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Abstract: To review the present scenario of the research on the scheduling and control of the pro-
duction process in the manufacturing industry, this comprehensive article has extensively examined
this field’s hotspots, boundaries, and overall evolutionary trajectory. This paper’s primary goal is to
visualize and conduct an organized review of 5052 papers and reviews that were published between
2002 and 2022. To reveal the “social, conceptual, and conceptual framework” of the production
area, identify key factors and research areas, highlight major specialties and emerging trends, and
conduct research, countries, institutions, literature keywords, etc., are all used. Additionally, research
methodologies are always being improved. The aim of this work is to explore more references for
research implementation by analyzing and classifying the present research status, research hotspots,
and potential future trends in this field of research.

Keywords: CiteSpace; scientometrics; visualization; scheduling; control; manufacturing; job shop;
lean construction

1. Introduction
1.1. Background Information

“Industry 4.0 and smart manufacturing” are terms that play a major role in the “digiti-
zation”, “process automation”, and “the growing use of information and communications
technology (ICT)” [1]. The term “Industry 4.0” means “Information and communication
technology” is evolving quickly, and many disrupting tools have emerged, which influence
the manufacturing industry through the use of “cyber-physical systems”, at a time when
market complexity and competition, as well as pressure to reduce costs and environmental
impact, are all rising quickly. The industry is willing to look for more integrated solutions
to realize the full economic potential of the entire production chain, while functioning
sustainably and in accordance with environmental standards as a result of this driving force.

However, due to the increasing size of workshop production and increasingly fierce
competition, managing the process production and integrated decision-making to achieve
energy-savings, output maximization, and cost-efficient production is becoming a hot
research topic. From the theoretical level, scheduling in job shop production [2] is a
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significant “decision-making process”. For example, in a job shop method, the production
rate must be well-decided to ensure the required tools, supplies, resources, workers, etc.,
are accessible when needed for the timely completion of the job. So, the scheduling goal is
to assign a few resources to activities throughout time in the most effective way possible,
ensuring that needs are satisfied and operations are successful. Scheduling problems can
be modeled using the constraints and characteristics of the process, and several objective
functions (such as profit maximization or makespan minimization) can be provided [3,4].

It is thus possible to determine the best task sequencing and resource allocation.
The “Job Shop Scheduling Problem (JSP)” is an optimization tool [5], having aims

to find the best order of jobs to be performed on a group of machines, each of which is
specially equipped to carry out a particular operation. The goal is often to reduce factors
such as makespan, maximum tardiness, etc. The JSP considers that jobs may have diverse
machine sequences, leading to an exponential number of possible schedules, in contrast to
its specific instance. The “Flow Shop Scheduling Problem (FSP)” process control is also a
type of decision-making that modifies the operating parameters of a process to regulate
the qualitative characteristics of work streams. Maintaining constant quality parameters
or monitoring time-varying set points for these metrics presents a challenge that may
require modifying inputs and process variables. All large firms recognize the importance of
advanced control techniques for energy conservation, throughput maximization, and cost-
effective production as they continue to gain momentum across all industries. Additionally,
because the two theories were developed independently, there is still a study gap in smooth-
ing integration in job shop production, despite the recent focus of an increasing number
of academics on the assimilation of “scheduling and control”. The number of theoretical
and empirical works on SC-related subjects has significantly increased. A sizeable corpus
of research literature has been amassed on this topic since the first papers were published
in the late 1970s. However, these assessments concentrated on specific viewpoints. In
this paper, we attempt a thorough analysis of articles that were published between 2002
and 2022. Additionally, this review has been updated. This article is categorized into the
following sections. “Section 2” of this document describes the data gathering techniques.
The main body of this article’s third section contains the data analysis results and graphs.
It will be interpreted (analyzed mostly for co-occurrence and co-citation) from CiteSpace.
This section summarizes information about the country, institution, author, and keywords,
with keywords serving as the most important part of the research frontier analysis for
planning and management. The existing study on job shop scheduling and control (JSSC)
in manufacturing will be presented in Section 4, before the conclusions, limits, and recom-
mendations for future work are discussed. The hot topics and future trends are covered in
Section 5. The conclusion, which is the last section, will provide certain restrictions on the
current research.

The assistance of the current study is explained as: First, we describe the interactions
of collaboration, and highlight the lack of coordination and collaboration in the scheduling
and control fields. Second, we explore the ideas and “research hotspots” of the “scheduling
and control area”. Furthermore, we can determine the future research frontier based on the
spike in keyword searches and the time zone map. Third, we analyze the literature and
build an author co-citation network to detect developing trends, significant turning points,
top researchers, and the growth and evolution of the scheduling and control (SC) area.

1.2. Research Objectives

This field has advanced quickly since the original work shop scheduling and con-
trol problem was posed. It is an “NP-hard problem”, and substantial research has been
conducted to address its many classes and complexities.

However, few papers thoroughly examine the many methods created by earlier aca-
demics, and even fewer can summarize and assess it at the macro level. Therefore, this
article aims to explore the most recent JSSCP literature to apply it to Industry 4.0 deploy-
ment. In this regard, this study has addressed the following points:
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i Existing research status of JSSC.
ii Hotspots and frontiers of research in the JSSC field.
iii Research gaps in the JSSC field.

CiteSpace is the main instrument used in this study’s scientometric literature review
(SLR), which provides a systematic review and discussion of hotspots and frontiers that
have emerged since 2002. CiteSpace software can help researchers quickly focus on the
most important material and a specific knowledge area. We believe that this publication
will offer researchers and professionals a thorough insight. We examined the records from
the previous 20 years to make this analysis more trustworthy and impartial.

2. Research Method

Academic publications in the field were identified to meet this paper’s research goals.
The Scopus database was used to obtain the list of publications. A delineation of the
research boundary is frequently required because it is challenging to search every related
article [3]. Each publication’s main points will be based on its research contents. We
conducted a systematic literature review using the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) 2009 guidelines to ensure the inclusion of all
relevant studies.

2.1. Bibliometric Analysis

Due to the fact that it establishes the scientific papers from which any conclusions will
be formed, the collection of data from the current literature is crucial to this study. Therefore,
care is taken in selecting the database and searching strategy. Scopus was selected as the
literature resource for this study because, in contrast to other databases, it has a broad
coverage of construction-related research [4]. The Scopus database is best suitable for
interdisciplinary research since it contains a larger range of journal publications than the
databases previously indicated.

The existing literature on job shop scheduling and control in this database was then
found by searching for terms such as “manufacturing”, “flow shop”, “plant factory”, “pro-
duction system”, and “scheduling”, as well as “control”, “scheduling”, and “retrieval”.
The selected articles were from 2002 to 2022, in light of JSSC’s development history within
construction-related research. Only articles from peer-reviewed English document proceed-
ings were taken into account for the review process.

The titles and abstracts of the sources were checked as part of a further review pro-
cedure to remove irrelevant articles. The bibliometric analysis was applied to those that
survived the screening process. More than 8000 documents were found during the initial
search, but only 5052 remained after the manual screening. The widespread appropriation
of the term “scheduling and control” in other contexts and scientific disciplines can be used
to explain why so many irrelevant papers had to be removed.

2.2. Scientometric Analysis

Mulchenko [5] initially offered the definition of scientometrics as “a quantitative
analysis of the research on the growth of science”. On the basis of sizable academic datasets,
it can be viewed as a strategy that “maps the current state of knowledge and its evolution
in a field and analyses the influence and citation processes of research”. It is unlikely that
the discipline of computer vision in construction can be comprehensively described. A full
overview of the study area is provided by manual review, but this method is still vulnerable
to bias and has little room for individual interpretation [6]. The current work provides
a thorough examination of “computer vision” inside “construction-related activities” [7]
using the “scientometric technique” in order to facilitate the visualization, which is used
to trace the structure and evolution of various themes [8]. It is based on the use of an
extensive academic database to assess the intellectual environment through modeling
and visualization.
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It is necessary to use keywords to identify groups having an impact on research areas.
In order to preserve the authors’ opinions as much as possible, the literature on scheduling
and control for the manufacturing industry was examined. To identify research trends, the
following methodologies were used: “country co-occurrence, literature co-citation, and
co-occurrence analysis, abstract term cluster analysis, co-occurrence analysis and clustering,
co-author analysis, and burst detection”. The abstract term clustering, and various specific
research themes tied to the conceptual framework of the study, highlight the detailed
research trends within the subject. These techniques have been recommended in past
research of a similar nature [6,9].

3. Results and Discussion

All results and discussions will follow the process flow of the figure below. Figure 1
is an illustration of the systematic review process that includes searches of databases and
registers. The diagram is designed to provide transparency and clarity in reporting the
selection of studies for inclusion in this systematic review as exhibited the same in the
PRISMA checklist in Supplementary Material.
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The flow diagram begins with the identification of studies through database and
register searches. This initial search results in a pool of potentially relevant studies, which
are then screened based on their titles and abstracts. Studies that are clearly irrelevant
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are excluded at this stage. Afterwards, the remaining studies will be reviewed in full
text. An analysis of a systematic review involves only studies that meet the inclusion
criteria, whereas studies that do not meet these criteria are excluded from the analysis.
The reasons for exclusion are documented and reported. The final step is to synthesize
the research results from the relevant selected investigations, and report the findings of
the systematic review. The PRISMA flow diagram serves as a useful tool for researchers
to follow when conducting a systematic review, and provides a clear and concise visual
representation of the study selection process as exhibited the same in the PRISMA checklist
in Supplementary Material.

All results and discussions will follow the figure below to develop. The Figure 1 is
a Illustrations of the systematic review process that includes searches of databases and
registers. The diagram is designed to provide transparency and clarity in reporting the
selection of studies for inclusion in a systematic review.

Figure 2 is a detailed overview of the systematic review process that covers searches
exhibiting the analysis of information resources (datasets, records, archives), directories
(documents), and related information sources. The diagram is designed to enhance the
transparency and completeness of reporting the selection of studies for inclusion in this
systematic review. The process flow diagram starts with the discovery of studies through
a search of conference proceedings and reference lists. After being screened based on
their titles and abstracts, the studies that emerged from this initial search are a pool
of potential relevancy. It is at this point that studies that are obviously irrelevant are
discarded. The remaining studies will then be read in full following that. Studies that
don’t fit the criteria are excluded, and the systematic review is only of studies that do.
Documented and disclosed are the exclusionary factors. The systematic review’s findings
are reported after the information research outputs from the reviewed investigations
have been synthesized. The PRISMA flow diagram offers a clear and concise visual
representation of the study selection process, which is a useful tool for researchers to use
when conducting a systematic review, which comprises analysis of databank information
records, registries, and additional archives as exhibited the same in the PRISMA checklist
in Supplementary Material. The use of the PRISMA flow diagram helps ensure that the
systematic analysis is rigorous and transparent, thereby increasing the confidence and
validity of the study findings. Figure 3 illustrates the overall research methodology to
execute the critical review.

3.1. Data Acquisition

In order to obtain suitable articles, the keyword search methodology explained in
Section 2.1 was used. These findings are summarized. Most scholarly works on JSSC can be
found in journals that cover both fields, such as production research, advanced manufactur-
ing technology, computers, and industrial engineering, “IFIP Advances in Information and
Communication Technology”, “Procedia CIRP, and Computers and Operations Research”.
Figure 4 illustrates the “annual variation in the number of publications on the study issue”
under consideration. Research on production scheduling and control has been maintaining
a slow upward trend since 2002; from 2012 to 2021, the number of research articles has been
increasing gradually, the research field has been expanding, and the research content has
been deepening, indicating that the field has attracted the attention of many scholars. While
this trend may be influenced by some uncertain factors, the number of articles published
during this period had a large decrease in 2013–2015, and after that, it has been rapidly and
continuously increasing. In 2021, the number reaches the peak; this stage is the explosive
period of production scheduling and control research. The overall trend indicates that the
academic community has paid increasing attention to the production schedule as time
changes. This field is still a hot topic for the future, and the number of annual publications
may continue to increase.
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3.2. Keyword Co-Occurrence Analysis

As high-level descriptions of a document’s information, keywords can help researchers
identify the crux and substance of the investigation [10]. High-frequency and central terms
can indicate the research discipline’s key ideas. The hue of the keyword’s links indicates the
first occurrence of two keywords in a document. Brighter linking colors match the “initial
year of co-occurrence” closest. CiteSpace provides keyword counts and importance. Thus,
co-keyword analysis reveals the scheduling and control domain conceptual frameworks.
The CreateSpace analysis settings: top 25 annually (2002–2022), LRF = 3, LBY = 5, and e = 1.
Pathfinder pruned the sliced networks and co-occurrence network map. The 109-link,
97-node network is shown in Figure 5. In addition to frequency or count, the network
centrality of a keyword can indicate its importance. Figure 6 shows the top five keywords
with high counts or centrality.
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Figure 6. Two lists of keywords.

From Figure 6, scheduling, production control, and manufacturing occupy the highest
frequency and largest nodes, covering the entire research period; however, this paper used
“manufacturing”, “scheduling”, and “production” for the initial search, thus, these three
keywords occupy the highest frequency and largest nodes. After removing these words,
the top five keywords were chosen and ranked by frequency and centrality (Figure 6):
“Optimization”, “production scheduling”, “planning”, “genetic algorithm”, “decision
making”, etc. High-frequency keywords cannot conduct, but they are central. The keyword
graph’s inflection point is centrality≥ 0.1, which may represent this field’s research hotspots.
From the centrality, the top 1 is “genetic algorithm” with 0.68; a combination conclusion,
with frequency, scheduling, and control hotspots, is focused on using the algorithm to
optimize production.

Even though the “JSS problem is NP-hard”, these strategies can help get us closer
to an ideal outcome. Meanwhile, from the centrality rank (Figure 6), we can conclude
that controlling the whole job shop production process is important and attracts a lot of
attention; many researchers are trying to optimize the source planning and scheduling [11].
Satake et al. [12] utilized a new method to decrease the production period. Thus, from
all of these keywords, which are related to improving production and at the same time
decreasing energy consumption, it is reasonable to provide a conclusion that, although
many scholars are focused on the flexible job shop problem, little attention is given to
the factors of energy and environment, which means that sustainability and green energy
might be the next frontier and hotspot. Thus, we can know that in job shop production
scheduling and control, many researchers are focused on different algorithms; researchers
are not only focused on minimizing the production time, but the production energy as
well. Moreover, we can find that production is changing from energy-consuming to green
and sustainable production, and this change can reflect and support the innovation of
Industry 4.0 [13–16].

3.3. Keywords Timeline

Keyword co-occurrence networks statically represent the research area. CiteSpace uses
time zones to show JSSC keyword evolution [17–25]. Below is a Figure 7. showing the year
that keywords first occurred. This graph shows keywords over time, as well as SC research
trends. The key point is 2016. Industry 4.0 followed lean construction from 2002 to 2015. In
this period, AI technology and big data were widely used in the whole working production
process (design, fabrication, construction, and delivery) [26–34]. Morariu O. et al. [17] offer
a “machine learning approach for reality awareness and optimisation in the cloud”, and
Waschneck B. et al. [18] said that “AI-based methods will replace mathematical models”.
Production problems were initially stochastic, not dynamic. Scholars then solve working
process and inventory problems dynamically, closer to the actual production [35–40]. This
transformation allows the entire production process to quickly adapt to market information
changes, improving service levels [41–49].

In terms of the technologies used in Industry 4.0, the goal is to connect all objects in a
factory through communication technology, and is varied depending on the four working
processes [23–29]. For example, in the design period, BIM, AR, and VR are widely used in
manufacturing [19–22,50–53]; during manufacturing, smart sensors and robots will provide
great help [23–26,54–57]; in the construction stage, real-time location services, smart cranes,
and virtual construction scheduling are widely used [27]; in the final delivery stage, BIM-
based defect management (BIMDM) systems and building management systems (BMSs)
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are needed [28–31]. Generally speaking, in Industry 4.0 and smart construction since 2016,
technologies such as “big data, AI, blockchain, E-business, and cloud computing”, which are
based on computer science, were widely utilized in job shop production and construction.
From the supply chain perspective, the powerful calculation power of these technologies
enabled the making, planning, and achieving of dynamic production muti-optimization [32]
and working process integration [33]. Furthermore, with this powerful technology, modern
job shop production can be reasonably regarded as smart mass customization, which means
it can not only meet the industry’s production needs, but can also meet the preferences of
different customers [34].
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3.4. Keyword Burst Analysis

The burst index can detect high-frequency keyword changes to determine research
field frontier content, which will be chosen in CiteSpace to identify scheduling and control
research hotspots [35]. Figure 8 shows 40 burst keywords; in chronological order, the burst
keywords have been changing over the years from 2002 to 2022.

Manufacturing research has explored topics such as computer-aided manufacturing
(2002–2006), heuristic methods (2002–2009), inventory control (2002–2007), optimal control
systems (2002–2006), and intelligent manufacturing. Recent research hotspots include ma-
chine learning, deep learning, integer programming, and stochastic systems (2014–2022). In-
ventory control (65.56) is the strongest research topic, followed by Industry 4.0 (2017–2022),
computer-aided manufacturing (25.61), multiobjective optimization (22.09), learning sys-
tems (21.01), and stochastic systems (20.02).

In 322 documents in our database, this keyword appeared 50 times in 2018, 87 times
in 2019, and 126 times in 2020. Overall, we contend that studies of the circular economy
and game theory are the current hot topics for SSCM research. Using CiteSpace [35], we
explored “keyword burst detection” to find “research hotspots in the SSCM domain”.
Figure 9 displays 40 keywords with at least two-year peaks. From 2007 to 2021, these have
been evolving in chronological order.
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3.5. Author Co-Occurrence Analysis

By using the bibliographic records, which contain information regarding the article’s
authors, it is possible to map both the collaborations between researchers and the iden-
tification of the top researchers in a given field. Afterward, a network of co-authors can
be created. First, the five most prolific authors were identified. According to Figure 10,
L WANG, J WANG, and Y ZAHNG held the third position. CiteSpace is capable of visualiz-
ing and analyzing scientific knowledge [35]. Consequently, networks of co-authorship can
be generated in Figure 8. Such a strategy has been identified as an effective technique for
uncovering the concealed propositioning of a large dataset. By methodically producing nu-
merous accessible graphs, CiteSpace excels at mapping different knowledge domains [35].
To create abstract clustering, it was also used to generate and analyze the networks of
co-authors, countries, and co-occurrences as unveiled in the Figures 8 and 11 respectively.
CiteSpace’s burst detection is built upon the Kleinberg algorithm [36]. The factors were
determined as when the “co-authorship network” was generated: top N (N = 15), LRF = 3,
LBY = 5, and e = 1 for the years 2002 through 2022. The pathfinder technique was used to
prune sliced and combined networks, producing the 187 nodes and 154 linkages shown in
Figure 11. The number of citations a scholar has is indicated by the size of each node; the
later the time of appearance, the deeper the node color. The core author will be selected
from Price’s law. In this law “N is the total number of authors; M is the number of articles
written by all authors; xmax is the number of articles written by the most prolific author
in the selected group; m is the threshold of the prolific group, i.e., the number of articles
written by the least prolific author in the group; y is the number of authors who wrote
x articles”. From Price’s inference:

[
xmax

∑
x=m

yx·x]/[
xmax

∑
x=1

yx·x] = 1/2
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The above formula indicates that the group of highly productive authors wrote half of
all the papers.

xmax

∑
x=m

yx × x = [
xmax

∑
x=1

yx × x]0.5

In this formula, the left part is M.
M is exactly the starting point for 50% of the total number of papers with highly

productive authors; the value of m is obtained by inference (process omitted):

m = 0.749(xmax)
0.5

From the above formula (m = 0.749×
√

Ncmax), the minimum number of publications
for the core author in this article is five, and there are 48 productive authors. We are
focusing on the top five authors (Figure 8) in the following analysis.

The density of cooperative relationships in the network is 0.0089, and there are no
scholars for which the centrality is more than 0.1 in the field of “production scheduling and
control research”, which means that the coordination is weak between different authors. In
addition, these top five authors constitute their respective author groups. There are also
some small collaborative teams with only one link between two nodes, and their networks
do not unfold; thus, they are limited to two-person collaboration and their collaborative
power is weak.

The top 10 nations (out of 150) that published papers in the scheduling and control
area are shown in Figure 12 in terms of publications, total papers, and centrality. Figure 12
shows the visualization maps of the research nations that have produced literature; as
can be seen, these nations constitute a loosely connected network of relationships [54].
Therefore, the more publications a nation has in common with other nations, the more
central it is. A total of 5052 papers on this topic were obtained for the years 2002 through
2022 after using CiteSpace’s “remove duplicates” function [37]. The visualization map
for nations where ES research has taken place was created using the pruning option
(pruning based on Pathfinder/Pruning sliced networks). Following software execution,
the network gained 150 nodes, 164 linkages, and a density of 0.0147. Figure 13 lists the top
ten producing nations.
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Institutional contributions were also identified. Figure 12 shows that there are 50 nodes,
31 connected lines, and a density of 0.0253. The number of publications is indicated by
the node size, with larger nodes indicating larger issuance, and vice versa. Centrality
reflects the level of importance, with higher centrality indicating higher importance. The
visualization results, from the 5052 documents selected for this study, allow identification
of the main institutions in the field. The first ranking is Shanghai Jiao Tong Univer-
sity, with 71 articles on IoT-based manufacturing, resources management [38], job shop
scheduling [39], etc. The next is Tongji University, with 64 articles focusing on the schedul-
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ing of semiconductor manufacturing [40], deadlock-free genetic scheduling algorithms [41],
and real-time scheduling [42]. The number of publications from these two institutions
accounts for approximately 25% of the top ten institutions, and has a high impact.
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3.6. Author Co-Citation Network

Making an “author co-citation network” has the aim of identifying academics whose
works are related to the SSCM research area. Whenever two academics are referenced in the
same work, this is referred to as co-citation. As analytic objects, we used references from
9151 peer-reviewed papers. The CiteSpace configurations were: LRF = 3, LBY = 5, e = 1
(2002–2022), and top N (N = 50). The pathfinder algorithm pruned the sliced and merged
networks, leaving 531 nodes and 848 links. More citations mean bigger nodes. The first
author label is applied to nodes with more than 150 citations. Purple circles cover nodes
with centralities above 0.1. From Figures 14 and 15, we can identify highly cited and/or
central researchers.
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optimization, and metaheuristics, and is cited increasingly. New York University profes-
sor Michael Pinedo specializes in financial services planning and scheduling. Weiming 
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Figure 15. Top five most co-cited authors.

Figure 15 shows the top five most co-cited authors: Michael Pinedo (282 citations),
Lihui Wang (210), Rubén Ruiz (180), Michael R. Garey (154), and Weiming Shen. Figure 16
shows the top five authors’ citation distribution. Between 2002 and 2022, these five schol-
ars’ overall citations increased. Professor Michael R. Garey is cited the most every year,
except 2021. Lihui Wang, who works on digital twins, smart manufacturing, human–robot
collaboration, and more at Sweden’s KTH Royal Institute of Technology, was first cited
in 2003. In 2021, his citations surpassed Michael R. Garey’s, putting him in first place.
Professor Rubén Ruiz (Universitat Politècnica de València) studies scheduling, routing,
optimization, and metaheuristics, and is cited increasingly. New York University professor
Michael Pinedo specializes in financial services planning and scheduling. Weiming Shen,
a National Research Council Canada and University of Western Ontario professor, has
citation trends similar to Michael Pinedo.
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There are six scholars whose centralities are greater than 0.2, implying that they are
more influential than others, and have a substantial effect on the growth of scheduling and
control research. These authors include GOLDBERG DE (centrality: 0.3), DAI M (centrality:
0.28), PRABHU VV (centrality: 0.26), HE Y (centrality: 0.25), ZHANG R (centrality: 0.25),
and OGBU FA (centrality: 0.22). “When authors have a high number of citations and
centrality, they can be considered influential or leading scholars” [43,44]. Lihui Wang,
Rubén Ruiz, and Shiqiang Wang are regarded as leading researchers based on their citation
counts and centralities, which exceed 500 and 0.1, respectively.
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3.7. Document Co-Citation Network and Clustering

Document co-citation analysis shows a research field’s intellectual structures by re-
vealing the quantity and authority of references cited in publications. Citation relationships
are represented by document co-citations. The literature’s co-citation network was created
by extracting references from the top 50 cited papers from each 1-year time slice between
2002 and 2022. Integrating and clustering co-citation networks produced 6580 nodes with
modularity Q = 0.9656. The large number of isolated clusters lowered the mean value to
0.3647. Papers are the nodes in the network diagram, and the connecting lines show co-
citation relationships, with colors indicating when they were established. Early SC research
appears in the top right corner. Figure 12 illustrates the study’s color distribution evolution.
Co-citation network analysis shows clustering related to #1 cooperative manufacturing
management framework, #3 future requirement, #4 research theme, #6 event-driven control
architecture, and #7 power consumption uncertainty; #1, #3, and #6 have similar content.
On the left side of the network as illustrated in the Figure 17, recent research papers include
#0 flexible manufacturing systems, #2 manufacturing operation scheduling, and #5 service
supply chain. Flexible manufacturing systems and manufacturing operation scheduling
dominate the production scheduling research. Production scheduling and control research
is also found in these clusters. Early SC research papers, on the right side of the co-citation
network, focus on schedule and control job shop production; this is the co-citation net-
work’s trend and frontier. Mutations are dark-filled nodes in the co-citation network,
according to Kleinberg’s burst detection [36]. These burst event segments demonstrate the
academic community’s interest in the paper’s research at the time, demonstrating changes
in the paper’s importance to related research. The network analysis reveals the emerging
research areas and representative literature, as shown in Figure 11. Moreover, #0 and
#1 are the largest clusters; combined with the color consideration, cluster 1 becomes grey,
indicating it experiences a relatively long time from the statistical period, while cluster 2
is brightly colored, indicating that this cluster is the current popular research area. Thus,
this article focuses on clusters #0 and #2 for the analysis: cluster #0 (flexible manufacturing
system) indicates that a large number of studies refer to flexible manufacturing, and cluster
#2 (manufacturing operation scheduling) indicates that a large number of studies refer
to manufacturing operation scheduling. Figures 18 and 19 have exhibited the myriads of
investigators/authors refer who have conducted studies on flexible manufacturing system
(cluster #0), and manufacturing operation scheduling (cluster #2).
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4. Current Research

Since the first papers were published in this field in the late 1970s, a sizable body
of research literature has accumulated. These reviews, however, emphasized particular
viewpoints, such as analytical models or scheduling issues. In this paper, we attempted
to review articles with broader methodological perspectives. This review has also been
more recently updated. We examined the literature from a variety of angles: 1. model
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classification; 2. algorithms; 3. industry problems; 4. advantages and disadvantages.
Moreover, the main scheduling and control methods are subdivided and categorized into
several parts, the details for which are shown in Figure 20.
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Exact methods, also known as optimization methods, can guarantee the global optimal
solution, but these can only be used to solve “small-scale problems”.

4.1. Exact Method

The precise methods are primarily based on operational research. Although the exact
method can theoretically find the optimal solution, its practical application is limited.

4.1.1. Lagrange Relaxation

Lagrangian relaxation is an approach for finding the best answers to challenging
optimization issues. This approach aims to optimally resolve complex problems in polyno-
mial time by loosening some constraints in the problem and incorporating them into the
“objective function” using “Lagrangian multipliers”, followed by iteratively updating the
multipliers using the gradient method to continuously raise the lower bound and lower
the upper bound. Tang and Xuan [45] applied the “Lagrangian relaxation algorithm to
the mixed flow job shop scheduling problem to minimize the total weighted completion
time”. Tang et al. [46] developed a “mixed integer programming model for the steel pro-
duction scheduling problem and proposed a Lagrangian relaxation algorithm to solve
it efficiently”. Tang et al. [47] combined the “Lagrangian relaxation algorithm with the
column generation algorithm for the optimization of the co-located batch decision-making
in the steel industry”.

4.1.2. Branch-and-Bound Method

This algorithm solves integer programming problems by partitioning feasible solution
spaces, relaxing integer variables, and calculating upper and lower bounds, called bound-
ing. Pruning deletes the worse solutions in order to reduce the search range until the upper
bound equals the lower bound, resulting in an optimal solution. This approach reduces
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computational complexity by avoiding unnecessary searches. However, the algorithm re-
quires large memory space to store root node information throughout the search process. In
order to discover the best solution to the scheduling problem for up to 50 workpieces, Pots
and Van Wassenhove [48] devised a branch delimitation algorithm for the single-machine
production scheduling problem, and integrated it with the Lagrangian algorithm. Abdul-
Razaq et al. [49] examined “branch-and-bound and dynamic programming” techniques
and contrasted them using 50 workpiece instances. According to the experimental findings,
this method can immediately identify the best solution to a small-scale problem, but it is
impossible to quickly identify the best solution to a large-scale problem. This approach was
utilized in a mixed-flow shop by Zhang W. [50] to reduce the overall drag time. In order
to enhance performance, Néron E. et al. [51] integrated the ideas of inference (energetic
reasoning) and global operations into the branch.

4.2. Approximate Method

The exact method is suitable for “small-scale problems”. The production scheduling
problems in manufacturing are usually complex and large-scale; moreover, the speed of
solving problems is often demanding and important, so it is difficult to apply the above-
mentioned exact algorithms to the actual production problems. Due to these limitations,
approximation algorithms have received a lot of attention from both academics and indus-
tries. They have advantages such as simple structure, fast solution speed, and the ability to
give an approximate optimal solution.

4.2.1. Intelligent Optimization Algorithm

Intelligent optimization algorithms are the most common methods because they do not
seek to obtain the optimal solution, but obtain a satisfactory solution, which is more suitable
for solving complex production problems. Additionally, intelligent optimization algorithms
generally simulate a phenomenon or group behavior in the natural world, making them
highly self-organizing, self-learning, and self-adaptive in the search process. They are easy
to parallelize, which makes them different from the exact methods. In addition, this method
can be subdivided into individual inspiration methods (tabu search algorithm, a simulated
annealing algorithm, genetic algorithm, etc.) and population-based inspiration algorithms
(ant colony algorithms, artificial bee colony, particle swarm optimization, differential
evolutionary algorithm, etc.)

“Simulated Annealing Algorithm” (Individual Inspiration)

This algorithm was first suggested by “Metropolis”, and its optimization approach
alludes to the “physical annealing” procedure. “Job shop scheduling is a challenge that
Matsuo [52] and Van Laarhoven [53] have addressed using the simulated annealing method.
With the optimization goals of minimizing the completion time and the number of jobs
with delayed completion, Chakraborty [54], Suresh [55], and others used the simulated an-
nealing algorithm to solve the flow shop scheduling problem. The algorithm’s effectiveness
was shown by contrasting the algorithm’s performance to the previous results. The fast
simulated annealing process and quenching hybrid algorithm were used by Akram [56]
and colleagues in 2016 to locate the global best solution and avoid falling victim to local
optimizations. The job shop scheduling problem was optimized with the goal of mini-
mizing completion time and compared against 88 benchmark cases; the ideal answer was
45 within a tolerable amount of time. Finally, it is shown that the algorithm can successfully
identify the job shop scheduling problem’s optimal solution”. This approach can reach the
global optimal value, since it needs a high beginning temperature and a slow cooling rate.

Tabu Search (Individual Inspiration)

The tabu search algorithm finds approximate optimal combinatorial solutions. Glover
and Hansen proposed it in 1986, and Glover perfected it. It can solve some scheduling
problems optimally. Tabu can solve many scheduling issues. The original solution, neigh-
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borhood structure, search approach, and table length are only a few of the issues with tabu
search. Taillard used tabu search to schedule jobs for shops. “A critical path and block
structure-based tabu search algorithm was presented by Nowicki et al. [57] to solve JSP. An
N7 neighborhood-based tabu search technique was put forth by Zhang [98] in 2007. To
overcome JSP difficulties, Sonawane et al. [99] combined the Genetic algorithm and the
tabu search algorithm in 2014. For larger and more complicated scheduling issues, the tabu
search method can achieve a faster average completion time. The tabu search algorithm
is better. The tabu search algorithm has issues with the initial solution, the neighborhood
structure, the search method, and the length of the tabu table”. These issues can be resolved
to benefit the tabu search algorithm.

Genetic Algorithm (Population-Based Algorithm)

The genetic algorithm, an intelligent optimization algorithm that simulates nature’s
evolutionary process, can search globally. Biogenetics selects fit individuals, crosses and
mutates them to create new ones, and then replaces parents with better ones. Thus,
everyone’s fitness improves. Genetic algorithms self-organize and learn. Tabu search
and annealing algorithms repeat one solution. Genetic algorithms are used in production
scheduling, group optimization, machine learning, pattern recognition, optimal control, and
other fields. Huang and Süer [100] examined an allocation rule-based hybrid multiobjective
“genetic algorithm”. Yang et al. [101] proposed a hybrid genetic algorithm for mixed-
batch scheduling and planning. Goncalves [102] suggested incorporating local search
into a hybrid genetic algorithm for production scheduling. “ Figleska [103] investigated
a special scheduling problem with multiple parallel machines in the first stage and one
single machine in the second stage, and external resources are only available at a specific
time”. Muthiah and Rajkumar [104] proposed a genetic algorithm and an artificial bee
colony algorithm for the job shop scheduling problem. The artificial bee colony algorithm
performed better due to its local search ability. In practical production scheduling problems,
Wong et al. [105] studied an integrated optimization problem of mould maintenance and
production scheduling, taking into account maintenance cost, and proposed an effective
legacy algorithm. Maimon and Braha [106] proposed a better genetic algorithm for single-
machine circuit board production scheduling.

Ant Colony Optimization (ACO) Algorithm (Population-Based Algorithm)

Italian scholar Dorigo [107] proposed the ACO algorithm in 1991 to simulate ants’
food-finding behavior. Ants leave “stigmergy” or “pheromone” as they search for food,
which later, ants in the same colony can use to influence their behavior. Colorin et al. solved
the workshop scheduling problem with the ACO algorithm, and many Chinese scholars
have studied it. Despite slow convergence, the ACO algorithm solves complex combina-
torial optimization better, such as robustness”. Liao and Juan [108] used the “ant colony
optimization algorithm” to reduce work time. Lin et al. [109] improved the flow shop
scheduling ant colony algorithm. Yagmahan and Yenisey [110] proposed a multiobjective
“ant colony optimization algorithm” for flow shop scheduling under multiobjective condi-
tions, and tested it with standard problems. Cheng et al. proposed an efficient “ant colony
algorithm” [99]. Mohammad et al. [111] improved the ant colony algorithm for automated
car scheduling. Neto and Filho [112] reviewed the use of the ant colony algorithms in
production scheduling, and suggested improvements.

Particle Swarm Optimization (PSO)

The PSO algorithm, proposed by “Kennedy and Eberhart” [113], simulates birds’ self-
organization, self-learning, and self-adaptation. In this algorithm, each particle represents a
solution, and records its best solution so far (personal best solution). The population’s best
solution is the global best solution. Thus, the particle’s next flight direction depends on
three factors: the particle’s original speed, which indicates search inertia; the individually
best solution; and the population’s best solution. In this way, the grains will keep their
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original direction while learning from both their individual best solution and the global
best solution, improving search efficiency. It also has a fast convergence rate, but it tends to
fall into local optimality. “JJ BAI et al. [114] proposed a method based on a particle swarm
algorithm to solve MOFJSP batch scheduling, which introduces preference information
to guide the particles to approach the Pareto front. G. Moslehi et al. [115], Liu et al. [116],
Mostaghim et al. [117], and Tripathi et al. [118] used local search techniques, collabo-
rative optimization techniques, the sigma method, and important parameter adaptive
techniques to enhance the local optimization of the particle swarm algorithm to avoid
local convergence. Shao et al. [119] proposed a hybrid algorithm based on discretized
particle swarm and simulated annealing, which theoretically improved the application of
the particle swarm algorithm in the field of MOFJSP discretization. The methods proposed
in [114–116,118–120] all use the particle swarm algorithm based on the Pareto optimization
technique. In general, the particle swarm algorithm has fast convergence and computational
simplicity, but it easily falls into local optimum”.

Differential Evolution Algorithm (Population-Based Algorithm)

This algorithm uses GA-like variation, crossover, and selection. From a randomly
generated population, it uses the different vectors of two randomly selected individuals as
one of the evolutionary directions for the third individual, and sums them according to
certain rules to create a new variant. “The target is crossed with the new variant to create
a new test. Selection takes place when the new one is better”. The differential evolution
algorithm uses these three processes because the selection operation keeps better solutions,
and eliminates inferior ones to evolve the population towards the optimal solution. This
algorithm solves group optimization problems, such as production scheduling, because
it avoids local optimization and has strong global convergence. Deng and Gu [121] pro-
posed a discrete differential evolution algorithm for the problem of the replacement flow
shop scheduling without idleness, in which variation, crossover, and selection operations
under discrete conditions are defined. For the same problem, Tasgetiren [122] combined a
variable iterative greedy algorithm with a differential evolutionary algorithm to propose a
highly efficient hybrid differential evolutionary algorithm. Liu [123] proposed a sequential
differential evolutionary algorithm for the traditional flow shop scheduling problem, and
used a rule to transform a continuous solution into a discrete scheduling solution.

Some of the approaches used to solve the scheduling problem are: ANN, multiagent
system, Petri net, cultural algorithm, DNA algorithm, memetic algorithm, scatter search,
and others. See Figure 12 for details. Each algorithm has pros and cons, so how to combine
them is a hot topic. The following Table 1 summarizes and frequencies some common
algorithms found in the 5052 documents selected for this research.

4.3. Production Control

Production control (PC) is the managerial responsibility for organizing, directing, and
overseeing the procurement of raw materials and their processing within an organization.
Based on the selected 5052 papers, we summarized them and classified them as the frame-
work: 1. Regulated by orders; 2. Regulated by Inventory; 3. Flow-scheduled systems;
4. Hybrid control systems.

4.3.1. Regulated by Orders
Contract-Controlled System

The system essentially splits up large, complex contracts into many smaller orders for
individual items. Additionally, the system establishes deadlines for each item’s delivery or
completion. The contract must be finished within the specified finishing date, so the work
must be performed accordingly. As a result, it helps manage complicated project systems.
Contrary to the majority of other SCO types, this system typically focuses on controlling
production from the early stages of design.
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Table 1. Common job shop scheduling and control algorithm classification and statistics table.

Category Name of Methods Exact or
Approximate Feature Advantage Disadvantage Application References Quantity of

Methods (%)

Enumerative
methods

Decomposition
method Exact

The optimization
problem

transformed into a
mathematical

planning problem

Obtain the exact
solution when the

problem size is small

The solution time
grows exponentially
when the problem is
an NP-Hard problem

Scheduling problem [45–47]

1.13%

Lagrangian
relaxation method Exact 14.29%

Mixed integer
linear program Exact 0.40%

Integer linear
program Exact 0.49%

Branch and bound Exact

Subdividing a
problem into

several
subproblems and

cutting out
meaningless

branches

Obtain the optimal
solution and fast
average solution

speed

Takes up a lot of
memory space

Integer planning
problems, production

schedule problems,
site selection

[48–51] 0.20%

Local search

Greed algorithm Approximate

The global optimal
solution can be

obtained by local
optimal selection

Small code size, high
operational efficiency,
low space complexity

Cannot guarantee that
the final solution

obtained is optimal,
cannot be used to

solve maximum or
minimum problems

Combinatorial
optimization

problems
[124–128] 2.24%

Clone selection
algorithm Approximate

Distributed,
adaptive learning,

and parallel
computation

Fast convergence and
algorithmic diversity

Premature
convergence and lack

of cross-operation
problems

Constrained
optimization,

dynamic optimization,
time uncertainty

scheduling problem

[129–135] 0.08%

Variable
neighborhood Approximate

Changing the
neighborhood

structure

Versatility, robustness,
few parameters

Long solution times
for complex problems

Scheduling issues,
vehicle path issues,
color quantification,

continuous
optimization

problems

[136–141] 3.48%
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Table 1. Cont.

Category Name of Methods Exact or
Approximate Feature Advantage Disadvantage Application References Quantity of

Methods (%)

Tabu search Approximate

Avoid loops in the
search process,
only advancing
and not retreat

Easy to obtain
excellent solutions Initial value sensitive Displacement issues,

scheduling issues [57,98,99] 9.76%

Simulated
annealing Approximate Multiobjective

optimization

Flexible, wide
application, high

operating efficiency

Longer optimization
process

Neural networks,
image processing,

VLSI (very large-scale
integrated circuit)

optimal design,
production scheduling

[52–56] 4.33%

Differential
evolution
algorithm

Approximate

Group
difference-based,

heuristic,
randomized

search algorithm

Fewer undefined
parameters, less likely

to fall into local
optimum, fast
convergence

Search stagnates when
the population is

small

Data mining, pattern
recognition, digital

filter design, artificial
neural networks

[121–123] 2.85%

Artificial
intelligence

Genetic algorithm Approximate

Simulating natural
evolution to

search for optimal
solutions

Fast random search
capability, scalability

Poor local search
capability, easy to fall

into “premature”

Combinatorial
optimization, data

mining, image
processing,

production scheduling

[100–106] 28.70%

Ant colony
algorithm Approximate

Self-organization,
positive feedback,

global
optimization

Excellent computing
power and

operational efficiency

Slow initial
convergence

Multiobjective
optimization, data
classification, data
clustering, pattern

recognition

[107–112] 1.46%

Particle swarm
optimization Approximate

Swarm
intelligence,

random search

Highly versatile
algorithm, adjust few
parameters, simple
principle, easy to
implement, fast

convergence speed

Not enough search
accuracy

Neural network
training, image
processing field,

electric power system
field, the field of

mechanical design

[113–120] 9.36%
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Table 1. Cont.

Category Name of Methods Exact or
Approximate Feature Advantage Disadvantage Application References Quantity of

Methods (%)

Immune algorithm Approximate

Swarm
intelligence search
algorithm, global

convergence

Ensures population
diversity, overcomes
the ‘early maturity’

problem, and allows
for a globally optimal

solution

Easy to fall into local
search, bad group

diversity

Nonlinear
optimization,
combinatorial

optimization, control
engineering, robotics,
fault diagnosis, image

processing

[142–147] 1.80%

Chaotic algorithm Approximate
Randomness,

traversal,
regularity

High efficiency,
confidentiality, and

ease of use

Uneven traversal,
high search density at

boundaries, long
search time

Image data
encryption, secure
communications,

control systems, and
optimization

[148–151] 1.23%

Multiagent system Approximate

Autonomy,
interaction with
other agents and

people, time
continuity,

self-adaptability,
mobility

Scalability and design
flexibility and

simplicity, reduces
system complexity

Gossip problem, delay
in information

exchange

Large-scale complex
problems [152–159] 5.13%

Expert system Approximate

The combination
of “knowledge

base” and
“inference
machine”

High efficiency,
flexibility,

transparency

Narrow field of
knowledge and

possible disparity of
opinion

Speech understanding,
image analysis,

system monitoring,
chemical structure

analysis, signal
interpretation, etc.

[160–162] 1.68%

Neural network Approximate

Massively parallel
processing,
distributed

storage, elastic
topology, highly
redundant and

nonlinear
operations

Self-learning,
self-organizing,

fast-solving speed,
robustness

Requires large
amounts of data, black

box

Pattern recognition,
intelligent control,

combinatorial
optimization,

prediction

[163–171] 6.85%
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4.3.2. Regulated by Inventory
CONWIP (Constant Work-in-Progress)-SLC System (Pull-Based)

Spearman et al. proposed the “CONWIP system” (1990). The quantity of cards sets
a limit on the total amount of work being performed. The logic behind how this system
operates is as follows: in order to authorize a job to enter the production line, a card that
is available must be present. Numerous researchers, such as Papadopoulou et al. [172],
Yang [173], and Krishnamurthy [174], have suggested that the CONWIP-SLC is suitable for
a “flow shop repetitive environment”. According to Li [175], this system allows for a greater
variety of products than Kanban systems. Ryan [176] explained the procedure of using
CONWIP in a job shop with multiple products. Slomp’s recent study [177] demonstrates
a practical application of CONWIP-SLC. According to Stevenson et al., a variation of the
CONWIP system, known as “m-CONWIP”, can be used in a setting with a greater variety
of products. For every shop floor routing scenario, there are m (multiple)-CONWIP loops
in this system.

Kanban-SLC System

This approach was defined as “Kanban variations that follow the PPC department’s
pull production from stock without central scheduling. The most common Kanban types
are production (P-Kanban) and transportation (T-Kanban)”. When both types are used, it
is called dual-card Kanban. When only one type is used, it is called single-card. Arbulu’s
construction material procurement process uses Kanban [178]. Kumar and Panneersel-
vam [179] noted that supply chain management, CONWIP, and Kanban can help JIT
initiatives succeed. The Kanban system reduces inventory by producing just-in-time to
meet demand at each stage [179,180]. N. Singh and Kwok Hung Shek [180] used the
general purpose simulation system to study the “Kanban system” in an assembly area.
For repetitive flow shop systems, Snyder [181] recommends the “Kanban system”. “The
development of the Kanban system at a local manufacturing company in Malaysia” is
presented by Naufal et al. [182]. This system is also a “key operations management tool” in
“Lean manufacturing” [183].

Periodic-Review System

In this system, the inventory level (I) is checked at fixed intervals, called review
periods. The quantity needed to make the inventory reach a predetermined level S is the
size of the order. Two examples of studies discussing this system in the literature are the
works by Maddah et al. [184] and Li Z. et al. [185]. Consider a periodic-review inventory
system with erratic supply and demand. A periodic review inventory system with two
resupply modes, a normal mode and an emergency mode [186], also creates processes to
deal with the inventory issue in these two modes.

4.3.3. Flow-Scheduled Systems (FS)

There are several systems are based on flow scheduling, such as the PBC (period batch
control) system, the MRP (material requirements planning) system, and the OPT (optimized
production technology) system. Each of them has its own features and applications. For
instance, the inventory between each production and demand stage is constrained in the
base-stock system. In PBC, it is a cyclical process, which means that all of the needed
components are to be prepared in the previous stage. Companies can determine when,
how many, and what products to produce and purchase by using the MRP system. It runs
on a preset cycle in which the components needed for a later period in the following stage
are produced (Benders and Riezebos [187]). As a result, the previous stage of production
is scheduled to include building and constructing the products in one session, which is
based on the definition of final product production (semifinished products, components,
and raw materials).
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PBC System

In or around 1926, Mr. R. J. Gigli developed the PBC system. It is a cyclical system that
runs on a fixed cycle or periods, during which, the components needed for a later period in
the following stage are produced (Benders and Riezebos [187]). As a result, the previous
stage of production is scheduled to include the building of all the components needed
to construct the products in one session. According to Maccarthy and Fernandes [188],
the repetitive and semirepetitive production systems are a good fit for the application
of PBC. Tesic et al. [189] developed a new model to implement the “PBC system into a
virtual manufacturing environment, to better integrate the production planning with the
applications of group cells”. Moreover, it is important to remember that Benders [187]
thought the PBC system was a classic, and not out-of-date system. Stevanov B. et al. [190]
used this system, combined with computational methods, to deal with the railway brake
services [191].

MRP System

Since the 1970s, large corporations around the world have used MRP, a sophisticated
SCO. MRP helps companies decide what, when, and how much to make and buy. It can
handle complex situations, such as many products with a BOM, according to Velasco [192]
and Arnold [193]. “Non-repetitive production systems” can use MRP [188,194]. Gupta and
Snyder argue that MRP can be used with other SCOs due to its adaptability [181].

OPT System

Eliyahu Goldratt created the OPT (optimized production technology) system in the
1970s. The OPT system is made of two basic components: software, and a philosophy that
is embodied in the well-known 10 OPT [195,196]. The BUILDNET module receives input
data as part of OPT software’s fundamental operation. The SERVE module then determines
a resource’s average utilization and load profile. “The SPLIT module divides the network
into critical and noncritical resource areas” based on this capacity calculation. Additionally,
time buffers are allotted where necessary. Finally, the OPT module creates a realistic master
production schedule using a good heuristic. There is OPT parameterization in the work of
Croci and Pozzetti [197].

4.3.4. Hybrid Systems

Apart from the above system, there also burst some new control systems which
combined some of the former ones, and the typical example is the “POLCA (paired-cell
overlapping loops of cards with authorization) system”. In this system, POLCA cards are
the name for production control cards. This process, which releases authorizations through
a “high-level centralized material requirements planning system (HL/MRP)”, controls the
flow of orders through the various cells. Because of its operational logic, POLCA is a hybrid
system. Regarding the field of application, according to Krishnamurthy et al. [198] and
Suri [199], POLCA is a quick-response manufacturing strategy designed to address material
control. “Lödding et al. [200] suggest POLCA for environments with a high number of
variants and complexity of materials flow. Optimization of the POLCA system is found in
Fernandes Braglia [201] and Santos et al. [202]. Chinet [203] gives an overview of POLCA
research, as well as a relevant case study”.

4.4. Integrated Scheduling and Control System

This system is the best solution to respond to the dynamic environment. Scheduling
policy solving and control command computation are used as virtual objects, and automa-
tion devices as physical objects. One of the classic systems, such as parallel Petri nets [204],
provides a feasible solution to achieve the interactive co-integration of the physical and
information worlds [205]. In addition, digital twins can be applied to different layers of
the production process, such as the equipment layer, the production line layer, and the
factory layer, and achieve the interconnection of shop floor information and physical space.
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Research on integrated scheduling and control in industry is currently focused on power
grids [206], railroads [207], and elevators [208]. Baldea and Harjunkoski [209] system-
atically reviewed the theory of “integrated production scheduling and process control”,
and summarized the integrated model into the following types: top-down integration
approaches, bottom-up approaches, and state-space scheduling.

4.4.1. Top-Down Approaches

Top-down approaches are scheduling frameworks with dynamics and control compo-
nents such as time scale-bridging. Dynamic optimization can create good scheduling and
control options using all relevant dynamic and economic data. They use open-loop control,
but lack a feedback structure to ensure process stability and performance outside of the rated
operating conditions (Mitra et al. [210]; Zhuge and Ierapetritou [211]). It has no explicit
feedback structure for stability and performance, and is subject to scheduling and control
disturbances (e.g., fluctuations in feed quality). Zhuge and Ierapetritou [211] proposed a
scheduling mechanism that recomputes the plan and control actions for the remaining cycle
time after a disturbance, building on Flores-Tlacuahuac and Grossmann [212]. “(Based on
crossing a threshold between target and actual process states). Terrazas-Moreno et al. [213]
discuss workload-reducing decomposition methods”. Numerous cases [214–217] have shown
that process system input–output dynamic behavior is slow, emerges over a time scale relevant
to scheduling computation, and can be described by a low-dimensional model.

4.4.2. Bottom-Up Approaches

This strategy involves including “economic considerations in the design of the plant’s
overall control framework”. Skogestad [218] suggested this consideration at the “level
of the distributed control system”, while Kadam and Marquardt [219] and Engell [220]
recommended it as part of the supervisory controller. Reaidy [221] proposed integrating
bottom-up and IoT to enhance the flexibility of warehouses in a dynamic environment.

4.4.3. State-Space Scheduling

The growth of state spaces has attracted the attention of researchers. This includes the
existence of perturbations, and the necessity of updating control procedures and schedules
in the event of perturbations. In the report by Gallestey et al. [222], for instance, hybrid
MPC is applied to scheduling issues, and multiple authors have discussed multiparameter
scheduling solutions. Several authors have talked about this approach [223–228].

5. Discussion and Future Trends
5.1. Overview

In order to review the body of knowledge on job shop production scheduling and
control, this study uses scientometric analysis. The study of classical scheduling theory
in the workshop started in the 1950s, and the first study was published in 1959. There
were not more than 100 articles a year until the late 1980s. A general upward trend in
publications over the past 20 years, with a peak in 2021, confirms the growing interest
in the study of shop floor scheduling control issues. The articles, however, are primarily
focused on the areas of engineering and computers, with 36.9% and 25.0%, respectively.
This highlights the close relationship between product development and computers in
modern engineering [229–231].

This network analysis study examined the relationships between research countries,
key researchers, and published documents. The “co-citation network mapping” results
presented in Sections 3.4–3.6 highlight global and homogeneous researcher interactions.
First, China leads in research influence, along with the U.S.A. China keeps links with other
countries in Figure 9, but Italy, the U.K., and France are weak. Most researchers co-cite
influential JSSC scholars (Figure 8). This agrees with the observations in Sections 3.2 and 3.7
that scholars in this field, and in different national regions, do not communicate enough.
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Overall, “the publication bottleneck in which manufacturing-related research is pub-
lished on JSSC is more complicated [232–234]. A journal’s value as a source of knowledge
can be measured by the number of studies it publishes in its particular field [235–237]. In
this regard, the International Journal of Production Research has published the most articles
on the topic under review, a total of 279. In addition, it contains a greater number of
citations than Computers and Industrial Engineering and the International Journal of Advanced
Manufacturing Technology [238–240]. In summary, the International Journal of Production
Research appears to be the leading journal in its field” [241–243]. Thus, based upon existing
studies, this study has explored the research implementation by analyzing and classifying
the present research status, research hotspots, and potential future trends in this field of
“Lean Construction”, “job shop scheduling and control (JSSC)”, and “Information and
Communication Technology” [244,245]. As organizations recognize the importance of
scheduling control, an increasing number of them are adopting it as a means to attain social,
environmental, and economic advantages [246].

5.2. Future Scope

Even though the knowledge appears to concentrate on all of the key themes in manu-
facturing, including “operational and management issues, resource optimization, better
production scheduling, and activity tracking, it is possible to identify emerging issues in the
field, and potential partnerships between research clusters. Some following topics, such as
“smart manufacturing”, “decision-making system” and “Integration of scheduling and con-
trol” are proposed to be added to the current research agenda in the field of scheduling and
control in manufacturing” in this section. For example, smart manufacturing can benefit
from real-time machine visibility, thanks to the application of augmented reality technology.
The AR interface can reflect the status of a machine and its processing behavior through a
visualized model in real-time using data from smart machines. Users can view projected
machine data on a real machining scenes with AR-enabled real-time visibility [224]. In
decision-making systems, cloud technology and big data will be used, which enable end
users to conveniently pay as they go for services when they are needed [225], and could be
set up on a cloud platform for easy end-user download and use in daily decision-making.
Last, is the “Integration of scheduling and control”, which is currently a new area of re-
search interest. Because the two theories were created independently for a long time, there
are numerous modeling, numerical, and organizational hurdles to their smooth integration.
When combining their needs, the first thing to take into account is their various temporal
horizons [226]. The synchronization of calculation and decision-making, on several time
scales, is difficult because scheduling takes hours or days, and control takes minutes or
seconds [227]. The scheduling model is usually static and must be upgraded to dynamic,
while the control model is usually linear and must be upgraded to nonlinear [228]. Thus, in-
tegrated intelligent scheduling control requires fast dynamic and nonlinear model real-time
computations. Thus, future research will continue to create a great integrated system.

6. Conclusions

Scheduling and control in production, particularly in uncertain environments, have
garnered the attention of researchers. Acknowledging the significance of scheduling
control, more and more companies are implementing it to achieve social, environmental,
and economic benefits for their organizations. Similarly, recognizing the importance of
lean construction, companies are increasingly adopting scheduling practices to achieve
their organizational social, environmental, and economic goals. The increasing number of
empirical and conceptual papers on job shop scheduling and control (JSSC) indicates that
research in this area is gaining academic attention. However, a limited literature review
on JSSC does not provide a better understanding and overview of developments in this
field. To address this, the main objective of this study is to provide a visual and systematic
scientometric review of 5052 articles and reviews published from 2002 to 2022. Research
methods include co-authorship analysis, co-keyword analysis, and co-citation analysis.
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This study aims to answer the following questions: What are the unique technologies in
the scheduling control (SC) field? What are the development processes in the SC field?
What are the future trends in the SC field? By focusing on key nodes with high frequency,
centrality, and burst intensity, and the articles contained behind them, this report sheds
light on key emerging trends that are of value to the reader. We find that there are some
limitations regarding databases, search terms, methodology, and citation manipulation.
Future research could retrieve data from other databases, cover papers with a wider
variety of language, combine scientometric review with the conventional systematic review
method, and focus on tracing and addressing issues with citation manipulation. Overall,
this study aims to help researchers and practitioners better understand the developments
in the field of job shop scheduling and control.
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