.3. Impact of Decision-Making Scenarios

**Corollary**

**8.**

**Corollary**

**9.**

## 5. Decisions with Governmental Subsidies

#### 5.1. Centralized Decision-Making with Governmental Subsidies

**Proposition**

**3.**

**Corollary**

**10.**

**Corollary**

**11.**

#### 5.2. Decentralized Decision-Making with Governmental Subsidies

**Proposition**

**4.**

**Corollary**

**12.**

**Corollary**

**13.**

**Corollary**

**14.**

#### 5.3. Impact of Decision-Making Scenarios

**Corollary**

**15.**

## 6. Impact of Governmental Subsidies

#### 6.1. Impact on Green Effort

**Corollary**

**16.**

**Corollary**

**17.**

#### 6.2. Impact on Travel Prices

**Corollary**

**18.**

**Corollary**

**19.**

#### 6.3. Impact on Travel Demand

**Corollary**

**20.**

## 7. Numerical Experiments

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

**Proof**

**of Proposition 1.**

**Proof**

**of Corollary 1.**

**Proof**

**of Corollary 2.**

**Proof**

**of Corollary 3.**

**Proof**

**of Proposition 2.**

**Proof**

**of Corollary 4.**

**Proof**

**of Corollary 5.**

**Proof**

**of Corollary 6.**

**Proof**

**of Corollary 7.**

**Proof**

**of Corollary 8.**

**Proof**

**of Corollary 9.**

**Proof**

**of Proposition 3.**

**Proof**

**of Corollary 10.**

**Proof**

**of Corollary 11.**

**Proof**

**of Proposition 4.**

**Proof**

**of Corollary 12.**

**Proof**

**of Corollary 13.**

**Proof**

**of Corollary 14.**

**Proof**

**of Corollary 15.**

**Proof**

**of Corollary 16.**

**Proof**

**of Corollary 17.**

**Proof**

**of Corollary 18.**

**Proof**

**of Corollary 19.**

**Proof**

**of Corollary 20.**

## References

- Huang, Y.; Zhu, H.; Zhang, Z. The heterogeneous effect of driving factors on carbon emission intensity in the Chinese transport sector: Evidence from dynamic panel quantile regression. Sci. Total Environ.
**2020**, 727, 138578. [Google Scholar] [CrossRef] [PubMed] - Ding, N.; Pan, J.; Zhang, Z.; Yang, J. Life cycle assessment of car sharing models and the effect on GWP of urban transportation: A case study of Beijing. Sci. Total Environ.
**2019**, 688, 1137–1144. [Google Scholar] [CrossRef] [PubMed] - Kitthamkesorn, S.; Chen, A. Alternate weibit-based model for assessing green transport systems with combined mode and route travel choices. Transp. Res. Part B Methodol.
**2017**, 103, 291–310. [Google Scholar] [CrossRef] - Verplanken, B.; Aarts, H.; Van Knippenberg, A. Habit, information acquisition, and the process of making mode of travel choices. Eur. J. Soc. Psychol.
**1997**, 27, 539–560. [Google Scholar] [CrossRef] - Sheu, J.B.; Li, F. Market Competition and Greening Transportation of Airlines Under the Emission Trading Scheme: A Case of Duopoly Market. Transp. Sci.
**2014**, 48, 684–694. [Google Scholar] [CrossRef] - Hong, J.; Liu, X. The optimal pricing for green ride services in the ride-sharing economy. Transp. Res. Part D Transp. Environ.
**2022**, 104, 103205. [Google Scholar] [CrossRef] - Yang, Y.; Long, R.; Bai, Y.; Li, L. The Influence of Household Heterogeneity Factors on the Green Travel Behavior of Urban Residents in the East China Region. Sustainability
**2017**, 9, 237. [Google Scholar] [CrossRef] - Luo, P.; Guo, G.; Zhang, W. The role of social influence in green travel behavior in rural China. Transp. Res. Part D Transp. Environ.
**2022**, 107, 103284. [Google Scholar] [CrossRef] - Geng, J.; Long, R.; Chen, H.; Li, W. Exploring the motivation-behavior gap in urban residents’ green travel behavior: A theoretical and empirical study. Resour. Conserv. Recycl.
**2017**, 125, 282–292. [Google Scholar] [CrossRef] - Kłos-Adamkiewicz, Z.; Gutowski, P. The Outbreak of COVID-19 Pandemic in Relation to Sense of Safety and Mobility Changes in Public Transport Using the Example of Warsaw. Sustainability
**2022**, 14, 1780. [Google Scholar] [CrossRef] - Fan, J.; Wang, J.; Zhang, X. An innovative subsidy model for promoting the sharing of Electric Vehicles in China: A pricing decisions analysis. Energy
**2020**, 201, 117557. [Google Scholar] [CrossRef] - Mo, D.; Yu, J.; Chen, X. Modeling and managing heterogeneous ride-sourcing platforms with governmental subsidies on electric vehicles. Transp. Res. Part B Methodol.
**2020**, 139, 447–472. [Google Scholar] [CrossRef] - Zhao, M.; Li, B.; Ren, J.; Hao, Z. Competition equilibrium of ride-sourcing platforms and optimal governmental subsidies considering customers’green preference under peak carbon dioxide emissions. Int. J. Prod. Econ.
**2023**, 255, 108679. [Google Scholar] [CrossRef] - Chen, Y.; Wang, D.; Chen, K.; Yong, Z.; Bi, G. Optimal pricing and availability strategy of a bike-sharing firm with time-sensitive customers. J. Clean. Prod.
**2019**, 228, 208–221. [Google Scholar] [CrossRef] - Chen, Y.; Zha, Y.; Wang, D.; Li, H.; Bi, G. Optimal pricing strategy of a bike-sharing firm in the presence of customers with convenience perceptions. J. Clean. Prod.
**2020**, 253, 119905. [Google Scholar] [CrossRef] - Chen, X.M.; Zheng, H.; Ke, J.; Yang, H. Dynamic optimization strategies for on-demand ride services platform: Surge pricing, commission rate, and incentives. Transp. Res. Part B Methodol.
**2020**, 138, 23–45. [Google Scholar] [CrossRef] - Zhong, Y.; Yang, T.; Cao, B.; Chen, T.C.E. On-demand ride-hailing platforms in competition with the taxi industry: Pricing strategies and government supervision. Int. J. Prod. Econ.
**2022**, 243, 108301. [Google Scholar] [CrossRef] - Jiang, Z.; Lei, C.; Ouyang, Y. Optimal investment and management of shared bikes in a competitive market. Transp. Res. Part B Methodol.
**2020**, 135, 143–155. [Google Scholar] [CrossRef] - Cao, G.; Jin, G.; Weng, X.; Zhou, L.A. Market-expanding or Market-stealing? Competition with network effects in bike-sharing. Rand. J. Econ.
**2021**, 52, 778–814. [Google Scholar] [CrossRef] - Li, Y.; Li, X.; Zhang, S. Optimal pricing of customized bus services and ride-sharing based on a competitive game model. Omega
**2021**, 103, 102413. [Google Scholar] [CrossRef] - Zhu, Z.; Xu, A.; He, Q.; Yang, H. Competition between the transportation network company and the government with subsidies to public transit riders. Transp. Res. Part E Logist. Transp. Rev.
**2021**, 152, 102426. [Google Scholar] [CrossRef] - Zhao, L.; Li, L.; Zhang, X. The greening of intercity travel: Environmental protection subsidy and HSR operation planning. Transp. Res. Part D Transp. Environ.
**2021**, 94, 102800. [Google Scholar] [CrossRef] - Gómez-Lobo, A.; Tirachini, A.; Gutierrez, I. Optimal prices for ridesourcing in the presence of taxi, public transport and car competition. Transp. Res. Part C Emerg. Technol.
**2022**, 137, 103591–103608. [Google Scholar] [CrossRef] - Zakharenko, A. Pricing shared vehicles. Econ. Transp.
**2023**, 33, 100296–100310. [Google Scholar] [CrossRef] - Jiao, Z.; Ran, L.; Liu, X.; Zhang, Y.; Qiu, R.G. Integrating price-incentive and trip-selection policies to rebalance shared electric vehicles. Serv. Sci.
**2020**, 12, 148–173. [Google Scholar] [CrossRef] - Jacob, J.; Roet-Green, R. Ride solo or pool: Designing price-service menus for a ride-sharing platform. Eur. J. Oper. Res.
**2021**, 295, 1008–1024. [Google Scholar] [CrossRef] - Jiao, G.; Ramezani, M. Incentivizing shared rides in e-hailing markets: Dynamic discounting. Transp. Res. Part C Emerg. Technol.
**2022**, 144, 103879–103897. [Google Scholar] [CrossRef] - Haider, Z.; Nikolaev, A.; Kang, J. Inventory rebalancing through pricing in public bike sharing systems. Eur. J. Oper. Res.
**2018**, 270, 103–117. [Google Scholar] [CrossRef] - Miao, R.; Guo, P.; Huang, W.; Li, Q.; Zhang, B. Profit model for electric vehicle rental service: Sensitive analysis and differential pricing strategy. Energy
**2022**, 249, 123736–123748. [Google Scholar] [CrossRef] - Lin, X.; Sun, C.; Cao, B.; Zhou, Y.; Chen, C. Should ride-sharing platforms cooperate with car-rental companies? Implications for consumer surplus and driver surplus. Omega
**2021**, 102, 102309. [Google Scholar] [CrossRef] - Zhong, Y.; Yang, J.; Zhou, Y.W.; Cao, B. The role of surcharge policy on a ride-hailing service platform with long-distance drivers. Int. J. Prod. Res. 2023; accepted. [Google Scholar] [CrossRef]
- Turan, B.; Pedarsani, R.; Alizadeh, M. Dynamic pricing and fleet management for electric autonomous mobility on demand systems. Transp. Res. Part C Emerg. Technol.
**2020**, 12, 102829–102848. [Google Scholar] [CrossRef] - Guo, D.; Fan, Z.P.; Liu, Y. The strategic analysis of service mode selection for a ride-hailing platform. Int. Trans. Oper. Res. 2023; accepted. [Google Scholar] [CrossRef]
- Zhang, J.; Meng, M.; David, Z.W. A dynamic pricing scheme with negative prices in dockless bike sharing systems. Transp. Res. Part B Methodol.
**2019**, 127, 201–224. [Google Scholar] [CrossRef] - Li, M.; Jiang, G.; Lo, H.S. Pricing strategy of ride-sourcing services under travel time variability. Transp. Res. Part E Logist. Transp. Rev.
**2022**, 159, 102631. [Google Scholar] [CrossRef] - Liu, J.; Ma, W.; Qian, S. Optimal curbside pricing for managing ride-hailing pick-ups and drop-offs. Transp. Res. Part C Emerg. Technol.
**2023**, 146, 103960–103987. [Google Scholar] [CrossRef] - Ke, J.; Yang, H.; Li, X.; Wang, H.; Ye, J. Pricing and equilibrium in on-demand ride-pooling markets. Transp. Res. Part B Methodol.
**2020**, 139, 411–431. [Google Scholar] [CrossRef] - Xu, K.; Saberi, M.; Liu, W. Dynamic pricing and penalty strategies in a coupled market with ridesourcing service and taxi considering time-dependent order cancellation behaviour. Transp. Res. Part C Emerg. Technol.
**2022**, 138, 103621–103643. [Google Scholar] [CrossRef] - Afifah, F.; Guo, Z. Spatial pricing of ride-sourcing services in a congested transportation network. Transp. Res. Part C Emerg. Technol.
**2022**, 142, 103777–103798. [Google Scholar] [CrossRef] - Li, S.; Yang, H.; Poolla, K.; Varaiya, P. Spatial pricing in ride-sourcing markets under a congestion charge. Transp. Res. Part B Methodol.
**2021**, 152, 18–45. [Google Scholar] [CrossRef] - Ni, L.; Sun, B.; Wang, S.; Tsang, D.H. Dynamic pricing mechanism design for electric mobility-on-demand systems. IEEE Trans. Intell. Transp.
**2021**, 23, 11361–11375. [Google Scholar] [CrossRef] - Zhang, Z.; Zhang, F. Ride-pooling services with differentiated pooling sizes under endogenous congestion effect. Transp. Res. Part C Emerg. Technol.
**2022**, 144, 103883–103913. [Google Scholar] [CrossRef] - Mo, B.; Cao, Z.; Zhang, H.; Shen, Y.; Zhao, J. Competition between shared autonomous vehicles and public transit: A case study in Singapore. Transp. Res. Part C Emerg. Technol.
**2021**, 127, 103058–103085. [Google Scholar] [CrossRef] - Emami, M.; Haghshenas, H.; Talebian, A.; Kermanshahi, S. A game theoretic approach to study the impact of transportation policies on the competition between transit and private car in the urban context. Transp. Res. Part A Policy Pract.
**2022**, 163, 320–337. [Google Scholar] [CrossRef] - Socorro, M.; Betancor, O. Air transport subsidies for resident passengers: The unexpected effects on competition. Res. Transp. Econ.
**2020**, 79, 100772. [Google Scholar] [CrossRef] - Szaruga, E.; Załoga, E. Sustainable Development Programming of Airports by Identification of Non-Efficient Units. Energies
**2022**, 15, 932. [Google Scholar] [CrossRef] - Hsu, C.; Lee, Y.; Liao, C. Competition between high-speed and conventional rail systems: A game theoretical approach. Expert Syst. Appl.
**2010**, 37, 3162–3170. [Google Scholar] [CrossRef] - Yang, Y.; Han, X.; Jiang, R.; Jia, B.; Gao, Z.Y. Competition and coordination in public transport: A mode choice experiment. Transp. Res. Part C Emerg. Technol.
**2022**, 143, 103858–103880. [Google Scholar] [CrossRef] - Rategh, Y.; Tamannaei, M.; Zarei, H. A game-theoretic approach to an oligopolistic transportation market: Coopetition between incumbent systems subject to the entrance threat of an HSR service. Transp. Res. Part A Policy Pract.
**2022**, 165, 144–171. [Google Scholar] [CrossRef] - Zhang, K.; Nie, Y.M. To pool or not to pool: Equilibrium, pricing and regulation. Transp. Res. Part B Methodol.
**2021**, 151, 59–90. [Google Scholar] [CrossRef] - Wei, K.; Vaze, V.; Jacquillat, A. Transit planning optimization under ride-hailing competition and traffic congestion. Transp. Sci.
**2022**, 56, 725–749. [Google Scholar] [CrossRef] - Guo, H.; Chen, Y.; Liu, Y. Shared autonomous vehicle management considering competition with human-driven private vehicles. Transp. Res. Part C Emerg. Technol.
**2022**, 136, 103547–103569. [Google Scholar] [CrossRef] - Yang, S.; Wu, J.; Sun, H.; Qu, Y.; Wang, D.Z. Integrated optimization of pricing and relocation in the competitive carsharing market: A multi-leader-follower game model. Transp. Res. Part C Emerg. Technol.
**2022**, 138, 103613–103630. [Google Scholar] [CrossRef] - Jiang, Z.; Ouyang, Y. Pricing and resource allocation under competition in a docked bike-sharing market. Transp. Res. Part C Emerg. Technol.
**2022**, 143, 103833–103847. [Google Scholar] [CrossRef] - Zhou, Y.; Yang, H.; Ke, J. Price of competition and fragmentation in ride-sourcing markets. Transp. Res. Part C Emerg. Technol.
**2022**, 143, 103851–103881. [Google Scholar] [CrossRef] - Zhou, Y.; Yang, H.; Ke, J.; Wang, H.; Li, X. Competition and third-party platform-integration in ride-sourcing markets. Transp. Res. Part B Methodol.
**2022**, 159, 76–103. [Google Scholar] [CrossRef] - Zhang, K.; Nie, Y.M. Inter-platform competition in a regulated ride-hail market with pooling. Transp. Res. Part E Logist. Transp. Rev.
**2021**, 151, 102327–102351. [Google Scholar] [CrossRef] - Xie, Y.; Wu, D.; Zhu, S. Can new energy vehicles subsidy curb the urban air pollution? Empirical evidence from pilot cities in China. Sci. Total Environ.
**2021**, 754, 142232. [Google Scholar] [CrossRef] - Srivastava, A.; Kumar, R.R.; Chakraborty, A.; Mateen, A.; Narayanamurthy, G. Design and selection of government policies for electric vehicles adoption: A global perspective. Transp. Res. Part E Logist. Transp. Rev.
**2022**, 161, 102726–102749. [Google Scholar] [CrossRef] - Zhu, W.; He, Y. Green product design in supply chains under competition. Eur. J. Oper. Res.
**2017**, 258, 165–180. [Google Scholar] [CrossRef] - Nash, J.F. Noncooperative games. Ann. Math.
**1951**, 45, 286–295. [Google Scholar] [CrossRef] - Simaan, M.; Cruz, J.B., Jr. On the Stackelberg strategy in nonzero-sum games. J. Optim. Theory App.
**1973**, 11, 533–555. [Google Scholar] [CrossRef] - Bai, Q.; Chen, M.; Nikolaidis, Y.; Xu, J. Improving sustainability and social responsibility of a two-tier supply chain investing in emission reduction technology. Appl. Math. Model.
**2021**, 95, 688–714. [Google Scholar] [CrossRef]

References | Green Effort | Travel Mode Competition | Government Subsidy |
---|---|---|---|

Fan et al. [11] | $\surd $ | $\surd $ | |

Chen et al. [14] | $\surd $ | $\surd $ | |

Mo et al. [12] | $\surd $ | $\surd $ | |

Zhao et al. [13] | $\surd $ | $\surd $ | |

Srivastava et al. [59] | $\surd $ | $\surd $ | |

Hong and Liu [6] | $\surd $ | $\surd $ | |

Rategh et al. [49] | $\surd $ | $\surd $ | |

Wei et al. [51] | $\surd $ | $\surd $ | |

Yang et al. [53] | $\surd $ | $\surd $ | |

Mo et al. [43] | $\surd $ | $\surd $ | |

Zhu et al. [21] | $\surd $ | $\surd $ | |

Zhong et al. [17] | $\surd $ | $\surd $ | |

Zhao et al. [22] | $\surd $ | $\surd $ | |

Present paper | $\surd $ | $\surd $ | $\surd $ |

Notation | Description |
---|---|

Parameters | |

${D}_{i}$ | Demand of the ith mode of travel, where $i=1$ and $i=2$ denote the green and non-green modes of travel, respectively |

${a}_{i}$ | Market size of the demand of the ith mode of travel |

${b}_{i}$ | Marginal effect coefficient of the ith travel price on the demand of the ith mode of travel |

${c}_{i}$ | Marginal effect coefficient of the (3-i)th travel price on the demand of the ith mode of travel |

g | Marginal effect coefficient of the green effort on green travel demand |

k | Cost coefficient of the green effort |

${r}_{i}$ | Unit carbon emission cost of the ith mode of travel |

Decision variables | |

${p}_{i}$ | Travel price of the ith mode of travel |

e | Green effort of the green travel company |

$\lambda $ | Government’s sharing coefficient of the green effort cost |

Superscripts | |

$OC$ | Centralized decision-making without governmental subsidies |

$OD$ | Decentralized decision-making without governmental subsidies |

$WC$ | Centralized decision-making with governmental subsidies |

$WD$ | Decentralized decision-making with governmental subsidies |

Parameter | ${\mathit{a}}_{1}$ | ${\mathit{a}}_{2}$ | ${\mathit{b}}_{1}$ | ${\mathit{b}}_{2}$ | ${\mathit{c}}_{1}$ | ${\mathit{c}}_{2}$ | g | ${\mathit{r}}_{1}$ | ${\mathit{r}}_{2}$ |
---|---|---|---|---|---|---|---|---|---|

Value | 90 | 60 | 25 | 7 | 6 | 5 | 3 | 20 | 25 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Tu, J.; Du, J.; Huang, M.
Competition between Green and Non-Green Travel Companies: The Role of Governmental Subsidies in Green Travel. *Sustainability* **2023**, *15*, 7712.
https://doi.org/10.3390/su15097712

**AMA Style**

Tu J, Du J, Huang M.
Competition between Green and Non-Green Travel Companies: The Role of Governmental Subsidies in Green Travel. *Sustainability*. 2023; 15(9):7712.
https://doi.org/10.3390/su15097712

**Chicago/Turabian Style**

Tu, Jun, Juan Du, and Min Huang.
2023. "Competition between Green and Non-Green Travel Companies: The Role of Governmental Subsidies in Green Travel" *Sustainability* 15, no. 9: 7712.
https://doi.org/10.3390/su15097712