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Abstract: Scale effects on the mechanical behavior of rock joints have been extensively studied in
rocks and rock-like materials. However, limited attention has been paid to understanding scale
effects on the shear strength of rock joints in relation to normal stress σn applied to rock samples
under direct shear tests. In this research, a two-dimensional particle flow code (PFC2D) is adopted
to build a synthetic sandstone rock model with a standard joint roughness coefficient (JRC) profile.
The manufactured rock model, which is adjusted by the experiment data and tested by the empirical
Barton’s shear strength criterion, is then used to research scale effects on the shear strength of rock
joints caused by normal stresses. It is found that the failure type can be affected by JRC and σn.
Therefore, a scale effect index (SEI) that is equal to JRC plus two times σn (MPa) is proposed to
identify the types of shear failure. Overall, shearing off asperities is the main failure mechanism for
rock samples with SEI > 14, which leads to negative scale effects. It is also found that the degree
of scale effects on the shear strength of rock joints is more obvious at low normal stress conditions,
where σn < 2 MPa.

Keywords: rock joints; shear strength; scale effects; normal stress; JRC; PFC simulation

1. Introduction

Rock joints play an important role in the estimation of the shear strength of rock
masses [1–3]. Effective design of rock engineering projects, such as underground exca-
vations and open pit slopes, requires precise estimation of the shear strength of rock
joints [4–6]. However, it is well known that there is a scale effect on the shear strength of
rock joints [7–9]. The main difficulty in determining how the shear strength of rock joints
varies with scale is conducting expensive and time-consuming engineering scale in situ
testing [10]. Although laboratory scale tests on a small jointed sample cannot generate the
precise shear strength of rock joints, they can still reveal the mechanical behavior of jointed
rock masses [11]. Therefore, laboratory tests are widely used by researchers to investigate
how the shear strength of rock joints is affected by sample sizes. Table 1 presents a review
of scale effects on the shear strength of rock joints, which shows conflicting results. The
majority of results show that there is a negative scale effect on the shear strength, which
means the shear strength decreases with the increase of joint sizes. Some results [12,13]
show positive scale effects, which represent the shear strength increases when the joint size
increases. While other results [13–15] show no scale effects.

Scale effects on the shear strength of rock joints could be explained in different ways.
One explanation is that scale effects occur due to the contact area of joints changing with
the increase in joint size [16]. Pratt et al. [14] and Yoshinaka et al. [17] attributed the
decrease in shear strength to the smaller contact area of the sample where higher stress
was concentrated on these contact surfaces. The other explanation is that the scale effect
is associated with the change of undulations and asperities on a joint surface as joint
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size increases. A longer sample will result in higher undulation amplitude compared to
a smaller sample [18]. Barton and Choubey [19] concluded that the shear behavior of
larger rock samples is governed by larger and gentler asperities, while the steep and small
asperities are the controlling mechanism in smaller rock samples. Giani et al. [20] stated
that when the rock joint shear strength depends on the random distribution of asperity, it
will produce a positive scale effect. If the rock joint shear strength depends on wavy and
rough surfaces, then there is a negative scale effect. Therefore, more research is required to
determine the exact nature of the scale effect on the shear strength of joints.

Table 1. Review of scale effects on the shear strength of rock joints [21].

Authors Rock Types Sample Size Normal Stress (MPa) Scale Effect

Azinfar et al. [13] Silicon rubber 25–2500 cm2 0.3, 0.8, 1.4 O, N, P
Barton and Choubey [19] Granite 9.8 × 4.5, 45 × 50 cm 0.1–2 N
Bandis et al. [22] plaster 6–36 cm 1 N
Bahaaddini et al. [21] Sandstone 5–40 cm 0.5 N
Castelli et al. [23] Cement 100–400 cm2 0.75, 1.5, 3 N
Fardin [24] Concrete 5 × 5–20 × 20 cm2 1, 2.5, 5, 10 N
Hencher et al. [25] Limestone 44–531 cm2 0.0245 O
Johansson [26] Granite 36, 400 cm2 1 O
Ohnishi et al. [12] Concrete 100–1000 cm2 0.26–2.04 P
Pratt et al. [14] Quartz diorite 60, 142–5130 cm2 3 N
Ueng et al. [15] Cement 7.5–30 cm2 0.3, 0.6, 0.9 O, N
Vallier et al. [27] - 10–200 cm 2 N
Yoshinaka et al. [17] Granite 20–9600 cm2 0.26–2.04 N

“N” means negative scale effect; “P” means positive scale effect; “O” means no scale effect.

Based on the literature review, we noticed that the existing laboratory tests were
carried out under various normal stress conditions ranging from 0.0245 to 10 MPa, as
shown in Table 1. As we know, the failure mode of rock joints during the direct shear test
will be affected by the application of normal stresses. When rock samples are under high
normal stress conditions, the tips of asperities could be sheared off; therefore, the shear
strength would be relatively higher compared to rock samples that are under low normal
stress conditions where sliding is the controlling mechanism of rock failure.

Numerical simulations using the PFC are capable of simulating the asperity damage
and degradation process during the shearing tests [28]. It has been proven that the shear
strength results acquired from PFC modeling are typically comparable with experimental
test results [29]. Therefore, PFC simulations as an alternative to physical testing can be used
to reveal the fundamental mechanism of shear behavior of rock joints at various scales.

In this research, a synthetic rock model based on the two-dimensional particle flow
code (PFC2D)-based synthetic sandstone rock model is used to study the influence of
normal stress on scale effects on the shear strength of rock samples with standard joint
roughness coefficient (JRC) profiles, and attempts to answer two questions: (1) Are scale
effects on shear behavior affected by normal stresses? (2) What is the degree of scale effects
affected by normal stresses?

In this paper, the synthetic rock model for numerical tests is introduced in Section 2.
The verification of the synthetic rock model is shown in Section 3. Scale effect investigations
are presented and discussed in Sections 4 and 5.

2. Synthetic Rock Model for Numerical Tests
2.1. Synthetic Rock Model Based on PFC2D

PFC2D is a discrete element program. The bonded particle model (BPM), a composite
of rounded particles, simulates complete rock and does not require a continuum-scale
constitutive model to depict the mechanical behavior of intact rock [30]. The parallel
bond model, which can replicate the physical behavior of a substance similar to cement
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linking the two nearby particles, is one of the most fundamental and often used BPMs
in the PFC2D, as illustrated in Figure 1. Bond breaking reduces stiffness because contact
and bond stiffness both contribute to stiffness in a parallel bond model. While contact
stiffness is active as long as particles are in contact, bond stiffness is instantly gone when a
bond breaks [31]. Therefore, the parallel bond model is a more accurate bond model for
materials that resemble rocks, since it allows for the possibility of bonds breaking in tension
or shearing with a corresponding loss in stiffness.
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Figure 1. Illustration of the parallel bond model.

On the other hand, by adding joints to a BPM assembly using the smooth joint
model (SJM), jointed rock masses can be created. The BPM’s original contact microscopic
characteristics will be replaced with SJM properties with the names friction coefficient µj,
shear stiffness ksj, and normal stiffness knj when the SJM is put into the BPM [32]. The
synthetic rock model constructed by the BPM and SJM has the ability to simulate various
mechanical responses of jointed rock masses including peak strength [31], scale effect [33],
anisotropy [34], and cracking processes [30,33] in rocks and rock-like materials.

The numerical direct shear test used in this research is presented in Figure 2. The
specimen (40 mm × 100 mm) is generated using the BPM. The rock joint is created using
the SJM. During the direct shear test, the upper block receives the normal force in a vertical
direction. The upper block is given a horizontal velocity of 0.03 m/s, while the lower block
is held in place.
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2.2. Calibration of Numerical Models

In this study, the synthetic rock model was calibrated using laboratory data from
Australia’s Hawkesbury Sandstone [28]. Firstly, tests for uniaxial compression on rock
samples (42 mm × 84 mm) with a loading rate of 0.02 m/s were performed to determine the
BPM’s parameters after a calibration process [31] to ensure that the mechanical properties
of the synthetic rock model are close to laboratory data.

It should be mentioned that one of the key factors influencing the resilience of restricted
materials to deformation and strength, such as rocks and cemented soil, is the loading
rate [35–38]. In this research, we did not consider such loading rate effects on the mechanical
properties of jointed rocks.

Using the calibrated BPM parameters indicated in Table 2 to perform the uniaxial
compression test (Figure 3), the values of elastic modulus E, Poisson’s ratio v, and UCS
produced are comparable to experimental tests, as shown in Table 3.

Table 2. Micro-parameters of the BPM model.

Parameters Values

Minimum particle radius: Rmin (mm) 0.28
Maximum particle radius: Rmax (mm) 0.42

Stiffness ratio: kn/ ks 2.1
Effective modulus: Ec (GPa) 4.1

Bond tensile strength: Tb (MPa) 11.2
Bond friction angle: Φb (◦) 35

Cohesion: cb (MPa) 11.2
Friction coefficient: u 0.2

Porosity ratio: e 0.16
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Figure 3. Numerical uniaxial compressive test.

Table 3. Comparison of mechanical properties calculated from the numerical model and tested
from laboratory.

Properties Parameters Laboratory Test PFC Model

Intact rock properties
UCS (MPa) 27.40 27.40

E (GPa) 4.20 4.20
ν 0.20 0.21

Joint properties
Kn (GPa/m) 28.6 28.6
Ks (GPa/m) 6.40 6.40

ϕb (◦) 37.60 36.10
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Then, synthetic rock models (40 mm × 100 mm) with planar joints were constructed.
The SJM has the following micro-parameters: friction coefficient µj, shear stiffness ksj,
and normal stiffness knj. In this research, the values of knj = 25 GPa, ksj = 13 GPa, and
µj = 0.75 were selected using the inverse-modeling calibration approach to ensure that
the numerical rock model can give a similar response as that from laboratory tests with
joint shear stiffness Ks = 6.4 GPa/m, normal stiffness Kn = 28.6 GPa/m, and joint friction
angle ϕb = 37.6◦. The calibration procedure was as follows: (1) The normal deformability
compression test was carried out to calibrate normal stiffness knj. (2) The shear test was
carried out to calibrate shear stiffness ksj under normal stress of 1 MPa condition. (3) Direct
shear tests were undertaken and friction coefficient µj was calibrated. Figures 2–4 present
the final mechanical responses of the synthetic rock models after the final calibration.
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Figure 4. The normal deformability test on the synthetic rock specimen with a planar joint.

Figure 4 shows the axial stress-displacement curves of the synthetic rock speci-
men (40 mm × 100 mm) under the normal deformability test with the loading rate of
0.02 m/s. The value of joint normal stiffness Kn generated by the synthetic rock specimen
is 28.6 GPa/m, which is close to the laboratory test results with Kn = 28.8 GPa/m.

Figure 5 shows the shear stress-displacement curve of the synthetic rock model
(40 mm × 100 mm) with a planar joint under a direct shear test (loading rate of 0.03 m/s)
with the normal stress of 1 MPa. The value of joint shear stiffness Ks generated by the
synthetic rock specimen is 6.4 GPa/m, which is the same as laboratory test results with
Ks = 6.4 GPa/m.
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Figure 5. The direct shear test on the synthetic rock specimen with a planar joint under normal stress
of 1 MPa.
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Figure 6 shows the failure envelope of the synthetic rock model (40 mm × 100 mm)
with a planar joint under direct shear tests. The value of joint friction angle ϕb generated by
the synthetic rock specimen is 36.1◦, which is close to laboratory test results with ϕb = 37.6◦.
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3. Validation of Synthetic Rock Models

To confirm the reliability of the synthetic rock model shown in Section 2, direct shear
tests on the synthetic rock models with 10 standard JRC profiles were performed and
the shear strength values produced from numerical simulations were compared to those
derived from Barton’s empirical shear strength model.

3.1. Barton’s Shear Strength Model

One of the most widely adopted empirical strength criteria for estimating rock joint
shear strength in rock engineering is the Barton’s shear strength criterion. Based on the
results of a large number of shearing tests on various rock joint profiles, Barton and his
co-workers [19,39] proposed an empirical equation to estimate the shear strength of rock
joints, as shown in Equation (1).

τ = σn tan
[

ϕb + JRC lg
(

JCS
σn

)]
(1)

where ϕb is the joint friction angle. JCS is the joint compression strength, which is equal to
UCS of intact rock in this research. JRC stands for joint roughness coefficient and can be
calculated using standard joint profiles.

3.2. Numerical Simulation Results

We performed extensive numerical direct shear experiments on synthetic rock models
with varied JRC profiles in normal stress levels between 0.5 and 5 MPa. The failure en-
velopes generated by direct shear tests on synthetic rock models were compared to the em-
pirical Barton’s shear strength criterion (Equation (1)) with ϕb = 36.1◦ and JCS = 27.4 MPa.
Figure 7 compares the shear strength obtained from numerical simulations to Barton’s
model, indicating that the usage of synthetic rock models is capable of generating adequate
shear strength of rock joints.
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Figure 7. Comparison failure envelopes obtained from numerical simulations and the Barton’s
empirical model.

4. Configuration of Rock Samples for Scale Effect Investigations

Two methods are widely used for investigating scale effects on the shear strength of
rock joints [15]. The first one is to divide a large rock joint into several smaller sizes of rock
joints, as shown in Figure 8a, which presents an example of the division of the Barton’s
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typical profile. The geometry characteristics or the values of JRC of smaller sizes of rock
joints can be different from that of the original larger rock joint. The other method is the
assembly of several repeated 100 mm profiles into larger rock joints many times the original
profile length, as shown in Figure 8b. The joint roughness or the value of JRC of assembly
samples is the same as that of the original joint surface.
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In fact, the scale effect on the shear strength of rock joints includes two factors, which
are the sample size itself and the geometrical characteristics of the joint surface. Rock
samples generated by the division method have various sample sizes and geometry charac-
teristics. However, the rock joints generated by the assembly method have various sample
sizes but have the same geometry characteristics. It is well known that the geometry
characteristics will affect the shear strength of rock joints [8]. Therefore, in this research, we
adopt the assembly of a repeated model that has the same geometry characteristics and
JRC values to research the influence of pure sample size on the shear strength of rock joints.

5. Results and Discussion

Once synthetic rock models were validated, a series of rock specimens with various JRC
profiles and different sizes (40 mm × 100 mm, 80 mm × 200 mm, and 120 mm × 300 mm)
were generated to study the effect of sample sizes on rock joint shear strength. The
shear strength values of different sizes of rock samples under given normal stresses were
calculated and are summarized in Figure 9.

In this research, the index k (see Equation (2)), which is the average slope of three
points, was used to identify the types of scale effects.

k =
N∑ xiyi − ∑ xi∑ yi

N
(
∑ x2

i
)
− (∑ xi)

2 (2)

where xi is the joint length of the rock sample, yi the shear stress of the rock sample, and N
is the number of the testing sample. k > 0 means the rock joint has a positive scale effect
and k < 0 means the rock joint has a negative scale effect. The value of k can be calculated
using three groups of data. For example, for rock samples with JRC = 2 under the normal
stress σn = 5 MPa, the shear strength of rock samples with joint lengths l = 100, 200, and
300 mm are 4.2, 4.4, and 4.6 MPa, respectively. Therefore, data (100, 4.2), (200, 4.4), and (300,
4.6) were put into Equation (2) to calculate the value of k. The result shows k = 0.4, which
means the scale effect is positive. Table 4 shows comprehensive scale effect results of rock
samples with various JRC profiles under different normal stress conditions. In Table 4, P
means positive scale effect and N means negative scale effect.

The results presented in Table 4 are also plotted in Figure 10. It is found that the
failure mode of rock joints during the direct shear test will be affected by the applying
normal stresses and the joint roughness. When rock samples under high normal stress
conditions, the tips of asperities with large joint roughness coefficient could be sheared
off, therefore, the number of shear crack is relatively higher compared with rock samples
with small joint roughness coefficients under low normal stress conditions where sliding is
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the controlling mechanism of rock failure. For example, when a rock sample with JRC = 2
under the normal stress σn = 0.5 MPa, the number of shear cracks is 10 and the scale effect is
positive. However, when a rock sample with JRC = 20 under the normal stress σn = 5 MPa,
the number of shear cracks is 280 and the scale effect is negative.
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Figure 9. Results of scale effects on the shear strength of rock samples under various normal
stress conditions.
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Table 4. Results of scale effects of shear strength of rock joints.

JRC
Normal Stress σn (MPa)

0.5 1 2 3 4 5

2 P3 P4 P6 P8 P10 P12
4 P5 P6 P8 P10 N12 N14
6 P7 P8 P10 P12 P14 N16
8 P9 P10 P12 N14 N16 N18

10 P11 P12 P14 N16 N18 N20
12 P13 P14 N16 N18 N20 N22
14 N15 N16 N18 N20 N22 N24
16 P17 P18 P20 P22 N24 N26
18 N19 P20 N22 N24 N26 N28
20 N21 N22 N24 N26 N28 N30
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Figure 10. Failure pattern and crack number of rock samples (40 mm × 100 mm) at peak
shear strength.

Based on the results of Table 4, a scale effect index (SEI) which is equal to JRC plus
two times of normal stress (MPa), as shown in Equation (3), was proposed to identify the
types of scale effects.

SEI = JRC + 2σn (3)

The values of SEI for rock samples under different normal stress conditions are given
in Table 4. For example, for rock samples with JRC = 2 under the normal stress σn = 0.5 MPa,
the value of SEI = 2 + 2 × 0.5 = 3. The number P3 in Table 4 means the rock sample with
SEI = 3 has a positive scale effect. It was found that 20 out of 21 rock samples have negative
scale effects when SEI > 14, and 29 out of 33 rock samples have positive scale effects when
SEI < 14.

To find the possible reason why the use of SEI can identify the types of scale effects
on shear strength, we monitored the crack number generated in the synthetic rock sample
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when the stress reaches the peak strength during the direct shear tests. When the parallel
link between nearby particles in the PFC rock model is broken, a micro-tensile crack or
micro-shear crack can occur. Figure 10 shows the failure pattern corresponding to the shear
crack number of each rock sample when the shear stress reaches the peak strength. For
example, the S = 10 represents a shear crack number of 10 and T = 7 represents a tension
crack number of 7 for a sample with SEI = 3 (JRC = 2 and σn = 0.5 MPa). The relations
between SEI values and shear crack numbers of rock samples are also plotted in Figure 11.
We can find that the number of shear cracks is low when SEI < 14. However, the number of
shear cracks dramatically increases when the value of SEI is over 14, where the controlling
failure mechanism transforms sliding to shearing off asperities.
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Therefore, we can conclude that the results presented in Table 4 and Figure 11 show
that the proposed SEI is capable of identifying types of scale effects. When SEI < 14, sliding
over joints is the controlling mechanism of rock failure, which leads to positive scale effects;
however, shearing off asperities could be the controlling mechanism of rock failure for rock
samples with SEI > 14, which leads to negative scale effects.

On the other hand, to further identify the degree of scale effects, the coefficient of
variance (CV), which can calculate the value of Standard Deviation/Mean to quantify the
random influence of a bunch of data, was further used as a scale effect magnitude index to
quantify scale effects on shear strength of rock joints caused by normal stress conditions.
The calculation results are presented in Figure 12.
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Figure 12. The degree of scale effect caused by normal stresses.

It is found that, in general, the values of CV decrease with the increase of normal
stress. We also calculated the average value of CV for a given group of data. Figure 12
shows that the values of average CV decrease when the normal stress increases from 0.5 to
2.0 MPa, then, it tends to be stable with further increase of normal stresses, which means
the degree of scale effects on shear strength of rock joints is more obvious at low normal
stress conditions where σn < 2 MPa.
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Such a phenomenon can also be validated by the laboratory data published by
Fardin [24], who carried out a laboratory study of the scale effect on the shear strength
of concrete replicas with roughness joints. Laboratory test results are shown in Figure 13.
The CV values of samples under a specific normal stress condition were calculated and
are shown in Figure 14. The value of CV is up to 0.4 when σn = 1 MPa, then, it decreases
sharply to 0.14 when σn increases to 2 MPa. After that, there is a slight change in CV values
with a further increase of σn from 2 MPa to 10 MPa. Such change in CV values with normal
stresses is similar to that of the numerical results in Figure 12.
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Figure 13. Laboratory data of scale effect on shear stress of rock joints under various normal stress
conditions (data from Fardin [24]).
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6. Conclusions

Synthetic rock models with standard JRC profiles were constructed in PFC2D to
investigate scale effects on the shear strength of rock joints under various normal stress
conditions. The capability of the synthetic rock model to simulate the shear behavior
of rock joints was tested by comparing numerical simulations with the Barton’s shear
strength criterion.

Once synthetic rock models were validated, a series of rock specimens of different
sizes (40 mm × 100 mm, 80 mm × 200 mm, and 120 mm × 300 mm) were generated to
investigate the influence of sample sizes on rock joint shear strength under normal stress
ranges from 0.5 to 5 MPa.

Numerical simulation results show that the types of scale effects could be affected
by the JRC profiles and normal stresses. Therefore, a scale effect index (SEI) that is equal
to JRC plus two times normal stress (MPa), as shown in Equation (3), was proposed to
identify the types of scale effects. It is found that for the rock sample with SEI < 14, sliding
over joints is the controlling mechanism of rock failure, which leads to positive scale effects.
However, shearing off asperities could be the controlling mechanism of rock failure for
rock samples with SEI > 14, which leads to negative scale effects.
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We also further investigated the influence of normal stress on the degree of scale effects
on the shear strength of rock joints. It is discovered that the degree of scale effect is more
obvious at low normal stresses conditions where σn < 2 MPa.

Finally, it should be noted that the finding of this research is based on the analysis
of test data of Australia Hawkesbury Sandstone. Therefore, the finding of this research
is open for further improvements as more shear strength data of various rock types be-
come available.
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