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Abstract: This study aims to evaluate the feasibility and effectiveness of a modified adaptive genetic
algorithm (AGA) with Universal Distinct Element Code (UDEC) simulation in analyzing fracture
surface feature points of an anticline rocky slope. Using coordinate data from 30 fracture surface
feature points, the traditional GA and modified AGA methods were compared, with the mean value
of the normalized Mahalanobis distance indicating the reliability of the results. The study found
that the modified AGA approach with UDEC had a significantly smaller mean value of normalized
Mahalanobis distance than the traditional GA approach, demonstrating its higher accuracy and
reliability in analyzing the fracture surface feature points of the rocky slope. Additionally, the
research found that the location of the fracture surface of the anticline rocky slope is closely related to
the inhomogeneous bulk density caused by weathering. These findings contribute to sustainability
efforts by improving our understanding of the behavior of rocky slopes, informing better land
management and infrastructure planning, and reducing uncertainties in predicting the behavior of
rocky slopes for more sustainable infrastructure development and land management practices.

Keywords: rocky slope; fracture surface feature points; rock mechanics; modified adaptive genetic
algorithm (AGA); Universal Distinct Element Code (UDEC)

1. Introduction

Predicting failure surfaces is a critical aspect of promoting sustainability in geological
engineering projects, including houses, tunnels, and bridges. Failure surface prediction is
also essential in rocky slope disaster warning systems, which can help prevent potential
hazards and risks to human life and the environment. However, accurately predicting
failure surfaces in natural settings can be a challenging task. Therefore, this study aims
to provide a more accurate method for predicting the failure surfaces of rocky slopes in
natural settings. The findings from this study can aid in the development of effective slope
management and maintenance practices and contribute to promoting the sustainability of
infrastructure projects. To achieve this goal, this study focuses on the diverse landscapes in
southwestern China to understand how natural geography, humidity, earthquakes, and
strong winds affect the overall stability of rocky slopes. A coupled approach is used to
investigate the complex factors that contribute to failure surface prediction. This research
aims to contribute to promoting sustainable land use practices in the region, reducing the
risks of natural disasters, and protecting human lives and properties along the way. How-
ever, there are several challenges associated with analyzing and predicting fracture surfaces
of materials. These challenges include obtaining a representative sample of the fracture
surface, as it can be complex and contain multiple features such as secondary cracks, delam-
inations, and voids. Analytical methods can be destructive, making it difficult to analyze
the same area multiple times. Some analytical techniques require specialized equipment
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and expertise, which may not always be readily available. Finally, the interpretation of the
results may be subjective and require skilled interpretation.

Goodman and Bray, as cited in Adhikary et al. and Hoek and Bray [1,2], conducted an
extensive study on the formation and mechanism of damage in rocky slopes, classifying
tipping damage into two categories: basic tipping types, such as bending tipping, rock
mass tipping, and rock mass bending tipping, and secondary tipping types. Hocking and
Huang [3,4] refined the damage mode of slopes using the kinematic principle without any
slip forces. Liu and Chen [5] proposed a classification system that assessed the stability of
rock slopes by considering geological, geometric, and environmental factors, which further
improved the empirical method of the rock classification system (Raghuvanshi, 2019).
The limit equilibrium method is widely used in slope stability analysis due to its easy
calculation and simple principle, as cited in Ahmadi and Eslami, Hamza and Raghuvanshi,
Huang, Janicak et al., Tang et al., and Yang and Zou [4,6–10]. However, the general
research idea is to replace the natural slope’s soil inhomogeneity with soil with average
properties or consider the rock slope’s inhomogeneity by separating different soils by depth.
With the development of information technology, the combination of computationally
large probabilistic methods and various specialized numerical software has inspired new
ideas for exploring methods in rock slope stability analysis that are closer to real natural
environments. Chowdhury et al. [11] further combined the probabilistic method to identify
and evaluate the uncertainty among control parameters systematically. Tang et al. [9] used
the S-curve model to define the spatially varying laminae of the shear strength parameters
“c” and “φ” and the tensile strength of the rock mass to estimate the stability coefficients
of inclined laminated rock masses and identify potential sliding surfaces. Alternatively,
stability analysis considering weathering and the presence of natural pores inside rocky
slopes has not been adequately concluded.

The traditional genetic algorithm (GA) is widely used for classical optimization prob-
lems that have complex solution spaces such as multimodal, multipeak, multiobjective
planning, and dynamic planning (Refer to Figure 1 for a general graphical representation
of the genetic algorithm′s process). Although the GA has strong comprehensive solving
abilities on multiobjective data features, it is not as effective as specialized solvers for
optimization problems based on specific data sets [12]. Therefore, when using the GA to
solve specific compound optimization problems, the computation mechanism of the GA
can be adjusted appropriately to improve performance. For instance, Zhang and Tian [13]
used the GA to optimize the initial weights and thresholds of the BP neural network to
comprehensively evaluate the failure behavior of high-strength hydrogen transmission
pipelines, residual strength, and the effects of interactions between adjacent corrosion.
Shahrokhabadi et al. [14] combined the GA with the natural element method (NEM) to cal-
culate the potential sliding surface of the slope and safety factor. In such applications [15,16],
adding the GA significantly affects the computational time. However, combining multiple
methods can reduce the computational cost to some extent.

There are also some better solutions to the issues of complexity, premature conver-
gence, and stochastic roaming of the genetic operations of GA [18]. For example, the
computational flow of the GA can be optimized based on graph theory [19], and Markov
chain theory [20,21] can enhance the GA’s ability to solve dynamic optimization problems.
Additionally, Coelho [22] prevented the GA from converging to the local optimum pre-
maturely using a new quantum behavior PSO (QPSO) with chaotic variational operators.
However, despite these advancements, the GA method itself still faces issues, including
the population generation pattern being too random and difficult to control, leading to
suboptimal results.

Therefore, to improve the performance of predicting the fracture surface of nonhomo-
geneous anti-inclined rock slope, this paper optimizes the population generation mode
based on the classical genetic algorithm (Figure 2 illustrates the article structure of this
paper). Specifically, we enhance the initial population generation and selection mechanism
of optimal individuals. The fracture model of a nonhomogeneous anti-inclined rock slope is
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then constructed by considering the inhomogeneous distribution of bulk density combined
with limit equilibrium theory. Finally, we use the improved adaptive genetic algorithm
(AGA) to solve the failure surface.
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2. Materials and Methods

Meta-heuristic algorithms have emerged as a means of improving computational
efficiency and finding optimal solutions. One such algorithm, GA, is a classical meta-
heuristic algorithm that has been widely used since its inception. However, when combined
with the damage mechanism of the toppling rock slope, the classical GA faces two major
shortcomings. Firstly, generating the initial population that satisfies multidimensional
complex constraints requires multiple cycles. Secondly, the genetic operation operator
of the classical GA is too simplistic, resulting in premature convergence and random
roaming phenomena.

2.1. Modified AGA

Regarding the initial population cycle generation model of classical GA, a modified
method can be used. First, a feasible initial solution A in the multidimensional complex
constraints domain is found. In other words, an initial individual is generated that satisfies
the constraints. A unit vector di = (cos di, sin di) in random directions and a sufficiently
large number M are defined and given so that the vector domain consisting of |A + Mdi|
can geometrically cover the entire feasible domain composed of constraints. For a specific
direction di, if the numerical point of |A + Mdi| is in the feasible domain, it is regarded as
an individual in the initial population. If it does not satisfy the constraint, M is replaced
by a random number M1 ∈ [0, M]. If |A + M1di| still fails to meet the constraint, M1 is
replaced by another random number M2 ∈ [0, M1] until the numerical point of |A + M2di|
is in the feasible domain. By repeating the process n times, the initial population containing
n individuals that meet the complex approximate conditions can be generated. This process
can be described using Figure 3 and mathematical Equation (1) as follows:

Feasible domain =
n

∑
i=1
|A + Midi| (1)Sustainability 2023, 15, 7455 5 of 17 
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Regarding the optimization strategy of the genetic operator, in addition to defining the
crossover probability Pc and variation probability Pm, the partial taboo search algorithm’s
core idea is incorporated to optimize the optimal individual selection strategy, speeding up
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the search. The relationship between changing values of Pc and Pm can be found in Figure 4.

Crossover :

{
V′i = αcVi + (1− αc)Vj
V′j = (1− αc)Vi + αcVj

(2)

Variance :


Vi =

[
xi,1, xi,2, . . . , xi,j, . . . , xi,n

]
x′i,j = xi,j + αm

(
xi,jmax − xi,jmin

)
V′i =

[
xi,1, xi,2, . . . , x′i,j, . . . , xi,n

] (3)

where xi,1, xi,2, . . . , xi,j, . . . , xi,n represents all of the genes of an individual; x′i,j represents a
gene after mutation; and V′i represents the new individual after mutation.
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Defining the crossover probability Pc has the advantage of providing better control
over the crossover rate of the population, thereby preventing premature convergence and
stagnation. Additionally, the minimum crossover probability allows certain local optimal
solutions to escape their domain interval and accelerate the global search process. The
variance probability Pm is important in determining the behavior and performance of the
genetic algorithm [23] as it directly impacts the convergence rate of the algorithm. If Pm
is too large, the GA will resemble a random search algorithm, resulting in reduced search
efficiency and a lower probability of finding the global optimal solution. Conversely, if
Pm is too small, the genetic diversity of the population decreases, and the GA loses its
fundamental characteristics. A visualization of this process can be found in Figure 5.

The optimal individual selection mechanism incorporates elements of the forbidden
search algorithm strategy. First, a specific initial solution is identified to optimize the
objective function. Second, the solution vector corresponding to the optimal value is
used as the center of a circle, with the minimum distance value of each direction to the
boundary of the solution space serving as the maximum radius. This circle represents the
neighborhood of the solution A(X1A, Y1A). Third, when the current solution leaps from A
to point B within the neighborhood, the direction value dir(◦) of the leap is recorded in the
taboo table, and the interval of this direction is defined as the forbidden direction interval.
Therefore, during the next iteration at point B, no further leaps along this direction interval
are permitted.

Finally, the above improvement scheme is summarized, and the algorithm flow de-
picted in Figure 6 is used to code the program.
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2.2. Mechanical Analysis

Neglecting the influences of physical factors, such as groundwater and temperature,
the overturning of the rock slope can be modeled as a series of elongated rock columns
arranged discretely [2]. According to experimentally derived equilibrium theory [24–27],
when a rock formation experiences bending or tipping, equilibrium is achieved at the
interface between adjacent rock layers. From this, the normal force Ni and moment Mi
between adjacent rock columns on the base, as well as the shear force Qi in the direction
perpendicular to the base, can be derived [28]. The force distribution of this can be found
in Figure 7.

Ni = Wi cos β + Ql
i −Qr

i
∼= Wi cos β (4)

Mi = liPl
i − riPr

i −
ti
2

(
Ql

i + Qr
i

)
+

hi
2

Wi sin β (5)

Qi = Pi tan ϕd (6)

where ϕd denotes the friction angle of the rock mass.
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Figure 7. Schematic diagram of the force analysis of the rock column in layer i.

To assess the stability of a rock formation subject to bending or tipping damage, the
safety factor Fs can be introduced. Utilizing the bending theory of cantilever beams, the
maximum tensile stress σmax

i at the bottom of the rock formation can be determined.

σmax
i =

Mi
Ii

ti
2
− Ni

ti
=

σt

Fs

(
Ii =

t3
i

12

)
(7)

where Ii denotes the inertia modulus of the ith layer and σt is the ultimate tensile stress of
the rock material.
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By combining Equations (4)–(7), we can determine the normal force Pr
i,w acting on the

right side of the rock formation when it undergoes bending and overturning.

Pr
i,w =

Pl
i

(
li − ti

2 tan ϕd

)
+ Wi

(
hi
2 sin β− ti

6 cos β
)
− σtt2

i
6Fs

ri +
ti
2 tan ϕd

(8)

The shear force Si acting parallel to the base on the rock formation can be calculated
through force analysis when it is subjected to shear damage.

Si = Wi sin β + Pl
i − Pr

i (9)

The principal stress σi,n and tangential stress τi in the cross section can be calculated
using the shear force S_i parallel to the base on the rock formation, as well as other
relevant parameters.

σi,n =
Wi cos β

ti
(10)

τi =
Pl

i − Pr
i + Wi sin β

ti
(11)

The instability of the rock formation occurs when the value of τi reaches the shear
strength of the intact rock. By introducing the safety factor Fs, the critical value of τi can
be obtained.

τi = σi,n
tan ϕd

Fs
+

c
Fs

(12)

where c denotes the cohesion of the rock mass.
The normal force acting on the right side of the rock formation can be determined

through relevant calculations and equations.

Pr
i,s = Pl

i +

[
Wi sin β

(
1− tan ϕd

Fs tan β

)
− cti

Fs

]
(13)

Considering the thrust associated with the two damage modes, we use the expression
Pr

i = max
(

Pr
i,w, Pr

i,s, 0
)

and make the following definition:


Pr

i < 0 the slope is stable,
Pr

i = 0 the slope is in limiting equilibrium,
Pr

i > 0 the slope is unstable.

The force acting on the next layer is Pl
i−1 = Pr

i .

2.3. Introduction of Non-Uniformity

When considering the effects of weathering and erosion in a natural environment,
the surface rock mass is vulnerable to damage and cracking, resulting in a lower bulk
density compared to the deeply buried rock mass. Additionally, natural rock masses are
typically characterized by the presence of pores, and the inhomogeneity of bulk density can
be described through analogy with random field theory [10,27,29–33], where the spatial
coordinate h represents the depth of the rock mass and the regionalization variable ϕ is
defined as a function of ϕ(h). Due to the impossibility of sampling and measuring every-
where in space, finite samples are used to generate regionalized variables. To characterize
the inhomogeneity of bulk density at different depths of the rock formation, a model based
on the exponential autocorrelation function in random fields [29,30] can be fitted to the
data. A schematic of the heterogeneous rocks can be seen in Figure 8.

Wi =
∫

Aihi ϕ(hi)dhi (14)
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where ϕ(hi) = C0/(C1lnhi + C2), C0, C1, C2 can be fitted by experimental data, and Ai is
the cross-sectional area of the rock column.
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In a two-dimensional plane, the rock body is treated as a unit area, and its gravity can
be calculated using relevant equations and parameters:

Wi =
∫

tihi ϕ(hi)dhi (15)

where ti is the width of the rock column.
The expression for the damage thrust of an inhomogeneous rock formation can be

determined through relevant calculations and equations.

Pr
i =


Pl

i

(
li−

ti
2 tan ϕd

)
+
(

hi
2 sin β− ti

6 cos β
) ∫

tihi ϕ(hi)dhi−
σt t2i
6Fs

ri+
ti
2 tan ϕd

Pl
i +

[
sin β

(
1− tan ϕd

Fs tan β

) ∫
tihi ϕ(hi)dhi − cti

Fs

] (16)

3. Results and Discussion
3.1. Verification of the Validity of the AGA Algorithm

In order to verify the accuracy of the algorithm, this paper conducted a verification using
the rock slope data from the literature [28], as illustrated in Figure 9 and Table 1. To simplify
the calculation process and focus solely on the correctness and robustness of the algorithm,
this paper neglected physical factors such as temperature, groundwater effects, etc.

The Mahalanobis distance, which was proposed by the Indian statistician P. C. Maha-
lanobis [34], represents the covariance distance of the data and is an effective method for
calculating the similarity of two unknown sample sets. In our study, we utilized this method
to evaluate the accuracy of the AGA algorithm in predicting the fracture surface of a slope
model. Specifically, we recorded the location coordinates of the experimental fracture sur-
face and the fracture surface generated by the AGA algorithm and UDEC software using a
right-angle coordinate system with the leftmost point at the bottom of the slope model as
the origin. We then calculated the Mahalanobis distance between the experimental sample
set and the numerical simulation sample set and subsequently normalized the results to
analyze the approximation between the numerical simulation and experiment. Based on our
numerical experiments, our results demonstrate that the AGA algorithm is able to accurately
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predict the fracture surface of the slope model, thus highlighting its value and effectiveness for
engineering applications. A detailed representation of the results can be found in Figure 10.

Table 1. Model parameters used in the verification cases.

Parameters Values

Height of the slope, H(mm) 300
Angle of the slope, β(◦) 61

Angle between the normal to the joints and the
horizontal direction 10

Spacing of the joints, ti(mm) 10
Cohesion of the intact rock, c(MPa) 1.4

Friction angle of the intact rock, ϕ(◦) 37
Tensile strength of the intact rock, σt(MPa) 1.4
Unit weight of the intact rock, γ

(
kN/m3) 2380

Cohesion of the joints, cd(MPa) 0
Friction angle of the joints, ϕd(

◦) 26
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Element Code (UDEC) with the modified adaptive genetic algorithm (AGA) (left) and the genetic 
algorithm (GA) proposed by Zheng et al. [28] (right) highlights the superior performance and relia-
bility of the modified AGA approach in analyzing fracture surface feature points of an anticline 
rocky slope. 

The Mahalanobis distance, which was proposed by the Indian statistician P. C. Ma-
halanobis [34], represents the covariance distance of the data and is an effective method 
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Figure 9. The comparison between the fracture surface results obtained from the Universal Distinct
Element Code (UDEC) with the modified adaptive genetic algorithm (AGA) (left) and the genetic algorithm
(GA) proposed by Zheng et al. [28] (right) highlights the superior performance and reliability of the
modified AGA approach in analyzing fracture surface feature points of an anticline rocky slope.
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To evaluate the accuracy of the AGA algorithm in predicting the fracture surface of a
slope model, we utilized a unified coordinate system to record the coordinate sets of fracture
surface locations obtained by both the UDEC simulation and the AGA algorithm. We then
compared these coordinate sets with the experimental data and calculated the results, as
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shown in the figure above. The maximal normalized Mahalanobis distance between the
modified AGA algorithm and UDEC simulation results was 0.47, while the minimum
was 0.01. For the same 30 fracture surface feature point coordinates, the mean value
of Mahalanobis distance between the modified AGA and UDEC simulation results was
6.68 times smaller than that between the traditional GA and UDEC. Moreover, compared
with the simulation results of UDEC, the overall Mahalanobis distance fluctuation of the
modified AGA was smaller than that of the traditional GA. The figure clearly indicates that
the fracture surface solved by the modified AGA is more similar to that of the numerical
simulation software, and the fluctuation of the difference value in each characteristic point
is smaller, which verifies the effectiveness of the modified AGA algorithm. Overall, these
results demonstrate the value and effectiveness of our algorithm in predicting the fracture
surface of slope models, thereby providing a useful tool for engineering applications.

3.2. Multi-Dimensional Comparison of AGA and UDEC

The dynamic loading is modeled as a sinusoidal velocity with a frequency of 10 Hz, an
amplitude of 2 m/s, and a duration of 0.1 s. To evaluate the response of the slope model to
this dynamic loading, the velocities at the bottom and top boundaries were measured. The
results, shown in the Figure 11 below, indicate that no waveform distortion occurred during
propagation, suggesting that the cell size used was sufficiently small to accurately simulate wave
dynamics at that frequency. Overall, these findings provide critical insight into the response of
the slope model under dynamic loading conditions and highlight the importance of establishing
appropriate numerical parameters to accurately capture the relevant physical phenomena.
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The data analysis revealed a logarithmic bulk density random distribution chart,
suggesting the presence of inhomogeneous bulk density and its relationship with the
location of fracture surface feature points on the anticline rocky slope. Additionally, a
logarithmic-type failure surface prediction diagram was developed using the modified
adaptive genetic algorithm with Universal Distinct Element Code (UDEC) simulation as
a reliable tool to predict potential failure surfaces of the slope. Furthermore, a random-
type volume density distribution chart was analyzed, indicating the uneven distribution of
volume density, which raises implications for slope stability and emphasizes the importance
of accurate volume density measurement and analysis. Another random-type failure
surface prediction diagram was developed using the modified adaptive genetic algorithm
and UDEC simulation, providing a novel tool to predict and analyze potential failure
surfaces of the slope. Moreover, in a comparison between the fracture surface calculations
performed using the modified AGA and UDEC software under vibrational conditions for
rock mass with nonuniform bulk density caused by pore presence, it was observed that
the inhomogeneity of bulk density affects the shape of the fracture surface, highlighting
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the importance of considering this factor in numerical simulations. Overall, the results
underscore the effectiveness of the modified AGA algorithm in predicting fracture surfaces
of rock formations under complex loading conditions and offer important insights into the
internal mechanisms governing fracture propagation in porous rock masses.

Under vibration conditions, the fracture surface calculation results in the modified
AGA and UDEC shown in Figure 12. The effects of the nonhomogeneous type of bulk
density on the prediction of failure surface of rocky slopes are compared. For the case of
exponential inhomogeneous distribution of volume density, the displacement calculated
by UDEC presents obvious layering, and its fracture surface is approximately linear. In
contrast, the fracture surface calculated by AGA closely fits the rock mass region with
nearly constant density, exhibiting strong nonlinearity. Moreover, the development trend
of the failure surface from the middle to the top of the slope is almost identical for both
methods; however, the starting fracture position at the bottom of the slope is different. This
is primarily due to the AGA algorithm being optimized by assigning equal weight to every
individual in each iteration, resulting in conservative calculations of the fracture location
for each rock column, thereby ensuring its stability even during individual stress analysis.
As a result, the depth of the rock mass fracture position causing the slope stability tends to
be deeper overall, closer to the rock mass region with nearly constant density.
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roughly linear trend, showing low similarity to the failure surface calculated by UDEC. The
reason for this phenomenon is that the AGA algorithm uses the mean value theorem to
replace this kind of local nonlinear mutation in the integral, while UDEC uses the method
of discrete elements to solve the interaction between each element.

Based on the results obtained from the two scenarios, it can be inferred that the inhomo-
geneity of volume density resulting from the existence of pores in rock masses will affect the
shape of the fracture surface. Meanwhile, the AGA algorithm exhibits stable results when
calculating the fracture surface of the overturned rock slope and can provide a predictive result
for the fracture surface incorporating the inhomogeneous distribution of volume density.

4. Conclusions

• The modified AGA-based scheme proposed in this study contributes to sustainability
in geological engineering by providing a more reliable and accurate method of predict-
ing fracture surface feature points of rocky slopes, which can lead to more effective
and sustainable slope management and maintenance practices.

• Through a simple case study, the modified AGA approach with UDEC simulation
was found to be 6.68 times more reliable than traditional GA methods, demonstrating
the reliability of the calculation results and the feasibility of the modified AGA-based
scheme, which can contribute to sustainable geological engineering practices.

• Through our study, we found that natural environmental factors such as weathering
play a critical role in shaping the behavior of rocky slopes. Our findings provide
valuable insights for understanding the behavior of rocky slopes that are significant in
promoting sustainable land use practices and ensuring the safety of both human lives
and infrastructure projects.

• We propose that the higher accuracy and reliability of the modified AGA approach
can be widely applied to more complex rock structures, further advancing sustainable
engineering practices. Future studies could explore the applicability of this approach to
other types of rock structures and investigate its potential use in practical engineering
scenarios, contributing further to sustainability in geological engineering.

• In conclusion, the study’s findings and approach contribute significantly to promoting
sustainability in geological engineering by enhancing our understanding of the behav-
ior of rocky slopes and providing a reliable and accurate method of predicting fracture
surface feature points. The application of this approach will play an essential role in
designing sustainable and stable infrastructure projects, protecting human lives and
properties, and preserving the environment for future generations.
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Nomenclature

Table of Letter Symbols used in the paper

PFr
i

The custom right resultant force on
rock failure (kN)

Ql
i , Qr

i

Shear force perpendicular to the
fracture surface on both sides of
the rock column (kN)

A
Initial solution vector of genetic
algorithm

Si

Shear force in the direction
parallel to the rupture
surface (kN)

Ai
Vertical profile area of the rock
column (m2)

ti
The thickness of the rock
pillars (m)

C0, C1, C2
Parameters for the variation in bulk
density of rocks with depth

Vi, Vj
Individuals without prior genetic
manipulation

di Unit direction vector V′i , V′j
An individual after genetic
manipulation

dir
Vector azimuth from the current
solution to the optimal solution (◦)

Wi
The gravity of the rock
column (kN)

favg The average population adaptability xi,n
The inherited genes carried by an
individual

fmax
The maximum population
adaptability

Greek letters

hi
Height of rock column above the
fracture surface (m)

αc, αm
A random number between
0 and 1

i Rock pillars numbered β
The angle of slope of rock
column (◦)

Ii
Denotes the inertia modulus of the
ith layer (mm4)

c
The cohesion of the rock
mass (kPa)

li, ri

Distance from the fracture face of the
point of combined action of the left
and right sides of the rock pillars (m)

σmax
i

The maximum tensile stress of
rock (MPa)

Mi
A random number used to control
the variation in the solution vector

σt
The tensile strength of the intact
rock (MPa)

Mi The torque provided by the support σi,n
The normal acting on the base of
the layer (MPa)

Ni
The support provides a vertical
bearing reaction

τi
The shear stresses acting on the
base of the layer (MPa)

Pc Crossover probability ϕd Friction Angle of rock (◦)
Pcmin The minimum crossover probability Coordinate systems

Pcmax The maximum crossover probability A(X1A, Y1A)

The two-dimensional coordinate
representation of the current
optimal solution

Pm Variation probability XOY
The global coordinate system in
the outer ring center

Pmmin The minimum variation probability Abbreviations
Pmmax The maximum variation probability GA Genetic algorithm

Pl
i , Pr

i
Combined forces on the left and
right sides of the rock column (kN)

AGA Adaptive genetic algorithm

Pr
i,w

The combined force acting on the
right side of a rock formation when
it bends and overturns (kN)

UDEC Universal Distinct Element Code

Pr
i,s

The resultant force acting on the
right side of the rock layer when a
shear failure occurs (kN)

Bolded letter symbols within the table signify vector quantities
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