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Abstract: Hybrid heavy-duty off-road vehicles frequently experience rapid acceleration and decel-
eration, as well as frequent uphill and downhill motion. Consequently, the engine must withstand
aggressive transients which may drastically worsen the fuel economy and even cause powertrain
abnormal operation. When the engine cannot respond to the transient demand power quickly
enough, the battery must compensate for the large amount of power shortage immediately, which
may cause excessive battery current that adversely affects the battery safety and life span. In this
paper, a nonlinear autoregressive with exogenous input neural network is used to recognize the
driver’s intention and translate it into subsequent vehicle speed. Combining energy management
with vehicle speed control, a co-optimization-based driver-oriented energy management strategy
for manned hybrid vehicles is proposed and applied to smooth the engine power to ensure efficient
operation of the engine under severe transients and, at the same time, to regulate battery current
to avoid overload. Simulation and the hardware-in-the-loop test demonstrate that, compared with
the filter-based energy management strategy, the proposed strategy could yield a 38.7% decrease in
engine transient variation and an 8.2% decrease in fuel consumption while avoiding battery overload.
Compared with a sequential-optimization-based energy management strategy, which is recognized
as a better strategy than a filter-based energy management strategy, the proposed strategy can achieve
a 16.2% decrease in engine transient variation and a 3.2% decrease in fuel consumption.

Keywords: driver-oriented energy management; nonlinear model predictive control; driver’s
intention recognition; engine power smoothing; battery current regulation

1. Introduction

Automotive electrification and hybridization have shown promise in recent years,
owing to low carbonization orientation and strict emission regulations [1]. Hybrid power
systems have already been widely used in light-duty vehicles. It has also begun to be
used in heavy-duty off-road vehicles along with the development of high-power traction
motors and high-power-density batteries. However, these applications face some unique
challenges. Due to the limitation of vehicle packaging space and weight, the battery capacity
is limited, and the engine must bear most of the power demand. However, because of
the poor dynamic response of diesel engines, excessive transient variation can make it
difficult to control the engine to deliver the target power immediately, so the battery current
may exceed the limit during power compensation. In some extreme cases, the engine may
even stall because of overload [2]. Therefore, it is difficult for hybrid heavy-duty off-road
vehicles to achieve the theoretical best fuel economy under aggressive transient conditions
using conventional energy management strategy.

For hybrid electric vehicles, usually, powertrain-level energy management strategies
including global optimization [3–5] and instantaneous optimization are used to achieve
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the goals of both fuel consumption reduction and battery current regulation. Obviously,
instantaneous optimization is more suitable for hybrid heavy-duty off-road vehicles. Instan-
taneous optimization, represented by the equivalent consumption minimization strategy
(ECMS) [6,7], model predictive control (MPC) [8–11], and intelligent algorithms [12–14],
has attracted much more attention recently because of its real-time application potential.
Vehicle speed prediction is often used in instantaneous optimization, and usually, the
predicted vehicle speed trajectory is used as the reference working condition for energy
management optimization [15–18]. However, because energy management and vehicle
speed control are decoupled, these speed prediction methods cannot accurately reflect the
driver’s intention on instantaneous vehicle speed. In addition, the dynamic characteristics
of the engine are also not fully considered in optimization of energy management. As a
result, they are not applicable to heavy-duty off-road vehicles, which normally take the
diesel engine as its main power source and frequently experience aggressive transient
operating conditions.

Among energy management strategies for heavy-duty off-road vehicles, Di
Cairano et al. [2,19] emphasize the necessity of smoothing the engine power output to
avoid aggressive engine transients and improve fuel economy. They add the engine power
variation as a penalty item to the MPC objective function to smooth the engine opera-
tion. Compared with the adopted rule-based strategy, the engine operating points can
be more closely distributed near the optimal brake specific fuel consumption (BSFC) line.
Chen et al. [20] consider the dynamic characteristic of the engine when designing the
MPC-based energy management strategy, which allows the engine power to change mildly.
Kim et al. [21–23] develop a filter-based energy management strategy for a series diesel–
electric hybrid military vehicle, in which a first-order low-pass filter is used to make the
engine account for the low-frequency portion of the power and the battery pack for the
high-frequency portion. Therefore, aggressive engine transients were significantly reduced.
However, the phase delay introduced by the low-pass filter may result in sluggish engine
response. The above studies all focus on smoothing engine power demand but ignore the
resulting adverse effects on the battery, i.e., the battery current may be too high or even over
the limit. To the authors’ knowledge, few studies exist regarding smoothing the engine
power and regulating battery current simultaneously in the control of hybrid heavy-duty
off-road vehicles.

The emerging technologies of connectivity and automatic driving make it possible to
plan vehicle speed and optimize energy management strategy simultaneously [24], this
is so-called vehicle-level energy management. There are two main types of vehicle-level
energy management: sequential optimization and co-optimization. Sequential optimization
is the most applied method, during which the two issues are decoupled into two layers.
In the first layer, according to the planned vehicle speed, the demand power is regulated
and transmitted to the energy management system as a target, and in the second layer,
it is distributed to different power sources [25–28]. However, these two issues are ad-
dressed together in co-optimization. Kim et al. [29] conducted a co-optimization of vehicle
speed planning and energy management for a fuel cell–battery hybrid military vehicle
and compared the co-optimization results with that of the sequential optimization. The
result indicates that co-optimization has a higher energy-saving potential than sequential
optimization. However, speed planning cannot be implemented for manned vehicles. How
to apply vehicle-level energy management to manned vehicles is still an open issue.

Energy management of hybrid electric vehicles embodies the concept of sustainability,
specifically in the following aspects: (1) High energy efficiency: A hybrid electric vehicle
adopts dual power systems, namely engine and battery, and controls the switching and
cooperation of the two power systems in real time through the energy management system.
Compared with traditional vehicles, hybrid vehicles can use fuel energy more efficiently,
which greatly improves the energy utilization efficiency. (2) Reduce emissions: Hybrid
electric vehicles can monitor and optimize the power system in real time in energy manage-
ment, which greatly reduces vehicle emissions. In the pure electric mode, the zero-emission
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capability of the automobile is further exerted. This provides a certain guarantee for envi-
ronmental protection. (3) Improve service life: Through energy management, the hybrid
electric vehicle prolongs the battery service life. This saving behavior not only reduces
waste but also protects the environment. Therefore, the energy management of hybrid
electric vehicles fully demonstrates the consideration and embodiment of sustainability
by improving energy utilization efficiency, reducing emissions, and prolonging battery
service life.

Motivated by vehicle-level energy management, and combining energy management
with vehicle speed control, a vehicle-level driver-oriented energy management strategy
is proposed here to smooth engine power variation and avoid battery current overload
simultaneously. Specific ideas and contributions include:

1. A nonlinear autoregressive with exogenous input (NARX) neural network is trained
to recognize the driver’s driving intention and translate it into the expected subse-
quent vehicle speed trajectory, which will be used as the tracking reference of the
MPC controller.

2. A nonlinear MPC controller is designed to track the reference vehicle speed and
realize energy management. By using MPC, the driving force and engine power
are co-optimized, which allows engine power to follow demand power well so that
battery current overload is avoided. The penalty weights are used to coordinate the
variations in driving force and engine power, which leads to improvement of engine
power smoothing and further decrease in transient battery current. The weights
in the objective function are adaptively selected according to the vehicle working
condition classification to ensure that the demand power variation can match the
engine dynamic characteristic under different transient conditions.

3. The effectiveness of the proposed strategy is verified through simulation and the
hardware-in-the-loop (HiL) test in an actual off-road driving cycle with drastic
power fluctuations.

The rest of this article is organized as follows. In Section 2, simulation-oriented
dynamic vehicle models are introduced. In Section 3, a co-optimization-based driver-
oriented energy management strategy is introduced. Section 4 presents analysis and
comparison of the simulation results and HiL test results. Finally, the conclusions are
presented in Section 5.

2. Simulation-Oriented Vehicle Model

The object of this paper is a series hybrid heavy-duty off-road vehicle, with the
configuration shown in Figure 1. This vehicle has a total weight of 30,000 kg and is
designed for harsh terrain and environment. The front power chain includes a primary
power source, composed of a diesel engine and a generator; an auxiliary power source,
composed of a battery; and a gear box located between the engine and the generator to
match the operating ranges of the two components. The rear power chain primarily consists
of two driving motors and two dual-speed transmissions. The main vehicle parameters are
shown in Table 1. In Sections 2.1–2.4, a powertrain dynamic model suitable for transient
study will be introduced and described in detail.

Table 1. Main parameters of the vehicle.

Parameter Description

Curb weight 30,000 kg
Rolling resistance coefficient 0.1

Frontal area 4 m2

Drag coefficient 1
Rotating mass conversion factor 1.2

Length × width × height 7.5 m × 3 m × 2 m
Engine 8 V diesel engine; normal power: 550 kW
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Table 1. Cont.

Parameter Description

Gear box Ratio: 1.9
Generator Permanent magnet synchronous motor; normal power: 500 kW; peak power: 600 kW

Motor Permanent magnet synchronous motor; normal power: 200 kW; peak power: 313 kW
Battery Lithium iron phosphate; layout: 2P246S; capacity: 96 Ah; voltage: 900 V

Transmission Dual-speed mechanical transmission; ratios: 28.78, 12.02
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2.1. Engine Model

To simulate the engine characteristics under aggressive transients with relatively
less computational burden, we adopt a mean value model, which is built and calibrated
based on our previous work [30]. The structure of the engine model is shown in Figure 2.
The engine model consists of six parts. The mass, the pressure, and the temperature
of the air flowing into the cylinder are calculated by the compressor model, intercooler
model, and intake manifold model, respectively, and the injected fuel mass is calculated
by the controller model. Then, the combustion model converts heat into mechanical
energy to drive the crankshaft. The exhaust gas enters the turbine model after passing
through the exhaust manifold model to recover energy, and the torque converted from the
exhaust gas energy drives the compressor rotation, thus realizing the closed loop of the
whole simulation.

Sustainability 2023, 15, x FOR PEER REVIEW 4 of 26 
 

 
Figure 1. Powertrain configuration. 

Table 1. Main parameters of the vehicle. 

Parameter Description 
Curb weight 30,000 kg 

Rolling resistance coefficient 0.1 
Frontal area 4 m2 

Drag coefficient 1 
Rotating mass conversion factor 1.2 

Length × width × height 7.5 m × 3 m × 2 m 
Engine 8 V diesel engine; normal power: 550 kW  

Gear box Ratio: 1.9 
Generator Permanent magnet synchronous motor; normal power: 500 kW; peak power: 600 kW 

Motor Permanent magnet synchronous motor; normal power: 200 kW; peak power: 313 kW 
Battery Lithium iron phosphate; layout:2P246S; capacity: 96 Ah; voltage: 900 V 

Transmission Dual-speed mechanical transmission; ratios: 28.78, 12.02 

2.1. Engine Model 
To simulate the engine characteristics under aggressive transients with relatively less 

computational burden, we adopt a mean value model, which is built and calibrated based 
on our previous work [30]. The structure of the engine model is shown in Figure 2. The 
engine model consists of six parts. The mass, the pressure, and the temperature of the air 
flowing into the cylinder are calculated by the compressor model, intercooler model, and 
intake manifold model, respectively, and the injected fuel mass is calculated by the con-
troller model. Then, the combustion model converts heat into mechanical energy to drive 
the crankshaft. The exhaust gas enters the turbine model after passing through the exhaust 
manifold model to recover energy, and the torque converted from the exhaust gas energy 
drives the compressor rotation, thus realizing the closed loop of the whole simulation. 

 
Figure 2. Engine model. Figure 2. Engine model.



Sustainability 2023, 15, 7539 5 of 25

2.1.1. Turbocharger Model

The turbocharger is composed of a compressor, a turbine, and a rotor. The efficiency
and pressure ratio of the compressor are obtained from experimental data. The compres-
sor outlet temperature and the torque required to drive the compressor are calculated
through the isentropic thermal efficiency relationships. These relationships are presented
in Equations (1)–(4) [31]:

πc = f
( .
mc, Ntc

)
(1)

ηc = f
( .
mc, Ntc

)
(2)

Tc,out = Tc,in

(
1 +

1
ηc

(
π

k−1
k

c − 1
))

(3)

Mc =

.
mcCpaTc,in

ηcωtc

(
π

k−1
k

c − 1
)

(4)

where πc represents the pressure ratio, ηc is the compressor efficiency,
.

mc is the air mass
flow rate (kg/s), Ntc is the rotor speed (n/min), ωtc is the rotor speed (rad/s), Tc,in and
Tc,out are the compressor inlet and outlet temperatures (K), k is the adiabatic exponent,
Mc is the compressor torque (N·m), and Cpa is the specific heat of air at constant pressure
(kJ/(kg·K)), which was assumed to be constant.

The turbine modeling principle was similar to that of the compressor, and could be
expressed by Equations (5)–(7) [31]:

Mt =

.
mtCpeTt,in

1000ηtωtc

(
π

k−1
k

t − 1
)

(5)

Mt =

.
mtCpeTt,in

1000ηtωtc

(
π

k−1
k

t − 1
)

(6)

.
mt =

.
ma +

.
m f (7)

where Mt represents the turbine torque (N·m);
.

mt,
.

ma, and
.

mf are the exhaust gas, air, and
fuel mass flow rates (g/s), respectively; and Cpe is the specific heat of the exhaust gas
at constant pressure (kJ/(kg·K)), which was assumed to be constant. Tt,in is the turbine
inlet temperature (K).

The rotor dynamic model was obtained:

Mt −Mc = Jtc
.

ωtc (8)

where Jtc is the inertia of the turbocharger rotor.

2.1.2. Intercooler Model

The intercooler model primarily simulates the changes in the gas temperature and
pressure. The temperature relationship could be expressed by Equations (9) and (10) [32]:

Tim = Tc,out(1− ηcool) + ηcoolTcoolant (9)

ηcool = f
(

Ne,
.

ma
)

(10)

where Tim represents the intake manifold temperature (K); Tcoolant is the coolant tempera-
ture, which was approximately 433 K; and ηcool is the intercooler efficiency, which could be
expressed in tabular form alongside the engine speed and the air mass flow rate.
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The gas experiences a pressure drop after passing through the intercooler because
flow resistance is present. The pressure drop is calculated using Equation (11) [31]:

∆p =
ε

.
m2

c
ρim

=
ε

.
m2

c RTim
pim

(11)

where ε is the friction factor of the intercooler, R is the ideal gas constant, ρim is the intake
mass density (kg/m3), and pim is the intake manifold pressure (Pa).

2.1.3. Intake and Exhaust Manifold Model

Based on the first law of thermodynamics and the ideal gas state equation, the rela-
tionship between the pressure and the air flow rate in the intake manifold is obtained, as
shown in Equations (12)–(14) [31]:

.
pim =

Tim
( .
mc −

.
ma
)
kR

Vim
(12)

.
ma =

Vd
120RTim

ηv pimNe (13)

ηv = f (Ne, pim) (14)

where Vim and Vd are the intake manifold and cylinder volumes (m3), respectively, and ηv
is the volumetric efficiency, which could be expressed in tabular form alongside the engine
speed and the intake manifold pressure.

The pressure of the exhaust manifold is obtained using an empirical formula [30], as
shown in Equation (15):

pem =
1
2

(
pim +

√
p2

im − 4
.

m2
emβ(2Tim + ∆Tem)

)
(15)

where ∆Tem represents the temperature rise (K), and β is an empirical parameter.

2.1.4. Cylinder Model

The cylinder model is primarily used to calculate the indicated torque and the engine
speed. The indicated torque is calculated using Equations (16) and (17) [31].

Mi =
9.55

( .
m f · Hu · ηi

)
Ne

(16)

ηi = f
(

Ne,
A
F

)
(17)

Engine speed is obtained from Newton’s second law:

Mi −M f −Ml = J
..
ϕ (18)

M f = f (Ne, Ml) (19)

where M f represents the friction torque (N·m), which is obtained from a table using the
engine speed (Ne) and the load torque (Ml); J is the inertia of the rotating parts (kg·m2);
and ϕ is the crankshaft angle (rad).
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2.1.5. Engine Model Validation

The mean value engine model is built based on our previous work [31], and each part
of the model is calibrated with test data so that the error could be within 5%. As the focus
of this paper is not on calibrating the model, only the results are shown here. As shown in
Figure 3, the engine model had high accuracy.
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2.2. Generator and Driving Motor Model

The generator and the driving motors were permanent magnet synchronous motors
(PMSMs); the generator is a surface-mounted PMSM, and the driving motor is an interior
PMSM. A dq axis model is used to accurately simulate the motor performance.

To simplify the calculations, the variables in a three-phase coordinate system (the abc
coordinate system) were transformed into a two-phase rotating coordinate system (the dq
coordinate system) using Clarke and Park transforms. The motor voltage, flux linkage,
electromagnetic torque, and kinematic equations in the dq coordinate system were used for
modeling, as shown in Equations (20)–(25) [32]. Then, the variables in the dq coordinate
system were transformed back to the abc coordinate system using Park and Clarke inverse
transforms. Figure 4 presents a diagram of the motor model.
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According to the principle of holding power constant throughout a transform, the
Clarke and Park transforms could be expressed by Equations (20)–(22):

[
id
iq

]
= C2s→2r C3s→2s

ia
ib
ic

 (20)
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C3s→2s =

√
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
(21)

C2s→2r =

[
cosθ sinθ
−sinθ cosθ

]
(22)

where C3s→2s is the Clarke transform matrix; C2s→2r is the Park transform matrix; ia, ib, and
ic represent the stator a, b, and c phase currents (A), respectively; and id and iq are the d and
q axis currents (A), respectively.

Equation (23) provides the stator voltage equations:{
ud = Rid +

dψd
dt − ψqωele

uq = Riq +
dψq
dt + ψdωele

(23)

where ud and uq are the d and q axis voltages (V), respectively; R is the stator resistance (Ω);
ψd and ψq are the d and q axis stator flux linkages (Wb), respectively; and ωele is the rotor
electric angular velocity (rad/s).

Equation (24) expresses the electromagnetic torque:

Tele =
3
2

pn
(
ψdiq − ψqid

)
(24)

where Tele is the electromagnetic torque (Nm), and pn is the number of pole pairs.
The kinematic equation is shown in Equation (25):

Tele − Tl − Bωr = J
dωr

dt
(25)

where Tl is the load torque (Nm), B is the resistance coefficient, and ωr is the mechanical
angular velocity (rad/s).

The field-oriented control is adopted for the motors [33]. When the target torque of
the driving motor is negative, it is the regenerative braking mode. The target torque of the
driving motor is calculated by the upper controller and is limited by the maximum torque
of the motor at the current state and the torque calculated from the maximum battery
charging power.

2.3. Battery Model

The open circuit voltage, Uoc, and the internal resistance, Rb, were the primary consid-
erations in the battery model, as shown in Figure 5.
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The model can be described using Equations (26)–(28):

Ib = −Uoc −
√

U2
oc − 4PbRb

2Rb
(26)

SoC = SoC0 −
∫ Ib

Q
dt (27)

.
SoC = −Uoc −

√
U2

oc − 4PbRb
2RbQ

(28)

where Ib and Pb are the battery current (A) and battery power (kW) (positive for discharge
and negative for charge), and Q is the battery nominal capacity (Ah).

2.4. Vehicle Longitudinal Dynamics Model

The vehicle longitudinal dynamics could be described by the differential equation
in Equation (29):

δm
dv
dt

= Ft −mg f cosα−mgsinα− 1
2

ρCD Av2 (29)

where m represents the curb weight (kg); v is the vehicle speed (m/s); f is the rolling
resistance coefficient; α is the road slope (◦); ρ is the air density (kg/m3), which is assumed
to be constant; CD is the drag coefficient; and A denotes the frontal area (m2).

2.5. Control Problem Analysis

To show the control problem more concretely, the vehicle model developed in
Section 2 is used in simulations. The powertrain-level filter-based energy management
strategy [22,23] is adopted as the benchmark in which first-order low-pass filtering is used
to make the engine account for the low-frequency portion of the power, and the battery
pack is responsible for the high-frequency portion.

2.5.1. Driving Cycle Used for Simulation

There is no standard test cycle for heavy-duty off-road vehicles, so the vehicle speed
and slope obtained in real tests are used as simulation conditions. As shown in Figure 6,
a portion of the off-road vehicle’s driving cycle with road slope information is used to
simulate the filter-based control strategies. The total distance, which is 10.76 km, is covered
in 1087 s.
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2.5.2. Results of Filter-Based Energy Management

Figure 7 shows the vehicle performance when the filter-based energy management
strategy is used. The condition indicated by circle 1 is the acceleration when going uphill.
The demand power rises rapidly, but the engine power adjusts slowly, so the insufficient
power is supplemented by the battery, causing the battery discharge current to exceed the
limit. The condition indicated by circle 2 is the deceleration when going downhill. Affected
by the phase delay of the low-pass filter, the engine power fails to reduce in time, causing
the battery charging current to exceed the limit. Undoubtedly, excessive battery current
has a negative impact on battery life and safety.
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3. Co-Optimization-Based Driver-Oriented Energy Management Strategy

Figure 8 presents the control scheme of the co-optimization-based driver-oriented
energy management strategy. The driver’s intention is recognized using a NARX neural
network. A nonlinear MPC controller is adopted to achieve co-optimization of demanded
power and engine-generator power through specially designed objective function. In addi-
tion to the common goals of vehicle speed tracking, SoC maintenance, and fuel consumption
reduction, matching the demand power variations with the dynamic characteristic of the
engine is also considered as an additional goal. So, the driving force variation (∆Fm) and
engine power variation (∆Pg) are added to the objective function as penalties. Working
condition classification is carried out and reasonable weights are calibrated according to
the characteristics of different working conditions. By assigning reasonable weights in
the objective function under different vehicle working conditions, the demanded power
variations are modified so that the aggressive engine transient operation can be avoided.
At the same time, excessive battery current can also be avoided.
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3.1. Driving Intention Recognition Using a NARX Neural Network

A NARX neural network, which includes tapped delay lines (TDLs), is used to translate
pedal signals into a sequence of desired future vehicle speed. The past input and output
states were recorded by TDL units. Combined with the nonlinear mapping characteristics
of multi-layer perception, the state value of the next moment could be predicted from the
past states:

y(t) = f
(
y(t− 1), y(t− 2), · · · , y

(
t− ny

)
, u(t− 1), u(t− 2), · · · , u(t− nu)

)
(30)

where f (·) represents a nonlinear function, y
(
t− ny

)
represents the neural network output

and its delay ny, and u(t− nu) represents the neural network input and its delay nu.
The neural network predicted the subsequent vehicle speed using the past pedal signal

and vehicle speed. To improve the prediction accuracy, an open-loop structure is adopted
for the NARX neural network, which replaced the output feedback with the actual vehicle
speed. Multi-step predictions are achieved by connecting neural networks in series.
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The neural network’s structure is shown in Figure 9. Increasing the number of hidden
layer nodes and delays is beneficial for improving the training accuracy, but the complex
neural network structure is prone to over-fitting. Considering the prediction accuracy
and generalization comprehensively, it is determined in this study that there would be
10 hidden layer nodes and three delays, that is, the acceleration and vehicle speed from the
past three seconds are used to predict the subsequent vehicle speed.
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Figure 9. Neural network for vehicle speed prediction.

A real vehicle test data set, with a total length of 6340 s, is chosen to train the NARX
neural network, as shown in Figure 10. Vehicle speeds are predicted for the next 10 s.
Figure 11 shows the 10-step vehicle speed prediction errors. The error for the tenth
step is the largest, but it is still within ±5 km/h, indicating that the prediction accuracy
was acceptable.
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3.2. Road Slope Estimation Based on Luenberger Observer

In order to reduce the error of the prediction model used in MPC and improve the
robustness of the controller, it is important to obtain the road slope in real time. In this
study, a Luenberger observer is selected to instantaneously estimate the road slope.

The expression of the vehicle longitudinal dynamics in Equation (29) is mathematically
changed, as shown in Equation (31).

δm
dv
dt

= Ft − Fw −mg
√

1 + f 2sin(α + β) (31)

where mg
√

1 + f 2sin(α + β) = mg f cosα + mgsinα, f = tanβ, Fw = 1
2 ρCD Av2.

Let γ = sin(α + β), u = Ft − Fw; the state space equation can be obtained:
[ .

v̂
.
γ̂

]
=

[
0 −g

√
1+ f 2

δ
0 0

][
v
γ

]
+

[
1/δm

0

]
u +

[
g1
g2

]
(y− ŷ)

y =
[
1 0

][v
γ

] (32)

g1 and g2 are determined using the pole assignment method, and the relationships
between g1 and g2 and the eigenvalues λ1 and λ2 can be expressed by Equation (33):

g1 = −(λ1 + λ2), g2 = − λ1λ2δ

g
√

1 + f 2
(33)

To obtain a stable observer system, λ1 and λ2 should be negative, and their specific val-
ues can be calibrated according to the estimation accuracy requirements. Figure 12 presents
a comparison diagram of road slope estimations with different eigenvalues. The farther
the eigenvalues are from the imaginary axis, the faster the system responds. However,
the system will also be more sensitive to noise. Considering these factors, λ1 = −1.2 and
λ2 = −1.5 are selected.
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3.3. Working Condition Classification

In order to set reasonable weights of the objective function under different transient
conditions, working condition classification is carried out, which is introduced below.

The 6340 s of vehicle speed data and their corresponding road slope data presented
in Figure 13 are divided into 634 segments at intervals of 10 s, and the feature parameters
of each segment are extracted. Selected feature parameters are shown in Table 2, and the
feature parameters obtained are 10-dimensional. To reduce the number of computations
during the clustering process, a principal component analysis (PCA) is used to reduce the
number of dimensions in the data. Three feature parameters with a cumulative contribution
rate of more than 80% are selected as the basic data for the clustering analysis. K-means
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clustering is used to classify the working conditions characterized by drop-dimensional
feature parameters, and clustering centroids are saved for the online calculation process.
The classification results are shown in Figure 14 and the characteristics of various working
conditions are summarized in Table 3.
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Table 3. Classification of working condition.

Working Condition Feature Example

1
Low power demand

(0 < P < 143 kW)
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3.4. MPC Design

The vehicle speed prediction model is built based on the vehicle longitudinal dynamics
equation, as shown in Equation (34):

.
v =

1
δm

(
2Fmi−mg f cosα−mgsinα− 1

2
ρCD Av2

)
(34)

where Fm is the driving motor force, and i is the transmission ratio.
Usually, an equivalent circuit model, as shown in Equation (28), is adopted for SoC

predictions [34]. However, this complex nonlinear model greatly increased the computation
complexity, so a simplified linear regression (LR) model is used, as shown in Equation (35):

.
SoC = −γTsPb = −γTs

(
Pbus − Pg

)
(35)

where Ts represents the sampling time, and Pb, Pg, and Pbus are the battery power, generator
power, and DC bus power, respectively.

Figure 15 presents a comparison between the Rint model and the LR model during
10 s of operation. The maximum SoC prediction error for the LR model did not exceed
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0.05% within the 10 s. With this model simplification, the accuracy requirement is met in
the prediction horizon.
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Equations (34) and (35) constitute the predictive model required for co-optimization,
and the state variables are x = [v, SoC]T, the control inputs were u = [Fm, Pg]T, and the
measurable disturbance is d = α.

All problems of driver-oriented energy management are comprehensively considered
during the co-optimization, and the optimization problem can be expressed by Equation (36).

min
U(k)

J = min
U(k)

Np−1

∑
i=0

ω1

(
v− vre f

)2
+ ω2

(
SoC− SoCre f

)2
+ ω3

.
m2

f + ω4∆F2
m + ω5∆P2

g

s.t.
xmin ≤ x(k) ≤ xmax, k = 0, 1, ...Np − 1
umin ≤ u(k) ≤ umax, k = 0, 1, ...Np − 1

(36)

Because the BSFC tracking strategy is adopted, the relationship between the engine fuel
mass flow rate,

.
m f (g/s), and the generator power, Pg (kW), is approximately linear. This is

especially true for a medium load, as shown in Figure 16.
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The fuel mass flow rate can be expressed by Equation (37):

.
m f = krPg (37)

where kr represents the scaling factor.
Therefore, the optimization objective function can be transformed as:
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min
U(k)

J = min
U(k)

Np−1

∑
i=0

ω1

(
v− vre f

)2
+ ω2

(
SoC− SoCre f

)2
+ ω3P2

g + ω4∆F2
m + ω5∆P2

g

s.t.
xmin ≤ x(k) ≤ xmax, k = 0, 1, ...Np − 1
umin ≤ u(k) ≤ umax, k = 0, 1, ...Np − 1

(38)

In Equation (38), the first three weights indicate the coordinated relationship among
vehicle speed tracking, SoC maintenance, and fuel saving. The last two weights indicate
the penalty intensity of driving force variation and engine power variation. Through the
cooperation of five weights, it can be realized that the demand power variation can match
the engine dynamic characteristics under different transient conditions on the premise of
meeting the normal performance requirements.

According to the classification results from Section 3.3, different weight combinations
are adopted for different categories to improve the adaptability of the control strategy. The
designed weights are shown in Table 4. Working condition categories 1 and 2 represent
the low power demand and parked situations, so the weight coefficients are the same,
and category 4 represents a medium power demand. The battery discharging capacity is
likely to be larger for this condition than for category 1, so the weight ω2 is increased to
reduce SoC fluctuations. Additionally, changes in the driving forces of the driving motors
would have a larger impact on the demand power, so ω4 is increased to raise the penalty
for changes in the driving force. Category 3 represents the high-power-demand condition.
Changes in the power demand are more severe in this condition, so the vehicle speed
tracking penalty is reduced to ensure smooth operation of the power system. In addition,
ω2 and ω4 are increased to reduce the SoC and power demand fluctuations.

Table 4. Weights.

Classification ω1 ω2 ω3 ω4 ω5

1 14 10 2 9 4
2 14 10 2 9 4
3 13 17 2 11 4
4 14 15 2 10 4

The co-optimization sampling time is selected to be 0.1 s, the prediction horizon is
10 steps, and the control horizon is five steps.

4. Results and Analysis

This section compares the proposed co-optimization strategy with sequential opti-
mization [28] and filter-based control strategy [22,23] in actual working conditions for
the heavy-duty off-road vehicle. The superiority of the co-optimization scheme over the
other two strategies is clearly demonstrated. The simulation conditions were given in
Section 2.5.1. In addition, the hardware used was an Intel(R) Core (TM) i7-10700 CPU @
2.90 GHz with 33 GB RAM.

4.1. Simulation Results

Figure 17 presents the trajectories of vehicle speed, engine power, engine speed, SoC,
battery current, and bus voltage using different strategies under the given driving cycle.
Figure 17a shows that all control strategies can track the reference vehicle speed well, which
demonstrates that the driver’s intention is well recognized and fulfilled. Figure 17b,c show
that the co-optimization can significantly reduce the transient variation, which reflects the
effect of co-optimization of driving force variation and engine power variation through
ω4 andω5. The standard deviation reflects the degree of dispersion of a data set, and the
equation for it is shown in Equation (39). As shown in Table 5, the standard deviation of
engine speed is used to indicate engine transient variation, and the standard deviations for
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the co-optimization decrease by 16.2% and 38.7%, respectively, from that of the sequential
optimization and filter-based control strategy.

σ =

√
∑n

i=1(xi − µ)2

n
(39)

where σ is the standard deviation, n is the amount of data, µ is the mean value, and xi
denotes the i-th data in data set x.

Table 5. Comparison of three control strategies.

Engine Speed
Standard Deviation

Lowest Fuel
Consumption Zone

Probability (%)

Fuel
Consumption

(L)

Final SoC
(%)

Equivalent Fuel
Consumption (L)

Filter-based control 223.3509 42 21.06 75.80 21.058
Sequential optimization 163.3545 53 19.96 75.05 19.959

Co-optimization 136.9377 55 19.33 75.12 19.327
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(d) engine speed; (e) battery current (positive represents discharging; negative represents charging);
(f) bus voltage.

The SoC trajectories are shown in Figure 17d. All three control strategies maintain the
SoC at approximately 75%, which is one of the energy management targets for heavy-duty
off-road vehicles. However, among three strategies, a narrower range is shown for co-
optimization SoC trajectory. Figure 17e,f demonstrate that the co-optimization can realize
more mild electrical system operation. As indicated by the black box in Figure 17e, the
filter-based control strategy fails to guarantee the battery C-rate within the limits (4C), but
the sequential optimization and the co-optimization succeeded.

As is shown in Figure 18, because the co-optimization results in the smallest engine
transient variation, its operating points are most closely distributed around the optimal
BSFC line. The orange box showed the lowest fuel consumption area. As shown in Table 5,
compared to the other two control strategies, the probability of the engine operating
points falling within the lowest fuel consumption area increases by 2% and 13% for the
co-optimization, respectively.
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Figure 18. Engine operating points: (a) filter-based control; (b) sequential optimization; (c) co-optimization.

In order to clearly demonstrate the effect of the proposed strategy, the partial enlarged
view of vehicle speed, motor torque, engine power, and battery current under the conditions
of rapid acceleration and deceleration are shown in Figure 19. Figure 19a is the condition
of rapid acceleration after deceleration. Because of the phase delay, when the filter-based
control strategy is adopted, engine power cannot quickly follow the demand power, so the
battery needs to bear a larger part, which causes the battery discharge current to exceed
the limit. Figure 19b shows the rapid deceleration condition, and the charging current
exceeds the limit because the engine power fails to turn down quickly. When adopting
the co-optimization and sequential optimization strategy, because the driving intention is
reflected in the predicted vehicle speed, under the comprehensive action of ω1, ω3, and
ω5, co-optimization and sequential optimization can quickly adjust the engine power to
keep it consistent with the power demand, which becomes an important reason to avoid
the battery current exceeding the limit. At the same time, under the condition of rapid
acceleration, co-optimization limits the change rate of motor torque through the penalty
termω4, which can smooth the demand power and can further smooth the engine power
and battery current output. In the aspect of vehicle speed tracking, co-optimization can
still achieve high tracking accuracy, which shows that the negative effects brought by the
penalty terms of driving force in the objective function are acceptable.

An overall comparison of the three control strategies is shown in Table 5. Compared
with a filter-based control strategy, the co-optimization-based driver-oriented energy man-
agement strategy can yield a 38.7% decrease in engine transient variation and an 8.2%
decrease in fuel consumption. Furthermore, compared with a sequential-optimization-
based control strategy, a 16.2% decrease in engine transient variation and a 3.2% decrease
in fuel consumption is achieved. In terms of battery current regulation, the co-optimization
strategy effectively avoids excessive battery current.
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4.2. Hardware-in-the-Loop Test

A hardware-in-the-loop test is conducted to further verify the effectiveness of the
proposed strategy. As is shown in Figure 20, the HiL test platform is composed of a real-
time target machine, a VCU, a CAN bus, a target machine host PC, and a VCU host PC.
The configuration of the components is shown in Table 6.
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Figure 20. HiL test platform.

Table 6. The configuration of the HiL platform.

Component Configuration

Real-time target machine DSPACE PX10 simulation platform
VCU DSPACE MicroAutoBox II

Target machine host PC Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz 32 GB RAM
VCU host PC Intel(R) Core(TM) i5-5200U CPU @ 2.20 GHz 8 GB RAM
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The co-optimization-based driver-oriented energy management strategy is compiled
via automatic code generation technology, and the codes are loaded into DSPACE MicroAu-
toBox II, which served as the VCU, from the VCU host PC through an Ethernet cable. The
plant model and the working conditions’ information is compiled and loaded into DSPACE
PX10. The DSPACE PX10 and MicroAutoBox II are connected via the CAN bus.

Similar to the way the offline simulation conditions are obtained, the working con-
ditions for the HiL are obtained from actual data, as shown in Figure 6. Moreover, the
MPC-based co-optimization control strategy is tested in a real-time environment. Figure 21
shows the performance of the co-optimization control strategy. As shown in Figure 21a, the
vehicle can track the reference speed even under drastically changing working conditions.
Moreover, the engine works more mildly, effectively avoiding the difficulty in regulating
the engine speed, as shown in Figure 21b,c. This means that the energy management
strategy is strictly executed such that the SoC can stay stable, as shown in Figure 21d. As a
result of perfect engine power tracking, the battery did not have to compensate (or absorb)
the lacking (or excessive) power supply. Consequently, the battery current and bus voltage
do not exceed the limits, as shown in Figure 21e,f. These results can justify the real-time
effectiveness of the proposed strategy.
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Figure 21. HiL test results. (a) Vehicle speed; (b) power; (c) engine speed; (d) SoC; (e) battery current;
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5. Conclusions

This paper proposed a co-optimization-based driver-oriented energy management
strategy to simultaneously ensure engine smooth operation, fuel economy, and battery
current regulation for a manned hybrid heavy-duty off-road vehicle operating under
aggressive transients. Initially, dynamic models that can accurately reflect the powertrain
dynamic characteristics are developed. To recognize the driving intention, a NARX neural
network is developed to translate the driving intention into the expected subsequent
vehicle speed. An MPC-applied co-optimization-based driver-oriented energy management
strategy is designed to achieve vehicle speed tracking and energy management. The NARX
helps MPC to control the engine power to follow the demand power. Penalties for driving
force variation and engine power variation are added to the objective function to further
smooth the demand power. To explicitly consider the influence of road slope in the MPC,
a road slope estimator based on a Luenberger observer is developed. K-means clustering
is used to classify the vehicle working conditions, and the weights of the co-optimization
controller are selected according to the classification results to ensure that the demand
power variations can match the engine dynamic characteristic under different transient
conditions. The simulation results show that the proposed strategy can satisfy driving
intention and maintain SoC at the desired level. Compared with filter-based control
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strategy, the engine transient variation is reduced by 38.7%, fuel economy is improved
by 8.2%, and the battery overload is effectively avoided. Compared with sequential
optimization, the engine transient variation is reduced by 16.2%, and the fuel consumption
is reduced by 3.2%. In addition, the HiL test results justify the real-time effectiveness of the
proposed strategy.
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