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Abstract: Investigating the essential impact of the cryptocurrency market on carbon emissions is
significant for the U.S. to realize carbon neutrality. This exploration employs low-frequency vector
auto-regression (LF-VAR) and mixed-frequency VAR (MF-VAR) models to capture the complicated
interrelationship between cryptocurrency policy uncertainty (CPU) and carbon emission (CE) and
to answer the question of whether cryptocurrency policy uncertainty could facilitate U.S. carbon
neutrality. By comparison, the MF-VAR model possesses a higher explanatory power than the LF-
VAR model; the former’s impulse response indicates a negative CPU effect on CE, suggesting that
cryptocurrency policy uncertainty is a promoter for the U.S. to realize the goal of carbon neutrality.
In turn, CE positively impacts CPU, revealing that mass carbon emissions would raise public and
national concerns about the environmental damages caused by cryptocurrency transactions and
mining. Furthermore, CPU also has a mediation effect on CE; that is, CPU could affect CE through
the oil price (OP). In the context of a more uncertain cryptocurrency market, valuable insights for the
U.S. could be offered to realize carbon neutrality by reducing the traditional energy consumption and
carbon emissions of cryptocurrency trading and mining.

Keywords: cryptocurrency policy uncertainty; carbon neutrality; mixed-frequency data; MF-VAR model

1. Introduction

The study aims to probe the conduction mechanism between cryptocurrency policy
uncertainty (CPU) and carbon emission (CE) and also answer the question of whether
cryptocurrency policy uncertainty could facilitate the target of U.S. carbon neutrality. The
cryptocurrency (e.g., Bitcoin, Ethereum, Ripple, Litecoin or Tether) is a digital currency
issued by a decentralized entity that is not controlled or regulated by any central or pri-
vate bank [1]. Basically, it uses blockchain technology to provide fast transfers precisely
anywhere around the world and minimize any fees or commissions paid [2]. However,
cryptocurrency mining and trading might negatively impact the environment. On the
one hand, cryptocurrency mining verifies blockchain transactions and creates new cryp-
tocurrency coins [3]. This process requires considerable computing resources, significantly
increasing electricity consumption and greenhouse gas emissions [4,5]. On the other hand,
cryptocurrency transactions also require vast amounts of electricity, threatening the envi-
ronment and raising carbon emissions [6,7]. Further, cryptocurrency policy uncertainty
means that the policies of trading platforms and governments towards cryptocurrency are
volatile [8]; this is the uncertainty caused by the authority’s failure to clarify the direction
and intensity of cryptocurrency policy expectations, implementation and stance changes,
which may exert specific influences on carbon emissions. Specifically, this uncertainty may
reduce the market’s willingness to trade and mine cryptocurrency [9] to avert possible
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losses and risks. In that case, the electricity consumption will decrease correspondingly,
causing CE to fall. In addition, high CPU may be caused by some bans, directly giving
an impetus towards carbon neutrality. For instance, China’s bans on bitcoin transactions
and mining undoubtedly increase CPU. They also provide the benefit of controlling and
reducing carbon emissions since over 65% of the world’s bitcoin miners are from China [2].
But high CPU might also be stimulated by some incidents that support the development of
the cryptocurrency market, such as the government-level recognition of cryptocurrency,
raising the enthusiasm for transactions and mining, which pushes CE upward. Thereupon,
cryptocurrency policy uncertainty has an intimate relationship with carbon neutrality, and
this is an important topic that has not been comprehensively dissected. By analyzing this
subject, we could assist countries or regions in facilitating carbon neutrality by decreasing
the conventional energy consumption and carbon emissions of cryptocurrency transactions
and mining.

The U.S., the largest cumulative carbon emitter worldwide, has released over
509 billion tons of greenhouse gas from 1850 to 2021 (the second is China, which only
has emitted 288.4 billion tons). After that, the U.S. makes up 20.3% of the total CE world-
wide and contributes to 0.2 ◦C of global warming. Faced with such a severe climate
situation, the U.S. has begun to develop policies and measures to alleviate climate problems
and reduce CE [10,11] and proposed that it will reduce greenhouse gas emissions by 50%
from 2005 levels by 2030 and realize carbon neutrality by 2050 [12,13]. Carbon neutrality
means that carbon emissions (the greenhouse gases produced by industrial and agricultural
production and transportation) equal carbon uptakes (the total amount of greenhouse gases
absorbed by plants). The progress towards this target may be related to the cryptocurrency
market [4–7] since there is a close relation between cryptocurrency policy uncertainty and
carbon neutrality according to the above discussions. The U.S. is one of the fastest-growing
countries in blockchain technology and one of the most important territories in the crypto
industry [14]. Taking bitcoin as an example, the U.S. share of global computing power (the
computing power needed to mine bitcoin) rose from 17% in April 2021 to 35% in August
2021, which makes the U.S. the world’s largest source of bitcoin mining activity. After
that, high CPU might be accompanied by the volatile cryptocurrency market, which exerts
obvious effects on CE and the progress of U.S. carbon neutrality. However, no studies
have thoroughly explored the connection between cryptocurrency policy uncertainty and
carbon neutrality in the U.S. The extant literature also ignores the intrinsic feature of this
interaction. Thereupon, this exploration attempts to fill these gaps.

There exist three innovations in this exploration. To begin with, the existing literature
primarily pays attention to the connection between cryptocurrency and energy [11,15], the
effect of cryptocurrency mining and trading on the environment [16,17], and the interaction
between cryptocurrency and carbon markets [18–20]. However, no investigations probe
the cryptocurrency market and carbon emissions from a novel perspective of cryptocur-
rency policy uncertainty. Hence, this exploration is a groundbreaking work to answer
the question of whether cryptocurrency policy uncertainty could facilitate U.S. carbon
neutrality. Secondly, the extant efforts of the cryptocurrency market primarily apply the
cryptocurrency price [1] or trading volume [6] as a representation, but this measurement is
one-sided. This exploration aims to cope with this problem and uses the cryptocurrency
policy uncertainty index to reflect the cryptocurrency market [8,9], an innovation among
the existing studies. The empirical conclusion suggests that CPU has negative effects on
CE, which indicates that cryptocurrency policy uncertainty could be viewed as a facilita-
tor to achieving the target of U.S. carbon neutrality. Based on this conclusion, we could
put forward meaningful insights for the U.S. to realize carbon neutrality by reducing the
conventional energy consumption and carbon emissions of cryptocurrency trading and
mining. Thirdly, since CPU is weekly data and CE is monthly data, the previous studies
usually aggregate or average the high-frequency sequence to the low one, such as by using
a low-frequency vector auto-regression (LF-VAR) model, which makes the statistical estima-
tions inaccurate. Therefore, this exploration considers the mixed-frequency data and uses a
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mixed-frequency vector auto-regression (MF-VAR) model to obtain more information. This
allowed us to identify the non-linear and complicated connection between CPU and CE.

This exploration is organized as follows: The extant literature is reviewed in Section 2.
Section 3 reveals the methodology, including LF-VAR and MF-VAR models. The data are
introduced in Section 4. Section 5 discusses the empirical outcomes. The conclusions and
related suggestions are elaborated in Section 6.

2. Literature Review

Although no actual effort analyzes carbon neutrality in terms of CPU, the existing
investigations pay more attention to the following three aspects. Some scholars draw
various conclusions concerning the effect of cryptocurrency mining on the environment.
Li et al. [21] highlight that Monero mining might consume 645.62 gigawatt-hours after its
hard fork, contributing 19,120–19,420 tons of carbon emissions from April to December 2018.
Corbet et al. [22] demonstrate that the electricity consumption of cryptocurrency transac-
tions has increased considerably during recent periods, primarily caused by the growing
difficulty in mining, and the total CE might exceed that of an individually developed econ-
omy. Vries and Stoll [23] propose a novel method to evaluate bitcoin’s e-waste, discovering
that it will add up to 30.7 metric kilotons per year by May 2021. Howson and Vries [24] state
that the digital infrastructure behind bitcoin (the most popular cryptocurrency) requires as
much energy as the entire country of Thailand, which causes an aggravated climate crisis.
Jana et al. [5] point out that bitcoin mining, hosted in a blockchain network, could consume
considerable energy and generate e-waste at alarming rates. Sarkodie et al. [6] suggest
that a rise in bitcoin trading volume spurs the carbon and energy footprint by 24% in the
long term, while a dynamic impact promotes it by nearly 50%. Tee et al. [25] underline
that economic policy uncertainty has a positive relationship with the carbon footprint, and
this conclusion is suitable for the total, direct and indirect carbon emission measurements.
Kohli et al. [16] reveal that as of July 2021, bitcoin’s energy consumption is equivalent
to that of countries such as Sweden and Thailand; it emits 64.18 million tons of carbon
dioxide, and this emission is close to that of Greece and Oman. Zhang et al. [17] evidence
that there is a significant Granger causality between the energy usage of bitcoin and CE,
and the hash rate passes the most obvious net spillover effect to CE and bitcoin electricity
consumption. However, the above view could not always be supported. Vranken [26]
underlines that since there is a given amount of bitcoin, its growing popularity makes
the competitors adopt new technologies to boost their profits at the lowest cost, which
is beneficial to decrease the concerns about sustainability. Baur and Oll [4] ascertain that
adding bitcoin into a diversified equity portfolio could improve its risk–return relation and
decrease its aggregate carbon emission.

Some scholars explore the connection between cryptocurrency and energy. Su et al. [1]
find that bitcoin and blockchain technology are the critical drivers of the Fourth Industrial
Revolution, and the branches of the technology are rapidly spreading to other areas such
as the oil market. Chitkasame et al. [27] point out a significant bidirectional causal relation
between renewable energy consumption and bitcoin activity in low and high energy
consumption regimes, highlighting that bitcoin’s action can not be ignored in preparing
the energy policy. Ghabri et al. [28] present that bitcoin futures and stablecoins lead
West Texas Intermediate (WTI) and Brent crude oil prices. Ethereum, Litecoin and Ripple
preserve their position as leaders of WTI crude oil prices. Ghosh and Bouri [29] find that
the bitcoin mining process possesses a feature of being energy-intensive, which could
hinder the much-desired ecological balance. Lu et al. [30] investigate the dynamic spillover
effect among cryptocurrency, clean energy and oil during the coronavirus disease 2019
(COVID-19) pandemic, and show that the former is a net transmitter of spillover while
the latter two are the net receivers. Meiryani et al. [31] show that global prices of energy
sector commodities (mainly crude oil and natural gas) positively affect the bitcoin price
movement. Yuan et al. [11] employ quantile connectedness to discuss the whole situation
and dynamic evolution of information spillovers in the bitcoin market and discover that
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the hash rate and electricity demand are the main sources of risks. Le [15] indicates that
the dynamic connectedness between crypto and energy volatilities is about 25% in the
short run and 9% in the long run, the uncertain incidents (e.g., the COVID-19 pandemic
and the Russo-Ukrainian war) exert specific impacts on the crypto and renewable energy
volatilities. Salisu et al. [32] evidence that an increase in the oil price might be inclined
to raise the costs of producing bitcoin, which is a benefit that lowers its return and then
reduces its trading and volatility.

Other scholars focus on the interaction between cryptocurrency and carbon markets,
mainly from the investment perspective. Yang and Hamori [18] suggest that the European
carbon market could be considered a safe haven or a hedge to avoid the cryptocurrency
market, but this quality could not be shown in the Chinese carbon market. Chen and
Xu [33] reveal that cryptocurrency possesses an extremely strong explanatory power for
the carbon market and is also a favorite hedge for this market. Anwer et al. [20] prove that
the environmentally sustainable and cryptocurrency indices show a common movement
during the COVID-19 pandemic; both could be viewed as hedges against each other. But
Pham et al. [19] indicate that carbon price is mainly independent of cryptocurrencies during
periods of low volatility. In addition, Ghosh et al. [34] highlight that the carbon credit
bubbles are social and fueled by the newfound interest in trading carbon credits, and
pricing carbon is a crucial step in the transition to the future [35].

3. Methodology
3.1. The Low-Frequency Vector Auto-Regression Model

First, we construct the conventional low-frequency vector auto-regression (LF-VAR)
model [36] as the following formula:[

CPUa,t
CEt

]
=

4

∑
k=1

[
α11,kα12,k
α21,kα22,k

][
CPUa,t−k

CEt−k

]
+

[
µ1t
µ2t

]
(1)

where CPUa,t and CEt refer to the monthly cryptocurrency policy uncertainty and carbon
emission. The oil market has close relations with cryptocurrency and carbon emissions,
which might impact the interrelationship between CPU and CE [2,10,11]. Thereupon, this
exploration takes the oil price (OP) as control series, and Equation (1) can be rewritten
as follows: CPUa,t

CEt
OPt

 =
4

∑
k=1

α11,kα12,kα13,k
α21,kα22,kα23,k
α31,kα32,kα33,k

CPUa,t−k
CEt−k
OPt−k

+

µ1t
µ2t
µ3t

 (2)

Then, we suppose that every sequence adequately obviously conforms to the covari-
ance stationarity [37,38]. In addition, this exploration sets the lag length (k) as 4. Moreover,
αij,k refers to the corresponding coefficient, where i, j = 1, 2 and 3 and k = 1, 2, 3 and 4. On
the basis of Equation (2), CEt can be expressed as Equation (3).

CEt =
4

∑
k=1

[α21,kCPUa,t−k + α22,kCEt−k + α23,kOPt−k]+µ2t (3)

where CPUa,t indicates a monthly sequence counted by averaging weekly CPU, which can
be rewritten as CPUa,t = (CPU1t + CPU2t + CPU3t + CPU4t)/4. CPUit (i = 1, 2, 3 and 4) refers
to the CPU at the i-th week of month t, and then Equation (3) can be further extended to the
following formula. In Equation (4), CPUi,t−k (i and k = 1, 2, 3 and 4) exerts a homogeneous
effect of α21,k/4 on CEt.

CEt = ∑4
k=1

[
α21,k

(
1
4∑4

i=1 CPUi,t−k

)
+ α22,kCEt−k + α23,kOPt−k

]
+µ2t (4)
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3.2. The Mixed-Frequency Vector Auto-Regression Model

The LF-VAR method generally utilizes time-dependent summation to deal with
different-frequency data. But Silvestrini and Veredas [39] ascertain that if high-frequency
variables are forcibly aggregated or averaged (e.g., LF-VAR model), the statistical inference
would be inaccurate due to the loss of information. The mixed-frequency vector auto-
regression (MF-VAR) model, by contrast, possesses a unique advantage in making full use
of mixed-frequency data information [40], which is beneficial to capture the heterogeneous
effects of high-frequency sequences on low-frequency variables [36,37]. Thereby, applying
the MF-VAR model that does not require any filtering program can acquire the influence of
weekly CPU on monthly CE under the control of OP.

The MF-VAR model is a more efficient estimated technique than the conventional
approaches of collecting all sequences into the lowest-frequency sampling [41]. This model
is mainly developed to be used in small proportions of sampling frequency [42,43]. Hence,
the MF-VAR model, which consists of weekly CPU and monthly CE and OP, can be
developed as Equation (5).

CPU1t
CPU2t
CPU3t
CPU4t

CEt
OPt

 = ∑4
k=1



α11,kα12,kα13,kα14,kα15,kα16,k
α21,kα22,kα23,kα24,kα25,kα26,k
α31,kα32,kα33,kα34,kα35,kα36,k
α41,kα42,kα43,kα44,kα45,kα46,k
α51,kα52,kα53,kα54,kα55,kα56,k
α61,kα62,kα63,kα64,kα65,kα66,k





CPU1,t−k
CPU2,t−k
CPU3,t−k
CPU4,t−k

CEt−k
OPt−k

+



µ1t
µ2t
µ3t
µ4t
µ5t
µ6t

 (5)

where αij,k (i, j = 1, 2, 3, 4, 5 and 6, k = 1, 2, 3 and 4) is the coefficient matrix and µit (i = 1,
2, 3, 4, 5 and 6) is a disturbance term. The MF-VAR model can decrease the parameters’
number by fitting the function to a parameter of a high-frequency variable [38,41]. In the
above formula, it can be observed that CPU1t, CPU2t, CPU3t and CPU4t are stacked up as
one vector. Thus, in order to distinctly represent the interaction between cryptocurrency
policy uncertainty and carbon emission, Equation (5) can be further expressed as the
following formula:

CEt = ∑4
k=1

[
∑4

j=1 α5j,kCPUj,t−k + α55,kCEt−k + α56,kOPt−k

]
+µ5t (6)

where α5j,k (j = 1, 2, 3, 4, 5 and 6, k = 1, 2, 3 and 4) can take various values from each other,
and thus CPU1,t−k, CPU2,t−k, CPU3,t−k and CPU4,t−k are viewed to possess a heterogeneous
effect on CEt. Following Wang et al. [37] and Hu et al. [38], we explicitly set the Cholesky
order, which is CPUt–CEt–OPt in the LF-VAR model and CPU1t–CPU2t–CPU3t–CPU4t–CEt–
OPt in the MF-VAR model.

There are many methods to deal with the mixed-frequency data of the MF-VAR model,
such as the Kalman filtering approach, interpolation technique and Bayesian method in
state space. Among them, the Bayesian method adopts an iterative technique to estimate
the missing value, in order to make full use of the known sample information. Through
using the Bayesian method, the loss of some information can be avoided, and the parameter
estimation under the mode of full information can be carried out, which is helpful to
improve the accuracy of the MF-VAR model.

4. Data

This exploration selects the weekly (428 weeks) and monthly (107 months) sequences of
January 2014 to November 2022 to probe whether cryptocurrency policy uncertainty could
facilitate U.S. carbon neutrality. In 2014, the Federal Election Committee (FEC) allowed
political donations in Bitcoin for the first time, where the cap on individual contributions
is set at USD 100, but there is no limit to the currency donations of Super Political Action
Committees. This action dramatically changed the cryptocurrency policy, which inevitably
raised its uncertainty. Since then, cryptocurrency policy has had more uncertainties, such as
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hacking incidents, the Ethereum blockchain project and China’s bans on bitcoin transactions
and mining. This exploration chooses the weekly cryptocurrency policy uncertainty (CPU)
index to reflect the situation of cryptocurrency policy, which can be taken from the authors’
website [8]. This index is counted by the following formula:

CPUt =

(
Nt − v

σ

)
+ 100 (7)

where Nt refers to the weekly observation of news articles on LexisNexis Business Database,
which covers a wide variety of newspapers and news agencies, containing three groups about
the uncertainty of cryptocurrency policy: uncertainty or uncertainty; Bitcoin, Ethereum, Ripple,
Litecoin, Tether, cryptocurrency or cryptocurrencies; government, regulator or central bank.
The Group Duplicate option is set to MODERATE to minimize duplicate outcomes. v
indicates the average of these articles and σ points out the standard deviation. A higher
CPU indicates there is a stronger uncertainty on cryptocurrency policy. In addition, we
set CPU1, CPU2, CPU3 and CPU4 as CPU at the first, second, third and fourth week of
each month, respectively, and CPUa is the average of CPU1, CPU2, CPU3 and CPU4. The
transactions and mining of cryptocurrencies require considerable electricity, which may
result in substantial carbon emissions. On 22 April 2021, Joseph R. Biden promised that the
U.S. would expand the administration’s commitment to reduce greenhouse gas emissions
by 50% from 2005 levels by 2030 and achieve carbon neutrality by 2050. Thereupon,
there might be a close connection between cryptocurrency and carbon neutrality, and
we choose monthly carbon emission (CE) in the U.S. to represent the progress of carbon
neutrality [2], which can be taken from the Energy Information Administration (EIA). A
higher CE means that the progress towards carbon neutrality has been hampered. Thus,
we could recognize the interrelationship between CPU and CE and further probe whether
cryptocurrency policy uncertainty can facilitate the target of U.S. carbon neutrality. Since
CPU and CE are different-frequency data, the conventional LF-VAR model could not
capture the whole information of mixed-frequency data. Then, this exploration applies the
relatively advanced MF-VAR model that incorporates data of different frequencies into the
same model to accurately identify the non-linear connection between CPU and CE. The
trends of CPUa and CE are depicted in Figure 1.
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As shown in Figure 1, CE moves in different directions from CPUa in most cases. For
instance, COVID-19 increases CPUa from 99.759 in January 2020 to 100.481 in March 2020,
while CE is in a downward trend from 450.192 to 387.613 million metric tons during the
same period (decreasing by nearly 15%). In addition, CPUa reaches a relatively high level in
May 2021 (105.806), but CE sharply decreases from 436.315 million metric tons in December
2020 to 377.241 million metric tons in May 2021, reducing by nearly 15%. With the outbreak
of the Russo-Ukrainian war, CPUa rises to its highest level ever in March 2022 (110.057),
while CE falls from 478.896 million metric tons in January 2021 to 419.241 million metric
tons in March 2022. These cases indicate that cryptocurrency policy uncertainty might
facilitate the target of U.S. carbon neutrality; however, this above view could not always
be perceived. A notable example is that the bitcoin bubble in 2017 leads to an increase
in CPUa (from 99.923 in October to 101.661 in December), and CE shows a similar trend
that raises from 407.891 to 486.152 million metric tons during the same time. In addition,
the oil market might be viewed as a safe haven to hedge against cryptocurrency policy
uncertainty [1], and oil consumption and its price may have some influences on carbon
emissions. The oil market could affect the interrelationship between CPU and CE. This
exploration chooses the monthly Brent spot oil price (OP) to reflect the oil market, which is
taken from the EIA. Based on the above discussions, the connection between CPU and CE
is not linear but complex and influenced by OP.

According to Table 1, the averages of CPU1, CPU2, CPU3, CPU4, CPUa and CPU
are 100.959, 101.046, 101.078, 101.103, 101.047 and 101.029, indicating that the whole per-
formance of cryptocurrency policy in 2014–2022 is under relatively high uncertainty. In
addition, the averages of CE and OP suggest that these two sequences are concentrated
on 434.314 and 66.287 levels. The considerable difference between the maximum and
minimum of CPU1, CPU2, CPU3, CPU4, CPUa, CPU, CE and OP reveals that these eight
sequences fluctuate obviously. The skewness is negative in CE, pointing out that this
time series obeys the left-skewed distribution, whereas CPU1, CPU2, CPU3, CPU4, CPUa,
CPU and OP obey the right-skewed one. CPU1, CPU2, CPU3, CPU4, CPUa, CPU and CE
possess the features of high peak and fat tail, while OP obeys the platykurtic distribution.
Moreover, the Jarque–Bera test offers evidence that the original assumption of standard
normal distribution in CPU1, CPU2, CPU3, CPU4, CPUa and CPU could be rejected at a 1%
level; for OP, this hypothesis can be rejected at the significance level of 5%, but it should be
accepted for CE.

Table 1. Descriptive statistics for CPU1, CPU2, CPU3, CPU4, CPUa, CPU, CE and OP.

Variable CPU1 CPU2 CPU3 CPU4 CPUa CPU CE OP

Observations 107 107 107 107 107 428 107 107
Mean 100.959 101.046 101.078 101.103 101.047 101.029 424.314 66.287
Median 99.873 99.859 99.819 99.886 99.876 99.839 420.562 63.210
Maximum 113.109 112.453 113.187 110.796 110.217 114.652 532.891 122.710
Minimum 99.258 99.151 99.124 99.084 99.228 99.098 205.204 18.380
Standard
Deviation 2.533 2.813 2.957 2.711 2.665 2.747 37.903 22.553

Skewness 2.302 2.329 2.258 1.833 1.989 2.247 −0.001 0.629
Kurtosis 8.450 8.246 7.579 5.332 6.050 7.784 3.787 2.771
Jarque–Bera 226.886 *** 219.387 *** 184.390 *** 84.139 *** 112.003 *** 768.329 *** 2.763 7.298 **
p-values 0.000 0.000 0.000 0.000 0.000 0.000 0.251 0.026

Notes: CPU is weekly data, while other sequences are monthly data. CPUa refers to the total average of CPU1,
CPU2, CPU3 and CPU4. *** and ** indicate significance at the 1% and 5% levels.

5. Empirical Results and Discussions

By applying the parameter bootstrapping of 10,000 iterations to all horizons (h = 0,
1, . . . , 12), we construct the LF-VAR model with CPUa and CE, and the low-frequency
impulse response outcomes with the 95% confidence interval (solid red lines) are reported
in Figure 2. It could be observed that CPUa negatively influences CE, indicating that high
CPUa may decrease CE and then facilitate the progress of carbon neutrality. In turn, CE
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has a positive impact on CPUa, highlighting that high CE may cause uncertainties towards
cryptocurrency policy. In addition, CPUa has a positive effect on OP, and OP also exerts a
positive influence on CPUa, underlining that there is a positive connection between CPUa
and OP. In addition, CE also has a positive interrelationship with OP.
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Table 2 reveals the outcomes of prediction error variance decomposition of the LF-VAR
method. In the short term (h = 4), the prediction error variance of CE could be explained
4.1% by CPUa, 2.3% by OP and 93.5% by itself; the prediction error variance of CPUa could
be explained 0.2% by CE, 3.1% by OP and 96.7% by itself; the prediction error variance of
OP could be explained 9.7% by CPUa, 0.6% by CE and 89.7% by itself. In the medium term
(h = 8), the prediction error variance of CE could be explained 7.3% by CPUa, 4.2% by OP
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and 88.5% by itself; the prediction error variance of CPUa could be explained 0.2% by CE,
3.2% by OP and 96.6% by itself; the prediction error variance of OP could be explained
19.5% by CPUa, 1.7% by CE and 78.8% by itself. In the long term (h = 12), the prediction
error variance of CE could be interpreted as 8.8% by CPUa, 4.6% by OP and 86.6% by itself;
the prediction error variance of CPUa could be explained as 0.2% by CE, 2.9% by OP and
96.9% by itself; the prediction error variance of OP could be explained 28.1% by CPUa, 1.7%
by CE and 70.2% by itself.

Table 2. Prediction error variance decomposition of the LF-VAR model.

Decomposition of CPUa

CPUa CE OP

h = 4 0.967 0.002 0.031
h = 8 0.966 0.002 0.032
h = 12 0.969 0.002 0.029

Decomposition of CE

CPUa CE OP

h = 4 0.041 0.935 0.023
h = 8 0.073 0.885 0.042
h = 12 0.088 0.866 0.046

Decomposition of OP

CPUa CE OP

h = 4 0.097 0.006 0.897
h = 8 0.195 0.017 0.788
h = 12 0.281 0.017 0.702

Notes: The LF-VAR model uses monthly CPUa, CE and OP, and this exploration performs the prediction error
variance decomposition at horizons of 4, 8 and 12 months.

However, some information is lost when the weekly data (CPU) are averaged into the
monthly sequence (CPUa) in the LF-VAR model, exhibiting a relatively weak explanatory
power and even an inaccurate statistical inference [37,38,42,43]. In order to cope with this
difficulty, this exploration employs the relatively advanced MF-VAR technique to reexamine
the non-linear connection among the variables, and the outcomes of the MF-VAR method’s
decomposition are reported in Table 3. From Table 3, we can perceive that CPU (CPU1 +
CPU2 + CPU3 + CPU4) could account for 6.6% (short-run), 9.2% (medium-run) and 10%
(long-run) of CE, which possesses a higher explanatory power than the LF-VAR model.
A similar phenomenon can be observed in other sequences, further evidencing that the
MF-VAR model could fully use mixed-frequency data information, which results in a more
accurate conclusion. Thus, it is reasonable to use the MF-VAR technique to identify the
complicated connection between CPU (weekly data) and CE (monthly data) under the
control of OP (monthly data).

We concretely discuss the mixed-frequency impulse response outcomes with the 95%
confidence interval (solid red lines) depicted in Figure 3. In most cases, CPUi (i = 1, 2, 3 and
4) exerts an adverse effect on CE, and the underlying causes can be demonstrated on two
sides. On the one hand, a high CPU may decrease investors’ desire to hold cryptocurrencies
since they intend to avoid possible risks and uncertainties [8,9]. After that, the transactions
of cryptocurrencies would decline correspondingly, reducing electricity consumption and
consequent carbon emissions in the U.S. [11]. For instance, the hackers breached the
security of the Bitfinex exchange (one of the world’s largest bitcoin exchanges) in August
2016, and they initiated 2072 unauthorized transactions, resulting in the theft of nearly
120,000 bitcoins. Affected by this incident, the relevant trading platforms and governments
have introduced policies to strengthen supervision, increasing CPU. The rise in CPU causes
the demand for bitcoin to decrease, which is reflected in its price; the bitcoin price fell
from USD 657.975 in July 2016 to USD 576.890 in August 2016. The reduction in demand
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and transactions for bitcoin decreases the amount of electricity used and greenhouse gases
released [6,7], and thus there is a decline in CE. On the other hand, a high CPU may
reduce the willingness to mine cryptocurrencies to avoid huge losses due to uncertainties.
Depending on the efficiency of different mining machines, one bitcoin currently consumes
200,000 to 300,000 kilowatt-hours of electricity, which is equivalent to the annual power
consumption of 66 to 100 homes. Thereupon, a reduction in cryptocurrency mining would
inevitably lead to lower electricity consumption [4,5], which decreases CE correspondingly.
For example, the bitcoin halves not only increase CPU but also lead to a bitcoin block
reward halving, which means that the reward given to miners for verifying new blocks is
reduced by 50% [44]. The cost for miners would increase since they need more computing
power to obtain the same amount of bitcoins, which may cause some small-scale miners to
exit the market [1]. After that, the market for bitcoin mining might shrink, further reducing
electricity demand and carbon emissions.

Table 3. Prediction error variance decomposition of the MF-VAR model.

Decomposition of CPU1

CPU1 CPU2 CPU3 CPU4 Sum (CPUi) CE OP

h = 4 0.431 0.074 0.125 0.324 0.954 0.016 0.030
h = 8 0.365 0.088 0.111 0.397 0.961 0.012 0.027
h = 12 0.339 0.095 0.102 0.431 0.967 0.010 0.023

Decomposition of CPU2

CPU1 CPU2 CPU3 CPU4 Sum (CPUi) CE OP

h = 4 0.401 0.138 0.083 0.338 0.960 0.018 0.022
h = 8 0.333 0.133 0.085 0.415 0.966 0.012 0.022
h = 12 0.312 0.132 0.080 0.446 0.970 0.011 0.019

Decomposition of CPU3

CPU1 CPU2 CPU3 CPU4 Sum (CPUi) CE OP

h = 4 0.292 0.126 0.259 0.298 0.975 0.005 0.020
h = 8 0.249 0.126 0.173 0.422 0.969 0.007 0.024
h = 12 0.246 0.126 0.146 0.457 0.975 0.006 0.019

Decomposition of CPU4

CPU1 CPU2 CPU3 CPU4 Sum (CPUi) CE OP

h = 4 0.190 0.135 0.077 0.561 0.962 0.018 0.020
h = 8 0.211 0.135 0.067 0.557 0.971 0.012 0.017
h = 12 0.213 0.134 0.069 0.561 0.977 0.009 0.014

Decomposition of CE

CPU1 CPU2 CPU3 CPU4 Sum (CPUi) CE OP

h = 4 0.019 0.003 0.011 0.033 0.066 0.903 0.031
h = 8 0.019 0.006 0.020 0.047 0.092 0.865 0.044
h = 12 0.020 0.006 0.023 0.051 0.100 0.850 0.050

Decomposition of OP

CPU1 CPU2 CPU3 CPU4 Sum (CPUi) CE OP

h = 4 0.080 0.036 0.024 0.045 0.185 0.009 0.806
h = 8 0.104 0.049 0.017 0.101 0.271 0.021 0.708
h = 12 0.123 0.060 0.014 0.148 0.345 0.021 0.634

Notes: The MF-VAR model uses weekly CPUi (i = 1, 2, 3, 4), as well as monthly CE and OP. In addition, this
exploration performs the prediction error variance decomposition at horizons of 4, 8 and 12 months.

In addition, high CPU may be caused by some restrictions that directly decrease CE.
For instance, New York Governor Kathy Hochul signed a moratorium in 2022 on using fossil
fuels to power bitcoin mining. This approved bill aims at bitcoin and other cryptocurrency
mining enterprises that exploit cheap energy to mine digital assets, which causes CPU
to increase. At the same time, the New York state plans to reduce carbon emissions by
80% through this bill, and CE would show a downward trend accordingly. Thus, we can
conclude that cryptocurrency policy uncertainty can facilitate the progress of U.S. carbon
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neutrality. However, this opinion could not be held in a few cases, which are primarily
reflected in the short-run CPU2 and CPU3. High CPU might also be caused by several
events that support the development of the cryptocurrency market; for example, some
governments have allowed cryptocurrency transactions or even accepted cryptocurrencies
as legal tender [2]. After that, the growing popularity of cryptocurrencies sharply increases
the enthusiasm for transactions and mining in the short term, which would be diminished
since the public would be more rational in the medium and long term. Thus, there is a
positive effect of CPU2 and CPU3 on CE in the short run. Another example is the bitcoin
bubble in 2017, which caused a significant increase in CPU, and the bitcoin demand also
increased obviously in the short term due to its soaring price, increasing CE. But after the
bitcoin bubble burst, its demand and mining willingness dramatically decreased, which
caused CE to fall accordingly in the medium and long term. Although CPU2 and CPU3
have a positive influence on CE in the short term, this effect is less than that of CPU1 and
CPU4 (which is shown in Table 3). Thus, the impact of total CPU on CE is always negative,
even in the short run.
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Conversely, CE positively influences CPUi (i = 1, 2, 3 and 4), which could be inter-
preted as follows: High CE may raise public and national concerns about environmental
issues, negatively affecting sustainable development. Then, in order to cope with this
issue and achieve carbon neutrality, the U.S. might implement novel policies to reduce
carbon emissions. Since the transactions and mining of cryptocurrency require large-scale
electricity and then release massive greenhouse gas [4–7], decreasing cryptocurrencies’
trading and mining is an effective method. For instance, the Biden administration has
released a report arguing that cryptocurrency mining, which uses considerable electricity
and produces significant carbon emissions, could hamper the U.S. commitment to climate
change. This report also suggests that if the environmental impacts of the cryptocurrency
mining industry cannot be effectively mitigated, the White House or Congress may need to
legislate to restrict or ban cryptocurrency mining.

Moreover, we discuss the mediation effect, that is, the impact of CPUi (i = 1, 2, 3
and 4) on CE via OP. Even if there is an adverse effect of CPU3 on OP (which is less than
that of CPU2 and CPU4), the impact of total CPU on OP is positive according to Table 3,
and the primary cause is that the oil market could be viewed as a safe haven to hedge
against CPU. Specifically, high CPU could exacerbate market panic [8,9]; the public may
be inclined to hold hedging assets such as oil-related products to avert possible risks in
the cryptocurrency market [1]. Then, the oil demand would increase accordingly, which
drives OP to increase. Further, there is a positive influence from OP to CE, and we could
interpret it as follows: Oil is an essential source of energy for economic development,
and a prosperous economy means more demand for oil and higher OP. Thereupon, high
OP may be accompanied by the economic recovery or boom, and large oil consumption,
such as the economic recovery in 2021, in which OP soared from USD 54.77 per barrel in
January to USD 83.54 per barrel in October. The rising oil consumption inevitably pushes
CE upward [2] and then impedes the progress of U.S. carbon neutrality.

All in all, by comparing the prediction error variance decomposition between LF-VAR
and MF-VAR models, we discover that the latter possesses a higher explanatory power
than the former, and it is reasonable to use the relatively advanced MF-VAR model to
capture the complicated connection between the mixed-frequency data, namely weekly
CPU and monthly CE. In addition, we take OP as a control sequence in order to make the
empirical outcomes more accurate. The impulse response of the MF-VAR model suggests
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that even though CPU3 has a positive influence on CE in the short term, the effect of total
CPU on CE is always negative, indicating that cryptocurrency policy uncertainty could
facilitate U.S. carbon neutrality. In turn, CE has a positive influence on CPU, which reveals
that massive carbon emissions might raise public and national concerns about the energy
consumption and pollution of cryptocurrency transactions and mining. Additionally, there
is a mediation effect of CPU on CE; that is, CPU could positively affect OP, and then OP
exerts a positive effect on CE.

6. Conclusions and Policy Suggestions

This exploration probes the non-linear connection between cryptocurrency policy
uncertainty and carbon emission in the U.S. and further answers the question of whether
cryptocurrency policy uncertainty could facilitate U.S. carbon neutrality. We apply LF-
VAR and MF-VAR models to explore the complicated interrelationship between CPU
and CE, and this exploration chooses OP as the control sequence to ensure robustness.
Comparing these two models suggests that the MF-VAR model is more applicable than the
other in processing mixed-frequency data. The empirical conclusions suggest that CPU
exerts an adverse effect on CE, which indicates that cryptocurrency policy uncertainty
can facilitate the target of U.S. carbon neutrality. Conversely, CPU could be positively
affected by CE, revealing that significant carbon emissions may force the U.S. to decrease
cryptocurrency transactions and mining to solve the climate problem and achieve carbon
neutrality. In addition, CPU has a mediation effect on CE, showing that OP could not
only be positively affected by CPU but also positively influence CE. Through exploring
the non-linear connection between CPU and CE, it could be observed that cryptocurrency
policy uncertainty is a promoter for achieving the goal towards U.S. carbon neutrality.

Based on these outcomes, we could put forward significant lessons for the U.S. to
realize carbon neutrality in the context of a more uncertain cryptocurrency market. Al-
though cryptocurrency policy uncertainty could facilitate U.S. carbon neutrality, the core
issue should not be to intensify CPU further but to reduce the traditional energy consump-
tion and carbon emissions of cryptocurrency trading and mining. On the one hand, the
cryptocurrency miners, with the help of the U.S. Environmental Protection Agency, the
Department of Energy and other federal agencies, should reduce greenhouse gas emissions
by using clean energy (e.g., solar energy and nuclear energy). In addition, the related
authorities ought to encourage miners to apply clean energy instead of traditional energy
and subsidize this process, which may include exploring ways to use nuclear power and
“photovoltaic+energy storage” to provide low-carbon electricity for cryptocurrency min-
ing. On the other hand, the U.S. government should reexamine and position the policy
orientation of the cryptocurrency trading and mining industry and regulate its develop-
ment from the perspective of energy consumption control and carbon emission reduction.
First, all cryptocurrency mines that currently fall outside the U.S. government statistics
must be included, and it would be strictly prohibited to use local off-grid hydropower for
mining. Second, a separate electricity account should be set up for cryptocurrency mining,
and apparent types of electricity are differentiated for detailed statistics, which provides
accurate data support for energy conservation and carbon reduction, further facilitating the
regulatory authorities in better controlling and managing their carbon emission behavior.
Third, the relevant standards shall be formulated and improved to prohibit cryptocurrency
mining operations by machines and miners with low computing power and high carbon
emissions, and the green properties of this industry with low carbon or even zero carbon
should be gradually increased. If the above measures are not effective in reducing CE,
the U.S. government should take executive action, and Congress may need to consider
legislation to limit or ban cryptocurrency transactions and mining.
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