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Abstract: In recent years, the prediction of ship trajectory based on automatic identification system
(AIS) data has become an important area of research. Among the existing studies, most focus on a
single ship to extract features and train models for trajectory prediction. However, in a real situation,
AIS contains a variety of ships and trajectories that need a general model to serve various cases.
Therefore, in this paper, we include an attentional mechanism to train a multi-trajectory prediction
model. There are three major processes in our model. Firstly, we improve the traditional density-
based spatial clustering of applications with noise (DBSCAN) algorithm and apply it to trajectory
clustering. According to the clustering process, ship trajectories can be automatically separated by
groups. Secondly, we propose a feature extraction method based on a hierarchical clustering method
for a trajectory group. According to the extraction process, typical trajectories can be obtained for
individual groups. Thirdly, we propose a multi-trajectory prediction model based on an attentional
mechanism. The proposed model was trained using typical trajectories and tested using original
trajectories. In the experiments, we chose nearby port waters as the target, which contain various
ships and trajectories, to validate our model. The experimental results show that the mean absolute
errors (MAEs) of the model in longitude (◦) and latitude (◦) compared with the baseline methods
were reduced by 8.69% and 6.12%.

Keywords: trajectory prediction; AIS data; feature extraction; attention mechanism; neural network

1. Introduction

Over the years, ships have become larger and more diversified, and the number
of ships has also increased. This brings potential safety hazards to the navigation of
ships [1]. According to a report on the causes of collisions, 95% are caused by humans [2].
It is insufficient for officers to rely solely on navigational information from the electronic
chart display, information system (ECDIS), and automatic identification system (AIS)
equipped on ships to assist in decision-making. The prediction of ship trajectory can
provide correct auxiliary decision support for pilots. Therefore, accurate ship trajectory
prediction is necessary for a ship navigation system to reduce the risk of ship accidents.
Trajectory prediction is extensively studied in the field of ships. The models adopted can
be divided into those using traditional methods and using machine learning. In traditional
methods, the modeling of a ship’s motion process is conducted through one or more sets of
mathematical kinematic equations, taking all possible influencing factors (such as mass,
force, inertia, yaw, and rate) into account and using physical laws to model and calculate
the ship’s motion characteristics. Best et al. proposed a ship curve model integrating linear
motion, circular motion, and parabolic motion that can accurately describe a ship’s motion
characteristics [3]. Inoue et al. used a ship hydrodynamic model to predict ship trajectory,
which can calculate ship movement according to actual ship data, such as hull, rudder,
propulsion system, ocean current speed, and major details of wind [4]. In modeling that
uses machine learning, it includes Kalman filtering (KF), support vector regression (SVR),
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artificial neural network (ANN), etc. Liu et al. took the longitude and latitude, course,
and speed from ship historical trajectory data as sample features and proposed a trajectory
prediction model based on SVR [5]. Because an ANN benefits the learning of complex
relationships, it can be used to learn complex space–time relationships among variables [6].
Gan et al. first used a K-means clustering algorithm to group ship historical trajectory and
then used the grouping results to build an ANN model to predict ship trajectory [7].

In practical applications, trajectory navigation is a stochastics process via time, and
most scholars pursue trajectory prediction using a time series analysis and approach.
Therefore, many scholars have studied a series of prediction problems using nonlinear
information, such as a long and short-term memory neural network (LSTM-NN) [8,9]. Ma
et al. proposed a new trajectory feature representation method, which used a hierarchical
clustering algorithm to analyze and extract ship navigation behaviors of multiple trajecto-
ries, and designed an integrated model for simultaneously predicting multiple trajectories
based on LSTM-NN [10]. Gao et al. combined the advantages of a trajectory proposal
network for motion prediction (TPNet) and LSTM-NN to realize the multistep prediction
of ship trajectory, which is suitable for real-time analysis and has high accuracy [11]. The
gated recurrent unit neural network (GRU-NN) is a variant of the LSTM-NN, which only
requires updating and resetting of the gate to regulate the flow of information [12]. Han
et al. proposed a short-term real-time trajectory coordinate point prediction method based
on GRU-NN from the perspective of historical trajectory data and real-time trajectory
data [13]. Then, a combined online learning model combining K-means clustering and
GRU-NN was proposed for trajectory prediction [14]. In the model, a k-means algorithm is
used to cluster the trajectory points adaptively, and the online learning prediction model
based on GRU-NN is used to learn from the trajectory points of each cluster.

In practice, due to the randomness and diversity of disturbances, a ship’s motion
state changes frequently, making it difficult to find the change rule and feature extraction.
The AIS data collection frequency is also different, resulting in the uneven distribution of
the data time difference. The traditional single trajectory feature extraction method has
high sensitivity in densely packed ship trajectory points, which makes it easy to lose local
features and difficult to restore the original trajectory. Trajectory data are often nonlinear
and occur over a certain space and time scale [15]. The traditional models mainly study
the prediction of a single trajectory, and each trajectory requires a separate training model.
Therefore, the lack of a long and accurate multi-trajectory sequence prediction model poses
a challenge to current research.

To solve the above problems, a multi-trajectory feature extraction and prediction
model is proposed. Firstly, we improved the traditional density-based spatial clustering
of applications with noise (DBSCAN) algorithm and applied it to trajectory clustering.
According to the clustering process, ship trajectories can be automatically separated into
groups, thus generating different trajectory categories. In this work, we used the dynamic
time warping (DTW) algorithm to measure the similarities among different trajectories.
Secondly, we propose a feature extraction method based on a hierarchical clustering method
for a trajectory group. This method improves the traditional single trajectory feature
extraction method and proposes multi-trajectories using group hierarchical clustering
(GHC) for feature extraction based on a trajectory group. According to the extraction
process, typical trajectories can be obtained for individual groups. Thirdly, we propose
a multi-trajectory prediction model based on an attentional mechanism. The proposed
model was trained using typical trajectories and tested using original trajectories. In the
experiments, we chose nearby port waters as the target, which contains various ships and
trajectories, to validate our model.

In the experiments, MAE and RMSE were used to measure the performance of the
proposed model, and we compared the features proposed by the GHC algorithm with
those extracted by hierarchical clustering (HC) and Douglas–Peucker (DP) algorithms.
The average similarity between our features and the original features was 2.267. Under
the same conditions, the GHC algorithm was 3.74% better than the HC algorithm and
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60.12% better than the DP algorithm. In the second part of the experiment, we studied
the feature extraction based on GHC to train the trajectory prediction model. First, the
experiment compared the advantages of the attention mechanism model in the feature
prediction. The MAE of the longitude and latitude of the departure trajectory were 0.0198
and 0.0173, respectively, which were 8.65%, 16.26%, 15.48%, 19.58%, 6.82%,17.07%, 13.35%
and 22.56% lower than the LSTM-NN, GRU-NN, bidirectional long and short term memory
neural network (BiLSTM-NN) and bidirectional gate recurrent unit neural network (BiGRU-
NN), respectively. The MAE of the longitude and latitude of the arrival trajectory were
0.00898 and 0.00673, respectively, which were 52.60%, 63.84%, 53.07%, 62.71%, 38.95%,
56.89%, 47.36% and 58.93% lower than LSTM-NN, GRU-NN, BiLSTM-NN and BiGRU-NN,
respectively. This study also compared the effects of different feature extraction results on
model training and found that the features extracted using the GHC algorithm were the
best among different models.

The contributions of this article mainly include the following aspects. Firstly, we
improved the traditional DBSCAN algorithm and applied it to trajectory clustering. Ac-
cording to the clustering process, the common trajectory features can be automatically
extracted by group. Secondly, we proposed a feature extraction method based on the
hierarchical clustering method for a trajectory group. According to the extraction process,
typical trajectory features can be obtained for individual groups. Thirdly, we proposed
a multi-trajectory prediction model based on an attentional mechanism. Compared to
the traditional prediction models, it has a higher accuracy and better generalization. In
addition, the high accuracy of trajectory prediction is not only of benefit for navigation path
planning, and also greatly contributes to ship collision avoidance and route optimization
so as to enhance navigation safety and improve management efficiency for the sustainable
shipping development.

The remainder of this article is organized as follows. Section 2 reviews studies on
traditional feature extraction methods and trajectory prediction models. Section 3 provides
the methodology for the introduction of the DBSCAN clustering method, the improved
hierarchical clustering feature extraction method, and the multi-trajectory prediction model
based on an attention mechanism. Section 4 describes the data and verifies the performance
of the proposed model. Section 5 presents the conclusion of this paper and possible research
in the future.

2. Background and Related Studies
2.1. Related Studies of the Trajectory Feature Extraction

The DP algorithm is a classic approach for the thinning of linear elements, which can
handle a large number of aggregate data points in order to simplify the data volume [16].
At present, the DP algorithm has extensive application in ship trajectory compression and
feature extraction. The core idea of the DP algorithm is to connect the starting and ending
points of the curve and then determine the maximum vertical distance of the middle point
to the connecting line, compared with a threshold value that has been set [17]. If it is larger
than the threshold, it is divided into two segments and calculated again; if it is smaller
than the threshold, the intermediate point is deleted to complete the feature extraction. See
Appendix A and Figure A1 for detailed steps of the calculation and charts.

The hierarchical clustering algorithm is also an effective way to extract ship trajectory
features. It first determines the number, k, of feature extraction points and calculates the
Euclidean metric. The average value of the two points from the minimum Euclidean metric
is taken to merge [18]. See Appendix A and Figure A2 for detailed steps of the calculation
and charts. In addition, some studies have utilized other clustering methods for feature
extraction, such as DBSCAN. However, there is currently a lack of research on feature
extraction algorithms for trajectory groups.
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2.2. Related Studies of the Trajectory Prediction Method

In this section, we review several related studies on the ship trajectory prediction
method. A ship’s driving operation is based on trajectory information within a period of
time, rather than instantaneous information at a certain time step. In the field of machine
learning, this information that lasts for a period of time can be regarded as time series
information. Neural networks are widely used in processing time series data.

Recurrent neural network (RNN) is a network used to capture information from
time series. The most significant feature of an RNN is that weight connections are also
established among neurons within the layer [19]. Due to the inherent structure of an RNN,
the RNN model has problems such as vanishing gradients, exploding gradients, sensitivity
to noise, and a requirement of a large amount of training data. Therefore, an LSTM
neural network was proposed by adding a gate mechanism on the basis of RNN, and this
became a popular method in trajectory prediction [10,11,20]. An LSTM is a type of neural
network that captures dynamic information in serial data [21,22]. It solves the problems
of gradient disappearance and the long-term dependence of traditional neural networks
by constructing specialized memory storage units and designing time back propagation
methods [23–25]. Because of the complex structure inside an LSTM, the training time
of an LSTM is long. A GRU is a new variant of short-term memory networks and long-
term memory networks. It solves the problems existing in common RNNs and has good
adaptability to the processing of a large number of nonlinear implementation sequences.
Compared with an LSTM, the GRU has a simpler structure, fewer built-in parameters, and
a faster training time [26]. Some scholars have also applied GRU to trajectory prediction, as
shown in the literature [27]. The principles and pictures of the above methods are shown in
Appendix A and Figures A3–A5. In addition, in order to consider the information of the
forward and backward directions, bidirectional neural network mechanisms have emerged,
such as BiLSTM and BiGRU. However, the prediction of multiple trajectories is lacking in
the above literature.

3. Methodology

In order to extract feature points from trajectory data, better restore historical trajec-
tories, and improve the accuracy of multi-trajectory prediction, a multi-trajectory feature
extraction and prediction model is proposed. The process of the model is shown in Figure 1.
As described, the model mainly consists of three parts. First, the data is processed by
the data processing module and divided into trajectories. Second, feature extraction is
performed for the trajectory. Third, the extracted features are used to train the machine
learning model.
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3.1. Application of DBSCAN in Trajectory Clustering

In a given sea area, the ship trajectory has different types of motion modes and
trajectory lengths. When the trajectory of the selected sea area is input directly into the
model, it is difficult to obtain high-precision prediction results. In this study, the ship
trajectories are grouped into clusters to identify ship motion patterns. Through this process,
the ship trajectories within a group of species become more similar.
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The DBSACN algorithm is a density-based clustering algorithm that can find arbi-
trarily shaped clusters in a noisy environment and automatically determine the number
of clusters [28,29]. The traditional DBSCAN algorithm is shown in Figure 2a. In practical
applications, DBSCAN is mainly applied to point clustering and cannot be used for the
direct clustering analysis of ship trajectories. Ship trajectory is a set of discrete points, and
the lines between the front and back points constitute trajectory segments. The DTW can be
used to measure the similarity between trajectories of different lengths [30]. Therefore, in
this work, the DBSCAN used DTW as the similarity measure to extend the traditional point-
clustering analogy to widely linear clustering, thus extending it to trajectory clustering, as
shown in Figure 2b. The main ideas are as follows.

(1) Define the neighborhood.
Select any trajectory li in the trajectory set and define the neighborhood of trajectory
li as:

Nε(li) =
{

liεL
∣∣Dis

(
li, lj

)
≤ ε
}

(1)

where L is the trajectory set in the study area, and the neighborhood set of trajectory
li consists of trajectory not more than ε in similarity.

(2) Determine the trajectory types.

(A) Core trajectory: for the trajectory liεL, if li is full Num(Nε(li)) ≥ Nummin,
then the trajectory li is the core trajectory. In Equation (1), Num(Nε(li)) is the
number of trajectories, wherein trajectory li is doing so in the neighborhood,
and Nummin is the density threshold when trajectory li is doing so in the
neighborhood;

(B) Boundary trajectory: if li is full Num(Nε(li)) < Nummin and the trajectory
is doing so within a similar threshold at a core trajectory, it is a boundary
trajectory;

(C) Noise trajectory: if li is full Num(Nε(li)) < Nummin and the trajectory is not
doing so under the threshold of any core trajectory, it is a noise trajectory.

(3) Traversing the trajectory set Nε(li) in the neighborhood of trajectory li: If they are not
assigned to a cluster, assign the cluster label of trajectory li to them. If they are core
trajectories, access their neighborhood trajectories in turn until there are no more core
trajectories in the neighborhood. Repeat the above steps until all trajectories have
cluster labels.
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3.2. Feature Extraction
3.2.1. Framing in Trajectory

Due to the different acquisition frequencies and time points of the AIS system, the
data points contained in the trajectories of the same length are different. In this study, the
idea of frame segmentation is adopted to ensure the unity of the points of the subsequent
multi-trajectory feature extraction data. The trajectories in the same group are similar.
Because of the difference in the sailing speeds and collection times, the frame segmentation
in the time domain cannot guarantee the unity of the trajectory points. Therefore, this study
adopted the method of spatial domain framing. As shown in Figure 3, the frame length is
marked. Since the number of data points in a frame is not constant, the average value of
the data in each frame is studied to represent the size of the data in the frame.
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3.2.2. Hierarchical Clustering Based on the Trajectory Groups

In order to solve the defect that the HC algorithm is sensitive to the turning density
point and easily distort, in this paper, the trajectory group based on the hierarchical
clustering algorithm was used to improve the traditional HC algorithm. The similarity is
measured using Euclidean metric, As shown in Equation (2).
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di = dis(pi, pi+1) =

√
(xi − xi+1)

2 + (yi − yi+1)
2 (2)

where di represents the Euclidean metric between pi and pi+1.
A diagram is shown in Figure 4, and the specific steps are as follows:

(a) Calculate the similarity di between adjacent two frames of each trajectory.
(b) Calculate the average similarity AVG(di) between two adjacent frames in the same

frame area and save it in the similarity set S. The specific is shown in Equation (3).

AVG(di) =
∑n−1

i=1 di

n
(3)

where n is the total number of trajectory points.
(c) The two points with the minimum similarity in the set S are averaged and merged

into the same point, replacing the original point in the trajectory set;
(d) Repeat steps a–c until the number of trajectory points converges to the target point k.
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The GHC algorithm considers the similarity of the trajectories within a grouping and
uses the average similarity of all trajectories between two adjacent trajectory points (i.e., the
similarity between the different frames) as the criterion for the trajectory point combination.
The advantage of this method is that the trajectory feature extraction is no longer affected
by the dense area of the trajectory points during the extraction of a single trajectory feature.
It comprehensively measures the dense area of the trajectory within the trajectory group
and better preserves the trajectory points that turn to the dense area, and the trajectory
restoration degree is higher.

3.3. Multi-Trajectory Prediction Based on an Attention Mechanism

The attention mechanism in the deep learning model originates from the human brain
mechanism [31]. It is widely used in computer vision and natural language processing
tasks [32–34]. The attention mechanism assigns attention to input weights that address the
characteristics of the target we want to detect. The accuracy of the model can be improved
by using the attention mechanism. In addition, it is more efficient than traditional neural
networks (such as an RNN and LSTM) in processing large-scale data [8,9]. Its core idea is to
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allocate different weights to the state of the hidden layer by reasonably allocating attention
to different input information to highlight the influence of important information on the
results [35]. Attention mechanics are widely used in transformer (TRM) models. Part of
the structure in the transformer was adopted in this study. The expression of the attention
mechanism is shown in Equations (4) and (5).

f (xi, y) = (W1 ∗ xi, W2 ∗ y) (4)

Attention =
n

∑
i=1

so f tmax( f (xi, y)) ∗ xi (5)

where xi represents the input trajectory sequence series data, which is mapped to the
interval (0, 1) through the normalized exponential function (Figure 5).
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The multihead attention mechanism is a combination of multiple self-attention struc-
tures. Using key, query, and value, the multihead attention mechanism calculates the
weight coefficient of the correlation and then weights the sum. The multihead attention
mechanism is repeated many times by transforming the phenomena of key, query, and
value and inserting them into the zoom point to receive attention. The linear change param-
eters W of Q, K, and V of each iteration are independent of each other and are not shared
with each other. The specific calculation using Equations (6) and (7) are shown as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (6)

MultiHead(Q, K, V) = (head1 ⊕ head2 ⊕ head3 ⊕ · · · ⊕ headh) (7)

where Q, K, and V are the query vector, key vector, and value vector, respectively; dk is the
dimension of K; and h represents the number of heads of multiple attention mechanisms.
From Equations (6) and (7), we can observe that the multihead attention mechanism can be
seen as a combination of multiple attention models and as a trajectory information weight
distribution scheme, which can allow the model to more fully extract trajectory information
during prediction. Finally, the result of the calculation of the output value attention layer is
input into the feedforward neural network, and the predicted value of the trajectory point
is obtained through linear transformation.

The ship’s navigation information comes from AIS data, including longitude, latitude,
speed over ground, and course over ground. Therefore, the navigation information of ship
i at time j can be described as:
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Pij =
[
Loni,j, Lati,j, SOGi,j, COGi,j

]
(8)

The dynamic navigation information of the ship within a certain period of time can be
expressed as pi,j−n+1, pi,j−n+2, . . . , pi,j, and pi,j+1. The input data in the model are shown
in Equation (9):

P = [[P1], [P2], [P3], . . . , [Pn]] =




p1,1
p1,2

...
p1,k

,


p2,1
p2,2

...
p2,k

,


p3,1
p3,2

...
p3,k

, . . . ,


pn,1
pn,2

...
pn,k


 (9)

where n represents the number of input trajectory sets, and k represents the number of
trajectory points in trajectory sets.

The ship multi-trajectory prediction model can be defined as:

Y
′
j = F([P1], [P2], [P3], . . . , [Pn]) (10)

In this paper, the parameters of the model are directly related to the input trajectory
sequence data, and the parameters need to be adjusted to better adapt to this situation.

4. Experiment
4.1. Data Description

In order to test the algorithm’s performance in the proposed multi-trajectory feature
extraction and prediction framework, in this study, the AIS data collected from waters near
Yantai Port in Bohai Region of China from January to June 2019 were selected as analysis
objects, among which the longitude range was [121.00◦, 122.00◦] and latitude range was
[37.58◦, 38.00◦]. The reason is that the harbor waters have a variety of trajectory navigation
channels, which can be divided into different types of trajectories in the same geographical
area. These trajectories are very suitable for testing the overall performance of the proposed
algorithm. The selected trajectory is shown in Figure 6. A total of 334 arrival trajectories
and 349 departure trajectories were screened. As can be seen from the processed trajectory
diagram, different trajectories in the same area had similarities, although there were some
differences in the details, and the trajectories had an obvious grouping phenomenon.
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4.2. Evaluation Indicators

R-squared, mean absolute error (MAE), and root mean square error (RMSE) are
commonly used evaluation indexes [36]. R-squared is an indicator for the evaluation of the
degree of fit. MAE is the mean of the absolute errors [37]. RMSE is the square root of the
mean square difference between the predicted value and the actual observation [38]. MAE
and RMSE are used to measure the difference between predicted and actual values [39].
R-squared, MAE, and RMSE are calculated according to Equations (11)–(13),

R2 = 1−
∑n

i=1

(
yi − y

′
i

)2

∑n
i=1
(
y− y′i

)2 (11)

MAE =
1
N

n

∑
i=1
|yi − y

′
i| (12)

RMSE =

√
1
N

n

∑
i=1

(
yi − y′i

)2
(13)

where N is the sample quantity, y is sample average, y
′
i is the forecast trajectory points,

and yi is the real value of the trajectory. The closer R2 is to 1, the better the model fits. The
smaller the MAE and RMSE values, the closer the predicted values are to the real values,
and the higher the prediction accuracy of the model.

4.3. The Result of the DBSCAN and Data Analysis

In this study, the DTW algorithm was used as the similarity measurement method
of DBSCAN, and similar ship trajectories were clustered. The clustering results of the
departure trajectory and arrival trajectory are shown in Figure 7. According to the clustering
results, the trajectory of the port departure and arrival can be roughly divided into four
trajectory types, with obvious differences among the different trajectory groups and roughly
the same shape among the same trajectory groups. Table 1 shows the clustering results of
the trajectories, including labels, numbers, and clustering proportions of each cluster. It can
be seen from Table 1 that the cluster of type 3 contained the largest number of trajectories in
the departure and arrival trajectories, accounting for 54.19% and 55.01%, respectively. The
number of trajectories of type 2 was the least, accounting for 5.69% and 5.44%, respectively.
The noise trajectories accounted for 2.96% and 2.29%, respectively.

Table 1. Clustering results of the trajectories.

Direction of Movement Trajectory Type Quantity Ratio (%)

Departure

Type D1 87 24.93
Type D2 19 5.44
Type D3 192 55.01
Type D4 43 12.32

Noise 8 2.29

Arrival

Type A1 85 25.45
Type A2 19 5.69
Type A3 181 54.19
Type A4 40 11.98

Noise 9 2.69
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Figure 7. Clustering results of the departure and arrival trajectories: (a,b) visualize the clustering
results in map; (c,d) visualize the clustering results in longitude and latitude axes.

In order to verify the superiority of the DBSCAN’s performance in track grouping
applications, we compared it with the K-medoids algorithm. The clustering effect of the
departure and arrival trajectory is shown in Figure 8. It can be clearly seen from the
figure that the clustering effect of the K-medoids algorithm is poor. One reason for this
is that when the K-clustering centers are randomly selected, it is difficult to separate the
noise trajectories within the trajectories, which has an impact on the selection process
of the clustering centers. The DBSCAN algorithm can effectively eliminate the noise
trajectory, as shown in Figure 8a,b. In addition, in order to quantify the clustering effect, the
silhouette coefficient was adopted as the evaluation index, which is specifically described
in Equation (14):

s(i) =
b(i)− a(i)

max{a(i), b(i)} (14)

where a(i) represents the average similarity between vector i and other targets in the
same cluster; b(i) is the average similarity between vector i and all points in a cluster in
which it is not contained. The value range of the silhouette coefficient is −1 to 1, and
the closer it is to 1, the cohesiveness and separation degree are relatively superior [40].
The silhouette coefficient table is shown in Table 2. It can be seen from the table that
the DBSCAN algorithm had better evaluation indexes than K-medoids. It can be seen
from the parameters that the algorithm has obvious advantages in the application of
trajectory grouping.
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Table 2. Silhouette coefficient of the different clustering methods.

Direction of Movement
Silhouette Coefficient

DBSCAN K-Medoids

Departure 0.881 −0.0417
Arrival 0.872 −0.0667

The distribution of the course and speed of four different types of trajectory departures
and arrivals is shown in Figure 9. Figure 9a shows the distribution diagram of various
characteristics of the departure trajectory. Figure 9b shows the distribution diagram of
various characteristics of the arrival trajectory. It can be seen from the clustering results
and feature result graphs that the departure and arrival trajectory type 1 was the steering
trajectory, and the course and speed had a certain variation trend. In departure trajectory
type 1, the course was mainly between 260◦ and 280◦, and speeds of 7 to 12 knots and 17 to
20 knots were more common. In arrival trajectory type 1, the course was mainly distributed
between 80◦ and 100◦, and the speed was mainly 9 to 13 knots and 18 to 21 knots. The
trajectory types corresponding to other departure and arrival trajectories were straighter,
and the course distribution was more concentrated. In most cases, the speed was also
relatively concentrated. In the departure trajectory type 2, the course distribution was
between 150◦ and 170◦, and the speed distribution was between 9 and 13 knots. In arrival
trajectory type 2, the course distribution was between 340◦ and 350◦, and the speed was
mainly between 7 and 12 knots. In departure trajectory type 3, the course distribution
was between 180◦ and 200◦, and the speed distribution was between 7.5 and 10 knots
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and between 13 and 17 knots. In the approach trajectory type 3, the course distribution
was between 0◦ and 30◦, and the speed was mainly between 8 and 10.5 knots and 13
and 17 knots. In departure trajectory type 4, the course was mainly distributed between
125◦ and 140◦, and the speed was mainly distributed between 7.5 and 12 knots. In arrival
trajectory type 4, the course was mainly distributed between 305◦ and 330◦, and the speed
was mainly distributed between 7 and 12 knots, with relatively large speed variations.
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4.4. The Result of the Feature Extraction
4.4.1. The Result of the Framing

In order to reduce the sensitivity of the trajectory density points and the input data for
the subsequent model construction, all trajectory lengths should be guaranteed to be the



Sustainability 2023, 15, 7435 14 of 31

same. Therefore, this study adopted the method of frame segmentation to process the data.
The time difference before and after the trajectory points is shown in Figure 10. As can
be seen from the figure, the time difference between the departure and arrival trajectories
was mostly concentrated between 0 and 20 s, and a small amount of data was distributed
between 200 and 300 s, indicating that there was a certain uneven distribution of the data
collection times.

1 
 

 

Figure 10. Distribution of the trajectory points over time.

As can be seen from above, frame splitting can ensure that each trajectory had the
same trajectory length. In this study, the frame length was set as 0.005◦ to 0.010◦, and
the interval was 0.005◦. The variance of the number of trajectory points of each trajectory
contained by the trajectory group with different frame lengths is shown in Figure 11. We
selected the frame length whose variance was 0 for the first time as the frame dividing
length. The results of the variance of the different frames are shown in Table 3.The optimal
frame length and the number of trajectory points after the framing of each trajectory group
are shown in Table 4.
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Table 3. Variance results of the different frames.

Degree
Departure Arrival

Type D1 Type D2 Type D3 Type D4 Type A1 Type A2 Type A3 Type A4

0.005 119.83 40.31 55.47 48.98 106.56 55.10 79.14 43.35
0.010 48.41 11.23 30.67 1.21 30.22 4.40 39.03 3.99
0.015 30.15 0.23 4.90 0.23 8.67 0.37 6.06 0.20
0.020 10.75 0.00 0.00 0.00 4.02 0.00 0.34 0.00
0.025 3.66 0.00 0.00 0.04 1.63 0.00 0.00 0.14
0.030 0.63 0.00 0.00 0.00 0.00 0.00 0.12 0.00
0.035 0.00 0.06 0.14 0.00 0.13 0.21 0.24 0.00
0.040 0.00 0.00 0.00 0.00 0.18 0.00 0.04 0.00
0.045 0.24 0.25 0.25 0.00 0.07 0.25 0.34 0.00
0.050 0.00 0.00 0.00 0.00 0.21 0.00 0.01 0.00
0.055 0.00 0.25 0.25 0.00 0.21 0.25 0.25 0.00
0.060 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
0.065 0.24 0.00 0.00 0.00 0.00 0.00 0.01 0.00
0.070 0.00 0.06 0.14 0.00 0.18 0.21 0.21 0.00
0.075 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
0.080 0.00 0.00 0.00 0.00 0.18 0.00 0.02 0.00
0.085 0.00 0.15 0.20 0.13 0.00 0.00 0.23 0.24
0.090 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00
0.095 0.09 0.00 0.00 0.04 0.00 0.00 0.03 0.00
0.100 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4. Optimal frame length and the number of trajectory points after the framing of each group
of trajectories.

Direction of Movement Trajectory Type Frame Length (Degree) Trajectory Number

Departure

Type D1 0.035 17
Type D2 0.020 21
Type D3 0.020 21
Type D4 0.020 20

Arrival

Type A1 0.030 19
Type A2 0.020 20
Type A3 0.025 17
Type A4 0.020 18
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4.4.2. Analysis of the Feature Extraction Results

This section discusses the performance of the different feature extraction methods.
According to the above, the DTW algorithm can be used as an evaluation index to measure
the similarity of the time series features. The smaller the value, the greater the similarity
them. Figure 12 shows a comparison between the departure and arrival trajectories using
different feature extraction methods and the original trajectories. The figure includes
locally enlarged images of various feature extraction methods. Figure 13 shows a similarity
comparison diagram of the feature extraction of the departure and arrival trajectories.
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The experimental results show that the GHC algorithm proposed in this study was,
in most cases, more similar to the original trajectory than the HC algorithm and DP
algorithm in the feature extraction. From the specific experimental data, in the departure
trajectory, the average similarity between the features extracted by GHC algorithm and the
original trajectory was 2.31 when the trajectory points were guaranteed. Under the same
conditions, the average similarity between the features extracted by the HC algorithm and
the original trajectory was 2.37, and the average similarity between the features extracted
by the DP algorithm and the original trajectory was 5.90. It can be seen from the results
that the average similarity of the features extracted using the GHC algorithm was the best,
which improved by 2.82% compared with the HC algorithm and 60.92% compared with
the DP algorithm. In the arrival trajectory, the average similarity between the features
extracted by the GHC algorithm and the original trajectory was 2.23 when the trajectory
points were guaranteed. Under the same conditions, the average similarity between the
features extracted by the HC algorithm and the original trajectory was 2.34, and the average
similarity between the features extracted by the DP algorithm and the original trajectory
was 5.47. It can be seen from the results that the average similarity of the feature extraction
extracted using the GHC algorithm was the best, which improved by 4.68% compared with
the HC algorithm and 59.26% compared with the DP algorithm. According to the data
analysis, the GHC feature extraction method proposed in this study can better reduce the
original data under the same simplification rate.
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In order to optimize the optimal number of feature points extracted from the trajectory
points, this study adopted the DTW similarity decline rate (i.e., loss decline rate) as the
measurement method. Figure 14 shows the loss reduction rates of all trajectories in the
departure and arrival trajectories under different simplification rates (i.e., the ratio of
the number of feature extraction points to the average original trajectory points) of the
three feature extraction algorithms. The average loss reduction rate data under different
simplification rates are shown in Table 5. As can be seen from the figure, when the
simplification rate of the GHC algorithm was 7.7%, the HC algorithm was 10.2%, the DP
algorithm was 9.7%, and the loss reduction rate was the lowest. In the arrival trajectory, the
reduction rate of the GHC algorithm was 9.7%, the reduction rate of the HC algorithm was
7.2%, and the loss reduction rate of the DP algorithm was the lowest when the reduction
rate was 9.7%. Therefore, the above simplification rates were selected as the optimal
number of feature extraction points. Thus, the corresponding reduction rate under the loss
decline rate was selected as the optimal feature quantity.
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Table 5. Average loss reduction rate data under different simplification rates.

Simplified Rate
Departure Arrival

GHC HC DP GHC HC DP

3.2% 16.31 17.83 19.00 15.90 16.54 12.70
3.7% 14.80 15.64 19.91 14.83 14.76 22.36
4.2% 12.18 12.82 10.64 13.62 12.78 8.45
4.7% 12.77 11.01 17.49 10.39 12.07 13.26
5.2% 10.17 10.96 7.17 11.12 11.59 6.37
5.7% 11.44 10.59 10.07 11.94 10.28 12.40
6.2% 8.61 9.10 5.58 10.43 9.99 3.44
6.7% 7.91 9.04 7.01 9.17 9.55 6.41
7.2% 8.62 8.85 4.65 8.65 9.89 4.64
7.7% 7.79 9.29 3.48 10.72 9.09 2.18
8.2% 9.14 9.00 1.75 9.76 10.47 1.38
8.7% 8.51 9.53 1.51 12.03 12.75 1.99
9.2% 8.47 9.44 2.82 12.57 12.35 2.27
9.7% 9.30 8.95 1.09 6.05 11.61 1.19

10.2% 11.70 8.83 1.21 8.15 10.97 1.44

4.5. Prediction of the Trajectory

In this section, the extracted trajectory features are used for the trajectory prediction.
First, we divided the feature extraction data into a training set, test set, and verification
set in the proportion of 70%, 20%, and 10%. The specific division method and sample
quantity are shown in Table 6. The parameter selection of the model is very important, so
we optimized the main parameters of the TRM model. In this study, we mainly adjusted the
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number of heads of the multihead attention mechanism and time step. Among them, we set
the selection range of the number of heads of the multihead attention mechanism to be 1–10,
and the range of time step to be 1–10. The optimal result was taken as the parameters for
the model. Figure 15 shows the tuning diagram of the TRM model’s parameters. Through
experiments, the model set the time step as 4 and the number of heads as 8. We set the
initial learning rate as 0.01 and the initial epoch as 10,000. During the model training, the
learning rate decrease of the algorithm was set. With the increase in the epoch, the learning
rate changed to the initial 10% for every 100 epochs. In order to prevent overfitting, the
early stop method was used, and the training was stopped when the training epoch was
100 and the loss was no longer decreasing.

Table 6. Data set division and sample number statistics.

Data Set Partitioning Ratio
Sample Size

Departure Arrival

Training set 70% 3580 4322
Test set 20% 1023 1235

Validation set 10% 512 618
Total 100% 5115 6175
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The data of the departure and arrival trajectories extracted by the GHC algorithm were
used as experimental data. Scatter plots of true and predicted values from the training set
are shown in Figure 16. As can be seen the Figure 16, the model could well fit the longitude
and latitude data in the trajectory. The evaluation indexes of the model in the test set are
shown in Table 7. It can be seen from the table that the attention mechanism model had a
better performance by the evaluation indicators.

Table 7. Evaluation indexes of test sets under different trajectory types.

Direction of Movement Type Category
Indicators

MAE RMSE R2

Departure

Type D1 Longitude 0.0272 0.0566 0.8686
Latitude 0.0050 0.0068 0.7570

Type D2 Longitude 0.0086 0.0165 0.8528
Latitude 0.0232 0.0453 0.8696

Type D3 Longitude 0.0281 0.0508 0.8657
Latitude 0.0187 0.0405 0.8638

Type D4 Longitude 0.0153 0.0266 0.7272
Latitude 0.0221 0.0515 0.8532
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Table 7. Cont.

Direction of Movement Type Category
Indicators

MAE RMSE R2

Arrival

Type A1 Longitude 0.0112 0.0147 0.9910
Latitude 0.0038 0.0051 0.9211

Type A2 Longitude 0.0085 0.0117 0.9382
Latitude 0.0081 0.0097 0.9933

Type A3 Longitude 0.0040 0.0051 0.9828
Latitude 0.0084 0.0107 0.9920

Type A4 Longitude 0.0122 0.0151 0.9865
Latitude 0.0066 0.0082 0.9928
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4.5.1. Comparative Analysis of the Multi-Trajectory Prediction Results

In order to prove the superiority of the proposed prediction method, other traditional
time series data prediction methods (such as LSTM and GRU) are used in this section
for comparison. The selection of hyperparameters in the model will directly affect the
experimental results. Therefore, it is necessary to optimize the hyperparameters of the
model. Experimenting with all combinations of hyperparameters in the model results in a
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longer experimental time. Therefore, only the major hyperparameters were considered. For
the neural network model, we mainly considered the number of hidden layers, activation
function, and time step. In terms of the number of hidden layers and the number of neurons,
we considered five hidden layers at most and set the number of neurons from the first
layer to the fifth layer as 100, 80, 40, 20, and 10, respectively. In terms of the activation
function, we select relu, tanh, sigmoid, and linear as experimental objects. In terms of time
step, we set the time step to be between 1 and 10 for the optimization. The combination
comparison of the number of different hidden layers, the number of neurons, and different
activation functions is shown in Figure 17. Figure 18 shows the result of time step parameter
adjustment. The optimal parameters obtained through the experiment are shown in Table 8.
The experimental results are compared and analyzed. Figure 19 shows the performance
of the MAE of the different models on the different trajectories. The MAE of the different
prediction methods on different types of trajectories is shown in Table 9.
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Table 8. Optimal parameters for the different models.

Model Hyperparameter Setting

LSTM

Number of Hidden Layers = 2
Number of Neurons = 10,080
Activation Function = tanh

Batch Size = 4
Departure Time Steps = 7, Arrival Time Steps = 5

Dropout = 0.1

GRU

Number of Hidden Layers = 2
Number of Neurons = 10,080
Activation Function = tanh

Batch Size = 4
Departure Time Steps = 4, Arrival Time Steps = 4

Dropout = 0.1

BiLSTM

Number of Hidden Layers = 2
Number of Neurons = 10,080
Activation Function = tanh

Batch Size = 4
Departure Time Steps = 9, Arrival Time Steps = 9

Dropout = 0.1

BiGRU

Number of Hidden Layers = 2
Number of Neurons = 10,080

Activation Function = sigmoid
Batch Size = 4

Departure Time Steps = 6, Arrival Time Steps = 5
Dropout = 0.1

Table 9. MAEs of the results predicted by the different methods.

Direction of Movement Type Category
Method

TRM LSTM GRU BiLSTM BiGRU

Departure

Type D1 Longitude 0.0272 0.0321 0.0363 0.0305 0.0337
Latitude 0.0050 0.0067 0.0068 0.0072 0.0063

Type D2 Longitude 0.0086 0.0082 0.0100 0.0094 0.0091
Latitude 0.0232 0.0282 0.0289 0.0264 0.0273

Type D3 Longitude 0.0281 0.0309 0.0318 0.0295 0.0328
Latitude 0.0187 0.0229 0.0243 0.0241 0.0271

Type D4 Longitude 0.0153 0.0155 0.0156 0.0156 0.0158
Latitude 0.0221 0.0246 0.0258 0.0255 0.0284

Arrival

Type A1 Longitude 0.0112 0.0308 0.0329 0.0254 0.0287
Latitude 0.0038 0.0074 0.0072 0.0070 0.0066

Type A2 Longitude 0.0085 0.0126 0.0108 0.0110 0.0117
Latitude 0.0081 0.0249 0.0241 0.0188 0.0211

Type A3 Longitude 0.0040 0.0075 0.0078 0.0071 0.0072
Latitude 0.0084 0.0222 0.0228 0.0190 0.0199

Type A4 Longitude 0.0122 0.0250 0.0250 0.0153 0.0206
Latitude 0.0066 0.1990 0.1920 0.0176 0.0179
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As can be seen from Figure 19, the TRM model was generally superior to the LSTM
and GRU models in the performance of the MAE. From the concrete data results, firstly,
the prediction results of the TRM model were compared with the LSTM model. The TRM
longitude evaluation index was slightly higher than that of the LSTM in departure trajectory
type 2. In other cases, the prediction evaluation index of the TRM model was all due to
the evaluation index of the LSTM. In the departure trajectory, the MAE of the TRM was
8.65% lower than that of the LSTM in terms of the longitude and 16.26% lower than that
of the LSTM in terms of the latitude. In the arrival trajectory, the MAE of the TRM was
52.70% lower than that of the LSTM in terms of the longitude and 63.84% lower than that
of the LSTM in terms of the latitude. Secondly, the TRM model was compared with the
GRU model. The TRM model was superior to the GRU model in the MAE results. In the
departure trajectory, the MAE of the TRM model was 15.48% lower than that of the GRU
in terms of the longitude and 19.58% lower than that of the GRU in terms of the latitude.
In the arrival trajectory, the MAE of the TRM was 53.07% lower than that of the GRU for
the longitude and 62.71% lower than that of the GRU for the latitude. Thirdly, the TRM
model was compared with the BiLSTM model. In the departure trajectory, the MAE of the
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TRM model was 6.82% lower than that of the BiLSTM in terms of the longitude and 17.07%
lower than that of the BiLSTM in terms of the latitude. In the arrival trajectory, the MAE of
the TRM was 38.95% lower than that of the BiLSTM for the longitude and 56.89% lower
than that of the BiLSTM for the latitude. Finally, we compared the BiGRU model with the
TRM model. In the departure trajectory, the MAE of the TRM model was 13.35% lower
than that of the BiGRU in terms of the longitude and 22.56% lower than that of the BiGRU
in terms of the latitude. In the arrival trajectory, the MAE of the TRM was 47.36% lower
than that of the BiGRU for the longitude and 58.93% lower than that of the BiGRU for the
latitude. Therefore, it can be seen from the specific data that the TRM model had a better
predictive performance.

4.5.2. Comparison the Different Models on New Trajectories

In order to better verify the prediction effect of the model on a new trajectory, the
feature data extracted by the GHC algorithm was used as the training set, the new trajectory
was selected as the test set for the test, and the LSTM and GRU models were used for
the comparison test. The MAE evaluation indexes of the different models for the multi-
trajectory prediction are shown in Table 10. As can be seen from the Table 10, the TRM
model was superior to the LSTM and GRU models in terms of the prediction and evaluation
indicators. According to the data analysis, in the departure trajectory, the MAE of the TRM
model was 5.51% lower in the longitude than the LSTM, 13.24% lower than the GRU,
26.55% lower than the BiLSTM, 11.51% lower than the BiGRU, 0.54% lower in the latitude
than LSTM, and 7.36% lower in the GRU, 4.96% lower than the BiLSTM, and 12.84% lower
than the BiGRU. In the arrival trajectory, the MAE of the TRM model was 3.82% lower in
the longitude than that of the LSTM and 5.10% lower than that of the GRU, 4.41% lower
than the BiLSTM, and 2.65% lower than the BiGRU. In the latitude, it was 6.83% lower
than the LSTM and 16.80% lower than the GRU, 6.01% lower than the BiLSTM, and 2.36%
lower than the BiGRU. It can be seen from the results that the TRM model had a certain
generalization performance in the new trajectory prediction, which proves that the TRM
model can achieve the expected function in ship multi-trajectory prediction.

Table 10. MAEs of the different prediction methods applied to new trajectories.

Model Category
Type

Departure Arrival

LSTM
Longitude 0.0554

0.0695
0.0992
0.0889Latitude

GRU
Longitude 0.0603 0.1005
Latitude 0.0747 0.0996

BiLSTM
Longitude 0.0712 0.0998
Latitude 0.0728 0.0882

BiGRU
Longitude 0.0591 0.0980
Latitude 0.0701 0.0849

TRM
Longitude 0.0523 0.0954
Latitude 0.0692 0.0829

4.5.3. Comparison of the Different Feature the Extraction Methods

In order to verify the effectiveness of the GHC feature extraction method for model
training, this study used the GHC, HC, and DP algorithms for the feature extraction of
the same set of data. The data after feature extraction were selected to train different
models, and new trajectories were selected for testing. The MAE evaluation indexes of
the combination of different feature extraction methods and models are shown in Table 11,
and the histogram of the evaluation indexes of the different models is shown in Figure 20.
It can be seen from Figure 20 and Table 11 that the combination of features extracted
using the GHC algorithm and different models was the best for the MAE compared with
other combinations, which indicates that the GHC feature extraction algorithm effectively
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improves the training effect of the model. It is worth noting that the GHC-TRM combined
model achieves the best measure in all the algorithms. This proves the advantages of the
GHC-TRM model in the trajectory prediction effect and also proves the feasibility of the
multi-trajectory prediction framework proposed in this study for trajectory prediction.

Table 11. MAE comparison table of the different combinations of methods.

Model Category
Type

Departure Arrival

DP-LSTM
Longitude 0.0570 0.1012
Latitude 0.0795 0.0961

HC-LSTM
Longitude 0.0583 0.1336
Latitude 0.0758 0.1225

GHC-LSTM
Longitude 0.0554 0.0992
Latitude 0.0695 0.0889

DP-GRU
Longitude 0.0619 0.1018
Latitude 0.0765 0.1085

HC-GRU
Longitude 0.0662 0.1424
Latitude 0.0753 0.1404

GHC-GRU
Longitude 0.0603 0.1005
Latitude 0.0747 0.0996

DP-BiLSTM
Longitude 0.0836 0.1014
Latitude 0.0788 0.0933

HC-BiLSTM
Longitude 0.0994 0.1068
Latitude 0.0850 0.0991

GHC-BiLSTM
Longitude 0.0712 0.0998
Latitude 0.0728 0.0882

DP-BiGRU
Longitude 0.0785 0.1204
Latitude 0.0913 0.0854

HC-BiGRU
Longitude 0.1016 0.0985
Latitude 0.0913 0.1090

GHC-BiGRU
Longitude 0.0591 0.0980
Latitude 0.0701 0.0849

DP-TRM
Longitude 0.0782 0.1079
Latitude 0.0957 0.0917

HC-TRM
Longitude 0.0562 0.1140
Latitude 0.0990 0.1066

GHC-TRM
Longitude 0.0523 0.0954
Latitude 0.0692 0.0829
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5. Conclusions

Compared with several existing methods, in order to make up for the AIS data
collection system’s dense defects at a certain point caused by the uneven collection times
during data collection, solve the traditional feature extraction methods’ high sensitivity at
the trajectory dense point, and make up for the defects in the prediction accuracy of the
multi-trajectory prediction model, in this study, we proposed a multi-trajectory hierarchical
clustering method and a multi-trajectory prediction framework based on an attention
mechanism. The key idea was found through AIS data visualization that the inbound and
outbound trajectories have obvious grouping characteristics. On this basis, it was proposed
that intra-group features should be extracted and the motion mode of similar trajectories
at the same position when the trajectory points merged should be considered. Therefore,
the features of each trajectory are not only affected by its own trajectory points, but also
by the trajectory points of similar trajectories. To a certain extent, the sensitivity of the
trajectory density points was eliminated. The input weight was calculated through the
attention mechanism model to improve the accuracy of the multi-trajectory prediction. The
comprehensive evaluation of the case study shows that the proposed feature extraction
method was more similar to the original trajectory, the trajectory shape was better restored,
and the proposed prediction model achieved satisfactory prediction accuracy. However,
the proposed feature extraction method and prediction model still have defects in similarity
and accuracy in the regions with more turns. In future research work, the feature extraction
and prediction of multi-steering regions need further study.
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Appendix A

The DP algorithm is shown in Figure A1, and the specific steps are as follows:

(1) Connect the trajectory to be processed with a straight line from end to end. Set this
line as the initial simplified line;

(2) Find the maximum distance metric from the simplified line dmax;
(3) Compare dmax with the thinning threshold. If dmax < threshold, delete all the inter-

mediate points on this curve. If dmax ≥ threshold, divide the curve into two parts;
(4) Repeat the above steps until the distance metric from all points to the reduced line is

less than threshold.
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Figure A1. Paradigm of the DP algorithm.

The HC algorithm is shown in Figure A2, and the processing steps are as follows:

(1) Calculate the Euclidean metric di between two adjacent points. Save the di to the
similarity set S;

(2) Find two points of the minimum Euclidean metric;
(3) Take the average of two points of the minimum Euclidean metric in the set S to replace

the original point in the trajectory set;
(4) Repeat steps (1)–(3) until the number of trajectory points converges to the target

point k.
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The RNN structure is shown in Figure A3. The working principle of an RNN is
as follows:
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Figure A3. Structure of the recurrent neural network.

The principles from the input layer to the hidden layer and then to the output layer
are shown in Equations (A1) and (A2), respectively.

ht = f1(Uxt + Wht−1) (A1)

Ot = f2(Vht) (A2)

where ht represents the output of neurons in the hidden layer at time t; U, V, and W are
the connection weight matrices that connect the relationships between input layers, hidden
layers, and output layers; Ot represents the output; and f1(x) and f2(x) are the activation
functions.

The LSTM network structure is shown in Figure A4.
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The specific working principle of each part of the LSTM is as follows:
The forgetting gate determines the degree of retention of the trajectory information.

ft = σ
(

W f × [ht−1, Xt] + b f

)
(A3)

where W f is the weight matrix of the forgetting gate; b f is the bias of the forgetting gate;
and σ is the activation function.

The input gate determines the information that needs to be updated.

it = σ(Wi × [ht−1, Xt] + bi) (A4)

C̃t = tanh(Wc × [ht−1, Xt] + bc) (A5)

Ct = ft × Ct−1 + it × C̃t (A6)

where notation Wi is the weight matrix of the input gate; Wc is the weight matrix for
calculating the cell state; bi and bc are the bias; and tan h is the hyperbolic tangent activation
function.
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The output gate obtains the output of the unit layer.

Ot = σ(Wo × [ht−1, Xt] + bo) (A7)

ht = Ot × tanh(ct) (A8)

where Ot is the output of the output gate at time t, and ht is the output of the local
LSTM unit.

A diagram of the structure of the GRU is shown in Figure A5.
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Figure A5. Structure of the gate recurrent unit.

The update gate zt is used to divide the proportion of state information at time t− 1
to the current time t. The reset gate state rt and the update gate state zt are calculated by
Equations (A9) and (A10):

rt = σ(xtwr + ht−1Wr + br) (A9)

zt = σ(xtwz + ht−1Wz + bz) (A10)

where wr, Wr, wz, and Wz are the weight coefficient matrices of rt and zt. The notations br
and bz are the bias quantities of rt and zt, respectively. The notation ht−1 is the state at time
t− 1.

After obtaining the rt and zt states, the temporary state h̃i
t, from ht−1 through the state

at time t− 1 is calculated, and the current time t output state is obtained.

h̃i
t = tanh(wxt + U(rt·ht−1))

i (A11)

h′ = tanh(xtwh + Wh(ht−1·rt) + bh) (A12)

ht = (1− zt)·ht−1 + zt·h′ (A13)

The notations wh and Wh are the weights of the temporary state h′. The notation bh is
the bias of the temporary state h′.
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