
Citation: Song, D.; Zhang, Y.; Li, J.;

Wang, P.; Ye, S.; Zhang, T.; Li, W.;

Liao, C.; Guo, C.; Liu, J. Thermal

Preference May Facilitate Spatial

Coexistence of Two Invasive Fish

Species in Lake Bosten, China.

Sustainability 2023, 15, 7592. https://

doi.org/10.3390/su15097592

Academic Editor: George P. Kraemer

Received: 2 April 2023

Revised: 2 May 2023

Accepted: 3 May 2023

Published: 5 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Thermal Preference May Facilitate Spatial Coexistence of
Two Invasive Fish Species in Lake Bosten, China
Dan Song 1,2,3 , Yinzhe Zhang 1,2, Junfeng Li 1,2, Puze Wang 1,2, Shaowen Ye 1 , Tanglin Zhang 1, Wei Li 1 ,
Chuansong Liao 1, Chuanbo Guo 1 and Jiashou Liu 1,*

1 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy
of Sciences, Wuhan 430072, China; songdan@hrfri.ac.cn (D.S.); zhangyinzhe@ihb.ac.cn (Y.Z.);
ljfkysss@163.com (J.L.); wpz2139@163.com (P.W.); yeshw@ihb.ac.cn (S.Y.); tlzhang@ihb.ac.cn (T.Z.);
liwei@ihb.ac.cn (W.L.); liaocs@ihb.ac.cn (C.L.); guocb@ihb.ac.cn (C.G.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Aquatic Organism Protection and Ecological Restoration in Cold Waters, Heilongjiang

River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150010, China
* Correspondence: jsliu@ihb.ac.cn

Abstract: As aquaculture food production is expected to increase, introduced aquaculture species
play an important role in meeting the rising demand for aquatic food products and contributing
to great societal benefits. Species introduction forces sympatric species to coexist within the same
ecosystem by niche segregation. Japanese smelt Hypomesus nipponensis and sharpbelly Hemiculter
leucisculus are ecologically similar species and were introduced to Lake Bosten, the largest inland
lake in Northwest China, accounting for more than 60% of the total production. We predicted
that the coexistence of the two invasive species is mediated by habitat segregation. We analyzed
spatiotemporal patterns of Japanese smelt and sharpbelly abundance in Lake Bosten to determine
the patterns of spatial segregation between the two dominant fish species. Our results showed that,
in Lake Bosten, sharpbelly are typically littoral dwellers when the surface temperature increases in
spring and summer, while Japanese smelt often prefer pelagic waters, especially during summer and
autumn when the surface temperature rises. Japanese smelt showed an affinity for deeper waters,
using median depths 1.7 m deeper than those of sharpbelly, irrespective of the sampling season.
Water temperature was the main underlying driver of such spatial segregation and coexistence
of these two closely related species in Lake Bosten. Spawning, food resources, and fishing were
also important possible factors affecting spatial segregation between the two species. Our results
provide new information on niche partitioning patterns as strategies for the coexistence of the two
dominant non-native fish in Lake Bosten, supporting the idea that ecologically similar species can
avoid resource competition through spatial habitat segregation.

Keywords: Japanese smelt; sharpbelly; depth use; habitat selection; water temperature

1. Introduction

Globally, about 50% of farmed fish supplies came from inland aquaculture production
in 2020, contributing a significant role in providing food and nutrition for the future [1].
As aquaculture food production is expected to increase by 15% by 2030, introducing
aquaculture species is critical to meet the rising demand for aquatic food products [2,3].
Some countries rely on non-native fish species for aquaculture, especially Africa and
Asia [4,5]; for example, in China, more than 110 non-native fish species for aquaculture
exceed 25% of the total harvest [6,7]. Although the introduction of non-native fish species
contributes to great societal benefits [8], it can be responsible for substantial biodiversity
declines through competition, predation, disease transmission, the alteration of habitat,
and genetic effects, as well as negative economic impacts [9–12]. The introduction of
species forces sympatry among species that have not evolved together, which may result

Sustainability 2023, 15, 7592. https://doi.org/10.3390/su15097592 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15097592
https://doi.org/10.3390/su15097592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0003-3101-4344
https://orcid.org/0000-0003-3932-8401
https://orcid.org/0000-0002-1258-2410
https://doi.org/10.3390/su15097592
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15097592?type=check_update&version=1


Sustainability 2023, 15, 7592 2 of 12

in coexistence [13,14] or competitive exclusion [15], thereby altering community structure
and ecosystems.

In many cases, multiple species of fish coexist within the same ecosystem by parti-
tioning resources or occupying different ecological niches [16–18] to avoid competition.
There are several ways in which resource partitioning can occur in fish. One common
way is through the partitioning of their feeding strategies. For example, fish use a variety
of feeding strategies, including herbivory, detritivory, insectivory, and piscivory, and the
diversity of feeding strategies allows fish to avoid competition for resources [19]. Fish may
also partition resources based on the type of prey they consume. Major ontogenetic dietary
shifts are observed in many fish species [20,21], likely to provide them with a competitive
advantage. Some species may be more active at night, while others may be more active
during the day. These differences in feeding habits can allow multiple fish species to
coexist in the same ecosystem without directly competing with each other for the same food
resources [22]. In addition to feeding strategies, fish may also partition resources based on
other ecological requirements, such as habitat use or reproductive strategies. Different fish
species have different habitat requirements, and these requirements can vary depending on
factors such as water temperature, dissolved oxygen, water depth, macrophyte coverage, or
other physical structures [23–25], which can lead to habitat segregation. For example, Ven-
dace Coregonus albula and Fontane cisco Coregonus fontanae occupy different water depths,
thus reflecting their differing physiological temperature optima [26]. Additionally, within
different zones of a lake, virile and rusty crayfish display spatial habitat segregation based
on a trade-off between ideal habitat conditions and the density of a competing species [27].
Moreover, species can simultaneously take different adaptation mechanisms to coexist; for
example, two closely related cyprinid fishes (Hemiculter bleekeri and Hemiculter leucisculus)
show both spatial and trophic niche segregation [28]. The mechanisms of segregation re-
duce niche overlap, promote the partitioning of resources, and facilitate stable coexistence
among ecologically similar species.

Smelt Hypomesus are among the most commonly introduced cold-water fish in
China [29–31] and have become successfully established because of their broad trophic
regime [32], considerable adaptability [33], and aggressive behavior [34] when introduced
in new waterbodies (such as reservoirs and lakes). Although it was previously believed
that the introduced fish species was the pond smelt (Hypomesus olidus Brevoort, 1856),
both morphological comparisons and COI gene sequences have confirmed that the widely
introduced fish species in China was the Japanese smelt (Hypomesus nipponensis McAllister,
1963) [35,36]. Japanese smelt, locally called the wakasagi, is a small freshwater fish that
is native to Japan and other parts of East Asia and was introduced into Lake Bosten, the
largest inland freshwater lake in China, in 1991 for commercial fisheries, where it was
able to establish self-sustaining populations. It makes up the majority of the commercial
fishery [29,34]. Japanese smelt is the only aquatic product exported from Lake Bosten,
and it has been continuously exported to Japan, Korea, and other places. Currently, the
Japanese smelt from Lake Bosten accounts for 70% of the market share in the Japanese smelt
market [37]. Although the introduction of Japanese smelt increased the overall fish pro-
duction in Lake Bosten, many studies have demonstrated significant negative impacts on
aquatic ecosystems [38–41]. For example, in California’s Sacramento–San Joaquin estuary,
the introduced Japanese smelt may have negatively affected native delta smelt (Hypomesus
transpacificus) through competition for food and space, predation on larval delta smelt,
and hybridization [38]. Moreover, there was a significant shift in native fish assemblages
in Lake Erhai, a subtropical plateau lake in southwestern China, after a Japanese smelt
invasion [41]. Sharpbelly (Hemiculter leucisculus) is also a small freshwater fish similar to
Japanese smelt in terms of diet and the occupied water layers and was introduced into Lake
Bosten accidentally. Previous studies have shown the negative ecological consequences
of Japanese smelt invasion in Lake Bosten through predation and competition [32,34,42],
leading to the biodiversity loss of native fish species. Historical records indicate that the
Lake Bosten fish community was formed by four native species: Big-head Schizothoracin
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(Aspiorhynchus laticeps), Tarim Schizothoracin (Schizothorax biddulphi), slender stone loach
(Triplophysa tenuis), and Kashgarian loach (Triplophysa yarkandensis) [29,34]. With the devel-
opment of fisheries, a total of 38 fish species, including Japanese smelt and sharpbelly, have
been introduced into Lake Bosten intentionally or accidentally [29]. However, in 2020, the
survey on the fish community in Lake Bosten showed that a significant fish assemblage
shift was found and there was only one native fish species, Big-head Schizothoracin, and
this species is considered to be critically endangered, owing to a combination of factors,
including climate change, overfishing, habitat loss and degradation, the introduction of
non-native species, and pollution [43–45]. The annual yield of the two ecologically similar
species, Japanese smelt and sharpbelly, accounts for more than 60% of the total production.
They are ecologically similar in diet, and their diet typically consists of zooplankton, aquatic
insects, algae, and the eggs and larvae of other small fish [30,34]. They mainly stay in the
upper water column and have a high reproductive capacity and adhesive eggs [28,34,46].
Despite that, in theory, for species to co-occur in Lake Bosten, a certain degree of competi-
tion among the two ecologically similar species must be expected, no studies have revealed
the niche segregation between Japanese smelt and sharpbelly.

This study investigated habitat segregation between the two dominant non-native
species in Lake Bosten, Japanese smelt Hypomesus nipponensis and sharpbelly Hemiculter
leucisculus. We hypothesized that the two species in Lake Bosten show the ability to adapt
their behavior (i.e., habitat segregation) to seasonal thermal variation. The purposes of this
study were (1) to understand spatiotemporal patterns of Japanese smelt and sharpbelly
abundance and (2) to determine seasonal spatial segregation between the two fish species.
Thus, this work provides new information on niche partitioning patterns as strategies for
two dominant non-native fish coexistence in Lake Bosten.

2. Materials and Methods
2.1. Study Area

Lake Bosten is a large freshwater lake located in the Xinjiang Uygur Autonomous
Region in China (Figure 1). With a surface area of approximately 1000 km2, it is the
largest lake in Xinjiang and the largest inland lake in China. The Kaidu River is the largest
tributary of Lake Bosten and originates in the eastern Tian Shan Mountains before flowing
into the lake from the southeast. The lake and its surrounding area are an essential part of
Tarim Basin, one of the largest inland basins in the world. The climate of Lake Bosten is
characterized as arid and semi-arid, with significant temperature variations throughout the
year. Summers are long, hot, and dry, with temperatures often exceeding 35 ◦C in July and
August. Winters are cold and dry, with temperatures occasionally dropping below freezing.
The frozen period of Lake Bosten typically lasts from December to March [47].Sustainability 2023, 15, x FOR PEER REVIEW 4 of 13 
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2.2. Sampling Protocol

In 2020, Japanese smelt Hypomesus nipponensis and sharpbelly Hemiculter leucisculus in
the lake were sampled seasonally: spring (April), summer (July), and autumn (October). A
total of 14 sampling sites (S1–S14) were set from the shallow littoral habitat to the pelagic
zone, covering three distinct depths, classified as (1) littoral (<2 m deep), (2) sub-littoral
(ca. 5 m), and pelagic (ca. 10 m) (Figure 1). Fish were sampled using multi-mesh gill nets.
Each gillnet used was 2 m (for the littoral area) or 5 m (for sub-littoral and pelagic areas)
deep and 30 m long and consisted of twelve units of 2.5 m with different mesh sizes placed
in random order (8.5, 4.0, 12.5, 2.0, 11.0, 1.6, 2.5, 4.8, 3.1, 1.0, 7.5, and 6.0 cm). At each
sampling site, both floating and sinking gillnets were set in the late afternoon and retrieved
the following afternoon (ca. 24 h). We used a YSI EXO3 profiling sonde to collect water
temperature along the depth of the water column.

The captured fish were identified at the species level, measured to the nearest millime-
ter (total length, TL), and weight to the nearest gram (body weight) within 24 h. We also
recorded the distances of each individual from the vertical position of captured fish to the
headrope for the floating net (D1) and the footrope for the sinking net (D2). Thus, the depth
used for the captured fish in the water column was D1 for the floating nets, and the water
depth was minus D2 for the sinking nets.

The catch per unit effort (CPUE; the number of fish net−1 day−1) was estimated for
each fish species caught on each sampling occasion from the littoral, sub-littoral, and
pelagic habitats. The gillnet used in the sub-littoral and pelagic areas was 3 m deeper than
that used in the littoral area; thus, the surface area of the net used in sub-littoral and pelagic
areas was 1.5 times larger than that used in the littoral area. To account for this difference,
catches in the sub-littoral and pelagic areas were normalized by dividing the total values
by 2.5.

2.3. Statistical Analysis

Data were first tested for homoscedasticity (Levene’s test for ANOVA) and normality
(Shapiro–Wilk test), and, if necessary, data were subjected to an appropriate transformation.
In this study, the data on the abundance of Hypomesus nipponensis and Hemiculter leucisculus
were heteroscedastic, even after transformation. Therefore, differences in the abundance of
H. nipponensis and H. leucisculus between season and habitat and the interaction between
those two factors were tested using the Scheirer–Ray–Hare extension of the Kruskal–Wallis
test [48], followed by pair-wise comparisons using the Mann–Whitney U-test. The Kruskal–
Wallis test was used to test the differences in depth use between the two species, followed
by pair-wise comparisons using the Mann–Whitney U test.

All statistical analyses were performed using R software [49], using the package
rcompanion (version 2.4.21) [50] through the scheirerRayHare function for the Scheirer–Ray–
Hare extension of the Kruskal–Wallis test.

3. Results

Our analysis indicated the main effects of habitat and season on the abundance of
sharpbelly Hemiculter leucisculus (the Scheirer–Ray–Hare extension of the Kruskal–Wallis
test, d.f. = 2, H = 20.18, p < 0.001; the Scheirer–Ray–Hare extension of the Kruskal–Wallis
test, d.f. = 2, H = 73.36, p < 0.001; respectively), and interactions between habitat and season
(the Scheirer–Ray–Hare extension of the Kruskal–Wallis test, d.f. = 4, H = 11.01, p < 0.001;
Table 1). During spring and summer, the abundance was significantly higher in the littoral
habitats and decreased with increasing water depth (Figure 2A). Sharpbelly was evenly
distributed between the littoral and pelagic habitats in autumn (p > 0.05).
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Table 1. Scheirer–Ray–Hare extension of the Kruskall–Wallis test on the ranks of the abundance
of sharpbelly Hemiculter leucisculus and Japanese smelt Hypomesus nipponensis between habitat and
season in Lake Bosten.

Species Factors d.f. H p

Hemiculter leucisculus Habitat 2 20.18 <0.001
Season 2 73.36 <0.001

Habitat:Season 4 11.01 0.026
Residuals 117

Hypomesus nipponensis Habitat 2 7.39 0.02
Season 2 24.88 <0.001

Habitat:Season 4 40.61 <0.001
Residuals 117
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Figure 2. Boxplots with error bars indicate the abundance of sharpbelly H. leucisculus (A) and Japanese
smelt H. nipponensis (B) in littoral, sub-littoral, and pelagic habitats during three seasons in Lake
Bosten. Significances between habitats were computed with Mann–Whitney U test, with the symbol
“*”, “**”, “***”, and “NS” representing p < 0.05, p < 0.01, p < 0.001, and non-significant, respectively.

Our analysis indicated that the abundance of Japanese smelt Hypomesus nipponensis
did differ among habitat and seasons, and there was a significant interaction between
habitat and season (the Scheirer–Ray–Hare extension of the Kruskal–Wallis test, d.f. = 2,
H = 7.39, p = 0.02; the Scheirer–Ray–Hare extension of the Kruskal–Wallis test, d.f. = 2,
H = 24.88, p < 0.001; the Scheirer–Ray–Hare test, d.f. = 4, H = 40.61, p < 0.001; respectively;
Table 1). Japanese smelt used littoral and sub-littoral habitats in spring (p < 0.05) but
behaved oppositely in summer and autumn (Figure 2B).

The gillnet survey revealed pronounced differences in the vertical distributions be-
tween Japanese smelt and sharpbelly (p < 0.05; Figure 3A). Japanese smelt and sharpbelly
were detected from the surface to a maximum depth of 11.29 m and 7.95 m, respectively.
Overall, Japanese smelt showed affinity to deeper waters, using median depths 1.7 m deeper
than sharpbelly (Figure 3A), irrespective of the sampling season (Figure 4). There were no
significant differences in the vertical distribution of sharpbelly among seasons (p > 0.05;
Figure 3B). Sharpbelly were mainly caught in shallow waters in the littoral habitat, where
the water temperature was relatively high (Figure A1). Japanese smelt, in opposite, used
deeper waters (median depth = 3.40 m) when surface temperature increased, especially in
summer, occupying shallower areas when the surface temperature dropped (Figure 3C).
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4. Discussion

This study highlights spatial segregation and the differences in depth use by two closely
related fish species facilitating coexistence in a freshwater lake ecosystem. As hypothesized,
in Lake Bosten, there was significant spatial segregation between the two species. Specif-
ically, sharpbelly Hemiculter leucisculus were typically littoral dwellers, especially when
the surface temperature increased in spring and summer, while Japanese smelt Hypomesus
nipponensis often preferred the pelagic waters, especially during summer and autumn when
the surface temperature rose. There were also significant differences in vertical depth use
among the two species. Japanese smelt occupied median depths 1.7 m deeper than those of
sharpbelly, irrespective of the sampling season.

Over an evolutionary time scale, sympatric species, especially those closely related or
ecologically similar, may prevent competitive exclusion by separating their spatiotemporal
habitat utilization and/or food [13,51]. There was horizontal segregation in habitat use
between Japanese smelt and sharpbelly. Segregation in habitat use by fish was modified
by a very large number of possible factors, such as water temperature [52], spawning [53],
food availability [54], predation risk [55], and other factors [56]. Fish movement and
distribution across habitats are driven by the fact that fish can optimize their use of resources
and promote their survival and reproduction in these habitats [23]. Several studies have
suggested that the adaptability of fish species through behavioral plasticity may assist them
in dealing with unfavorable environmental conditions, enabling them to maintain their
functional roles in the ecosystems [23,57,58]. For example, when food resources are shared,
the coexistence of the two species, Arctic charr Salvelinus alpinus and whitefish Coregonus
lavaretus, may depend on the option for differential use of space. Therefore, Arctic charr
mainly use the deeper water layers, and whitefish mainly occupy the littoral and upper
pelagic habitats [59]. In this study, sharpbelly demonstrated a strong fidelity for warmer
water layers, selecting shallower and warmer littoral habitats, especially during spring
and summer. Sharpbelly mainly stay in the upper water column and spawn adhesive eggs
between June and July [29]. In Lake Bosten, the littoral habitats, which are mainly composed
of three species of submerged macrophytes (i.e., Hydrilla verticillata, Ceratophyllum demersum,
and Potamogeton pectinatus) and two species of emergent macrophytes (i.e., Phragmites
australis and Typha orientalis) [34], can provide a favorable spawning environment for fish,
as macrophytes may offer shelter and protection for eggs and young fish [60]. Moreover,
the dense foliage of macrophytes can create a complex habitat structure that can provide
refuge for fish from predators [61]. Thus, sharpbelly move to shallower waters, where
they can take advantage of the spawning grounds in spring and summer. Sharpbelly
mainly feed on aquatic insects, Oligochaeta, Cladocera, and Copepod Crustacea [28]. High
prey availability in the littoral habitats, coupled with a preference for complex habitats in
shallow waters, likely provides thriving conditions for the growth of this species during
spring and summer. Decreasing the preference for littoral habitats in autumn can indicate
fluctuations of the abundance caused by differences in habitat selection, but a matching
increase did not take place in the pelagic habitat. Such a pattern was probably induced by
the low activity of fish caused by low littoral temperatures in autumn.

Japanese smelt, on the other hand, often occupy deeper and pelagic waters. Japanese
smelt typically spawn in shallow, weedy areas from the end of February to the beginning
of May, and the eggs are adhesive and attach to the surface of gravel or leaves of macro-
phytes [29]. This spawning behavior or its physical requirements for spawning determine
the species to occupy shallower areas and exhibit site preference during spawning before
moving to deeper areas. In addition, as the ice thaws and the water temperature begins
to rise, a large number of nutrients and organic matters are carried into Lake Bosten by
the Kaidu River, the largest tributary of Lake Bosten, which can stimulate the growth of
aquatic plants and animals [62], providing a rich food source for fish. Thus, the two species
appeared to show less horizontal habitat segregation in spring when food was abundant.
Additionally, in spring, significant differences in the average depth use (p < 0.05) by the
two species facilitated their coexistence in littoral habitats. Japanese smelt selected pelagic
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habitats in summer and autumn, which probably were less profitable in terms of food but
more thermally favorable. As the water temperature continues to rise in summer, Japanese
smelt move to the pelagic zones, where the water is cooler and darker, contributing to
obvious horizontal habitat segregation among the two species. A previous study showed
that Japanese smelt prefer cold pelagic waters, avoid light, and swim in darker environ-
ments [33]. Japanese smelt are extremely sensitive to changes in light intensity. One reason
for this behavior may be that Japanese smelt have a well-developed visual system, i.e., a
high density of ganglion cells and the presence of area retinae temporalis [63], that support
its highly visual behavior and adapt to low light levels, which allows them to detect and
capture prey and avoid predators more effectively in darker waters [64]. Another possible
reason is that the avoidance of light helps Japanese smelt conserve energy by reducing the
need for constant swimming and maneuvering to avoid predators [65,66]. Additionally,
fishing pressure may cause Japanese smelt to change their behavior, such as by avoiding
areas where fishing is common [67]. This can result in changes in habitat use patterns,
as fish may avoid areas where they perceive a higher risk of encountering fish gear or
where they have previously been caught. As one of the most important commercial species
for fisheries in Lake Bosten, Japanese smelt are typically caught using fyke nets that are
typically set in shallow waters of the lake during the autumn months [29], which drives the
species to migrate from littoral to pelagic habitats.

It has been suggested that the water temperature modifies the vertical distribution
of fish through differences in physiological tolerance and thus may contribute to the
coexistence of species [68,69]. As water temperature changes, fish will often adjust their
vertical distribution in the water column in search of more favorable conditions [23].
Therefore, species are known to actively seek out and compete for thermal habitats that are
optimal for their metabolism and behavior, where their performance can be at its peak [70].
In Lake Stechlin in Germany, for example, vendace (Coregonus albula) and Fontane cisco
(Coregonus fontanae) segregate vertically with energetically optimum temperatures, choosing
the water layers of about 6.5–9 ◦C and 4–6 ◦C during stratification, respectively [25].
Our study showed that during spring and summer, when water temperature decreased
with water depth, Japanese smelt and sharpbelly showed significant differences in depth
distribution, which further suggested that thermal preference promotes the coexistence
of the two species. Japanese smelt selected relatively colder water conditions compared
with sharpbelly and occupied significantly deeper water layers when surface temperature
increased in summer. As a cold-water species, Japanese smelt have adapted to a relatively
narrow temperature range and typically inhabit cool, well-oxygenated waters. Previous
studies have shown a low-temperature affinity of Japanese smelt, generally using deeper
water layers with the optimum temperature for development ranging between 7 and
19 ◦C in summer [33,71], and that the fish are relatively scarce in areas with temperatures
above 20 ◦C [72]. Another study conducted in Lake Kasumigaura in Japan also found that
Japanese smelt showed a preference for cold water and that water temperature resulted
in inferior growth in summer [73]. Sharpbelly always occupied the warmest available
water layers among seasons. Considering its wide distribution range in various freshwater,
such as lakes, rivers, and reservoirs, and relatively high optimal temperature for growth,
it was unsurprising that there existed an affinity for warm water [74]. In this study,
the ability to adapt their behavior to seasonal thermal variation in species with both
warm-water and cold-water affinities indicated that behavioral plasticity is an important
determinant of the resilience of fish species to changing environmental conditions and
the coexistence of species with similar resource requirements. Habitat segregation may
help the coexistence of species with similar resource requirements to reduce the negative
impacts of competition. Japanese smelt in Lake Bosten mainly feed on zooplankton [32]
and may, therefore, overlap their diet with sharpbelly, which have an omnivorous diet [28].
On the other hand, significant differences in vertical distribution between the two species
during autumn, when water temperatures were similar throughout the water column,
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corroborated that diet and habitat specialization may also drive spatial patterns of vertical
fish distribution.

5. Conclusions

In summary, spatial segregation occurs between two non-native species in Lake Bosten,
Japanese smelt Hypomesus nipponensis and sharpbelly Hemiculter leucisculus. Water tem-
perature was the main underlying driver of such spatial differences in their abundance
distributions. Additionally, spawning, food resources, and fishing pressure were also
important possible factors affecting spatial segregation between the two species. Further
studies are needed to better understand the ecological pattern of habitat use, diet, and
distribution for both fish species under sympatric conditions to monitor temporal and
spatial habitat shifts responding to environmental changes and to determine the extent to
which behavioral plasticity may allow species to cope with environmental variability.
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