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Abstract: One of the solutions to deal with water crisis problems is using agricultural residue
capabilities as low-cost and the most abundant adsorbents for the elimination of pollutants from
aqueous media. This research assessed the potential of activated carbon obtained from rice husk
(RHAC) to eliminate caffeine from aqueous media. For this, the impact of diverse parameters,
including initial caffeine concentration (C0), RHAC dosage (Cs), contact time (t), and solution pH,
was considered on adsorption capacity. The maximum caffeine uptake capacity of 239.67 mg/g was
obtained under the optimum conditions at an RHAC dose of 0.5 g, solution pH of 6, contact time of
120 min, and initial concentration of 80 mg/L. The best fit of adsorption process data on pseudo-first-
order kinetics and Freundlich isotherm indicated the presence of heterogeneous and varying pores of
the RHAC, multilayer adsorption, and adsorption at local sites without any interaction. Additionally,
modeling the adsorption by using statistical and mathematical models, including classification and
regression tree (CART), multiple linear regression (MLR), random forest regression (RFR), Bayesian
multiple linear regression (BMLR), lasso regression (LR), and ridge regression (RR), revealed the
greater impact of C0 and Cs in predicting adsorption capacity. Moreover, the RFR model performs
better than other models due to the highest determination coefficient (R2 = 0.9517) and the slightest
error (RMSE = 2.28).

Keywords: caffeine; rice husk; activated carbon; modeling; sorption; kinetic; isotherm

1. Introduction

The existence of organic materials, such as caffeine in aqueous media and their in-
creasing concentration, has caused concern among researchers. Caffeine is an alkaloid that
associates with the methyl xanthine class and is composed of carbon, hydrogen, nitrogen,
and oxygen. Caffeine as a natural stimulant can be found in more than sixty plants, such as
coffee beans, tea leaves, cocoa pods, and cola beans. It is a white powder with a bitter taste
and odorless solvent in hot water, and it is toxic for most aquatic organisms [1,2]. Caffeine
is detected in groundwater, surface water, and highly concentrated effluents (10 µg/L) [3].
Caffeine has been identified as emerging pollutant that is representative of human pollution
and has been found in various water environments [4]. A variety of methods are available
for caffeine removal from wastewater such as coagulation [5], biological treatment [6],
ion exchange [7], electrochemical advanced oxidation process [8], and adsorption [9,10].
Adsorption is one of these techniques that is widely used to remove contaminants from
the aquatic environment. Adsorption has become an effective phenomenon in removing
biodegradable contaminants from aqueous media due to its simplicity and diversity of
adsorbents [11]. Other advantages of the adsorption method are high efficiency, flexibility,
simplicity of design, low cost, and easy performance, which make it superior to other
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techniques used [12]. Among the different adsorbents used to eliminate emergent contami-
nates from water, activated carbon is the most effective and widely used material due to its
unique characterization [13–18]. The high adsorption capacity of activated carbon can be
related to specific surface area, surface structure, distribution of pore size, and functional
groups [19]. As commercial activated carbon is an expensive material, numerous studies
have been performed on the agricultural waste-derived activated carbon [14,20]. In this
regard, the successful performance of renewable and inexpensive agricultural residues
such as fruit kernels, sugarcane, almond shells, rice husk, canola stalk, etc. have been
reported [14,21–24].

One of the abundant and cheap sources of activated carbon production in Iran is
rice husks [24]. Rice husk is insoluble in water due to its grain structure and has high
chemical strength and mechanical durability [25]. Some researchers have studied the
rice husk activated carbon for removal of pollutants from an aqueous medium, which
includes the following studies: Ghosh et al. [26] used the rice husk and rice husk ash to
adsorb chromium; Scapin et al. [27] minimized organic compounds in water using rice
husk activated carbon; Danish [28] adsorbed caffeine from an aqueous solution by wood
activated carbon; Elewa et al. [29] used the chemically activated carbon of rice husk to
remove Mn (II) and Fe (III) from aqueous media.

As the relationship between pollutant removal and effective parameters is too com-
plex, numerical [30] and artificial neural network [31] approaches are used to model the
adsorption process. However, the convergence problems of numerical techniques due
to poor initialization and the strong dependence on artificial neural network approaches
to the input data and more requiring trial and error in the training stage are the main
limitations and drawbacks of these methods for adsorption modeling. Hereupon, choosing
an efficient method for simulating and evaluating the impact of each input parameter is
critical. Therefore, mathematical models [10,32] have been proposed as machine learning
methods for nonlinear data correlation of adsorption experiments. Beigzadeh et al. [32]
simulated the rice husk biochar performance to remove 2,4-D from an aqueous media by
random forest regression, BMLR, and MLR.

Data mining methods are a set of activities used to find new, hidden, and unexpected
patterns [33]. The decision tree is one of the classification methods in data mining that
summarizes the classification procedure by presenting a tree [34]. The classification and
regression tree (CART) algorithm is a subset of the decision tree algorithm that can be
used to study the effect of diverse operational parameters on the adsorption capacity.
The mathematical approaches such as lasso regression (LR), random forest regression
(RFR), ridge regression (RR), and Bayesian multiple linear regression (BMLR) are novel
and powerful machine learning methods that can simulate the nonlinear problem of the
adsorption process [35]. Additionally, multiple linear regression (MLR) describes the linear
relationships successfully and can be employed to model the adsorption process [32].

Therefore, this research aimed to model and estimate the adsorption capacity (q) of
rice-husk activated carbon in the elimination of caffeine from aqueous media under the
influence of operating factors of temperature, contact time, adsorbent dose, initial caffeine
concentration, and pH using CART, RFR, BMLR, MLR, LR, and RR methods.

2. Material and Methods
2.1. Preparation of the Adsorbent

Activation of carbon from rice husk consists of a two-step process that includes
(1) pre-carbonation of rice husk and (2) activation of rice husk charcoal steam [18]. Rice
husk was obtained from local rice, milled, and sizes between 425 and 600 microns (geometric
mean particle diameter 510 microns) were selected. About 5 g of rice husk was dried in
an oven and then spread on a quartz glass sample holder. To pyrolyze the rice husk, the
sample was subjected to nitrogen gas in a tubular electric furnace for 60 min at 406 ◦C.
The rice husk coal was cooled to room temperature under nitrogen gas, again placed in
the furnace, and heated under nitrogen flow to a temperature of 900 ◦C. When the final
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activation temperature was reached, without the nitrogen flow being turned off, the rice
husk coal was activated using steam generated by pumping deionized water into the
furnace by an HPLC pump. The resulting tarry product was moved into the cooling section
of the furnace and trapped in the primary and secondary gas washing bottles before being
emptied into the environment. The prepared activated carbon was first washed with 0.1 M
hydrochloric acid and then with deionized water. When the activated carbon was washed,
it was placed in an oven at 105 ◦C for 12 h and then cooled to room temperature after being
removed from the oven [18]. The characterization of RHAC was evaluated by the textural
properties such as specific surface area, total pore volume, micropore volume, mesopore
volume, and mean pore diameter according to Brunauer–Emmett–Teller (BET) analysis.

2.2. Batch Studies

Caffeine was supplied with analytical purity from Sigma Aldrich, Germany. Caffeine
stock solution was prepared and diluted for different concentrations of pollutant. All
adsorption tests were performed in a batch study to investigate the various parameters’
effect on adsorption capacity. The studied parameters included initial concentration of
caffeine (C0, 20–120 mg L−1), RHAC dose (Cs, 0.1–1.25 g), contact time (t, 1–360 min), and
solution pH (2–12). In this experiment, the uptake capacity of RHAC at equilibrium (qe,
mg g−1) and at any time (qt, mg g−1) as well as the removal efficiency of caffeine (%R) were
formulated as:

qe =
C0 − Ce

m
×V (1)

qt =
C0 − Ct

m
×V (2)

R(%) =
C0 − Ce

C0
× 100 (3)

where C0 and Ce are the initial and equilibrium caffeine concentration (mg L−1), Ct is the
caffeine concentration at any time (mg L−1), m is the adsorbent mass (g), and V is caffeine
solution volume (L).

2.3. Adsorption Isotherms and Adsorption Kinetics

The isotherms and kinetics of the sorption must be determined to utilize each ad-
sorbent for remediation purposes. The prevalent isotherm models including Freundlich,
Langmuir, and Redlich–Peterson (R-P) were employed to depict the equilibrium adsorption.
The common kinetic equations of the pseudo-first-order (PFO), pseudo-second-order (PSO),
Elovich, and fractional power (FP) models were employed to determine the temporal
changes of caffeine adsorption on RHAC. The utilized mathematical models of isotherms
and kinetics in this study are represented in Table 1.

Table 1. Kinetic and isotherm equations applied in this research.

Model Equation Parameter and Dimension

Kinetic models

PFO qt = qe(1− e−K f t)
Kf (1/min)
qe (mg/g)

PSO qt =
Ksq2

e t
1+qeKs t

Ks (mg/g min)
qe (mg/g)

Elovich qt =
(

1
β

)
ln(αβ) +

(
1
β

)
lnt

α (mg g−1 min−1)
β (g mg−1)

FP qt = atb a (mg g−1)
Isotherm models b (h−1)

Langmuir qe =
bqmCe
1+bCe

qm (mg/g)
b (L/mg)

Freundlich qe = KFC
1
n

e
KF (mg/g)(mg/L)−n

n: model exponent (–)

R-P qe =
kRCe

1+αCβ
e

kR (L g−1)
α (L mg−1)β

β (-)
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2.4. Statistical and Mathematical Modeling of the Adsorption Process

In this study, the robustness of various statistical and mathematical models was
evaluated for the expression of caffeine removal from aqueous solution using rice husk-
activated carbon in batch experiments. Four operating parameters including initial caffeine
concentration (C0), adsorbent dose (Cs), contact time (t), and solution pH were selected as
the input data and the adsorption capacity (q) of RHAC as the output. To implement the
different statistical and mathematical models, 31 experimental data series were employed
to investigate the models, in which 80% of the data were randomly selected to train the
model, and 20% were used to validate the model. A minimum-maximum normalization
method was used to normalize the parameters before data entry into the models. The
final results of different models were tested against of the measured adsorption capacity to
evaluate the accuracy of each model according to the determination coefficient (R2) and the
root mean square error (RMSE).

A classification and regression tree (CART) is a way to build predictive data mod-
els [36,37]. In this algorithm, a target attribute is specified in the data set. The algorithm
starts from the root node, and then each node is divided into two nodes [38]. Tree growth
will continue until there is any new condition to split the data.

Random forest regression employs an ensemble learning procedure, which merges
several machine learning approaches such as decision trees, naive Bayes, neural network,
and support vector machines. RF involves a bagging bootstrap aggregation approach that
generates the various specimens by utilizing random sampling with replacement. This
method runs every model alone and finally aggregates the results of all models without
precedence for any of models [32].

In Bayesian multiple linear regression (BMLR), the data with additional information
about β and σ2 were supplemented. According to the Bayes theorem, this additional
information is compounded with the information of data to generate the new information
about β and σ2 called posterior information. The prior is usually chosen based on the
domain and the available previous information. In the present research, the dataset was
split into two groups (for 1000 times): the first group was used to reach the prior information,
and the second group was used as observations (experiments). The posterior regression
coefficients were computed by:

bPos =
(

XT
ExpXExp + XT

PrXPr

)−1(
XT

ExpYExp + XT
PrYPr

)
, (4)

such that Pr, Exp, and Pos indices are related to the prior, the observed, and the posterior,
respectively.

Multiple linear regression (MLR), as a popular data analysis approach to evaluate
the influences of one or several quantitative predictors X1, X2, . . . , Xk on a quantitative
response variable Y, is as follows:

Yi = β0 + β1X1i + β2X2i + · · ·+ βkXki + εi, for n observations i = 1, . . . , n, (5)

where β0, β1, . . . , βk are the coefficients or the parameters of the MLR method and
εi, i = 1, . . . , n, are the error of the model. The observed dataset is used to calculate the
unidentified parameters β0, β1, . . . , βk by:

Ŷi = b0 + b1X1i + b2X2i + · · ·+ bkXki, (6)

where b0, b1, . . . , bk are the estimations for the unidentified parameters of the MLR
model, and Ŷi is the estimation for the actual value of Yi. The MLR formula is usually
represented by:

Y = Xβ + ε, (7)

where Y = (y1, . . . , yn)
T , β = (β0, . . . , βk)

T and ε = (ε1, . . . , εn)
T are the response,

parameter, and error vectors, and X is the design whose the first column is the constant
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vector (1, . . . , 1)T and the lth(2 ≤ l ≤ k + 1) column is the values of the (l − 1)th predictor.
Moreover, we can write Ŷ = Xb, where Ŷ = (ŷ1, . . . , ŷn)

T is the predicted vector, and
b = (b0, . . . , bk)

T is the estimated vector of the coefficients. For the normal observations,
the maximum likelihood (or ordinary least squares) estimator of the coefficient vector β
is as:

b =
(

XTX
)−1

XTY. (8)

It is a typical way to assume the sufficient measurements to express something signifi-
cant about β.

In common multiple linear regression, if the predictor variables are highly correlated,
multicollinearity can evolve into a problem. This may provoke the unreliability of the coef-
ficient estimation and high variance. The least absolute shrinkage and selection operator
(LASSO) is a penalized regression that conducts both variable assignment and regulariza-
tion to improve the forecast precision and interpretability of the resultant statistical model.
In this method, a penalty function of the regression coefficients is utilized in the multiple
linear regression process, which leads to removing the ineffective predictor factors from
the model:

Y = β0 + β1X1 + · · ·+ βkXk + λ ∑k
i=1|βi|+ ε (9)

where λ is the regulating parameter, ε is the random error of the model (with mean zero and
variance σ2). One of the most significant advantages of using such penalized regressions
is, unlike ordinary regression models, usability for conditions where the number of input
variables is more than the number of observations (k > n).

Same as lasso regression, ridge regression is known as the regularization technique
because both models attempt to minimize the sum of squared residuals (RSS) along with
some penalty terms. In other words, they restrain or regularize the coefficient estimations
of the model. Nevertheless, the penalty terms they utilize are a bit different:

Y = β0 + β1X1 + · · ·+ βkXk + λ ∑k
i=1 βi

2 + ε (10)

In the ridge regression, each predictor coefficient is reduced towards zero but none
of them can go totally to zero, while in lasso regression it is possible that some of the
coefficients could go totally to zero when λ gets sufficiently large. Contrary to lasso regres-
sion, when multiple predictor variables are significant in the model and their coefficients
are approximately equal, ridge regression tends to act better because it maintains all the
predictors in the model. The degree of conformity of the observed and estimated data by
the models was investigated using R2 and RMSE:

RMSE =

√
∑n

i=1 (qp − qo)
2

n
(11)

where qp and qo are the predicted and the observed adsorption capacities, respectively, and
n is the number of measurements. The best model is a model where RMSE has the least
amount, and R2 is closer to one.

3. Results
3.1. Textural Properties

According to the literature, raw rice husk has low textural characteristics [39]. The
textural properties of RHAC, measured from the nitrogen adsorption at −196 ◦C displayed
that the specific surface area and the average pore size of the sample increased, demon-
strating the removal of volatiles from the decomposition of main compounds of raw rice
husk after physical modification. The results showed that the specific surface area and
total pore volume of RHAC were 332 m2 g−1, and 0.182 cm3 g−1, respectively. Micropores
volume (0.131 cm3 g−1) and mesopore volume (0.051 cm3 g−1) contained about 72% and
28% of total pore volume, respectively. Therefore, activated carbon obtained from rice husk
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had a microporous structure with an average 2.2 nm diameter. The pHzpc of RHAC was
measured as 7.8 (Figure 1), and the net charge of the RHAC under and above 7.8 is positive
and negative, respectively.
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3.2. Investigation of Effective Parameters on the Adsorption
3.2.1. Effect of pH

As shown in Figure 2, adsorption capacity and adsorption efficiency increase from
pH 2 to 6 but decrease at pH > 6. The adsorption efficiency reaches a maximum of 87.6%
at pH 6, so this pH was selected as the optimal value. The solution pH specifies not
only the predominant forms of the caffeine in the aqueous solution but also the surface
state of the RHAC. The ionization of caffeine is highly affected by pH as it is a weak
electrolyte (pKa = 8.3). So, the predominant species of caffeine are neutral and anionic
forms at pHs lower and more than 8.3, respectively [40]. According to the previous
literature, the adsorption of organic pollutants onto activated carbon is generally directly
commensurate to the micropore volume [41]. Though the functionalization of rice husk
activated carbon caused an increment in the specific surface area, leading to an enhancement
in the microporous area, decreasing of caffeine adsorption at pH > 6 is attributed to the
anionic form of caffeine (pH > pKa) along with the negative charge of the RHAC surface
(pH > pHzpc). Thus, electrostatic repulsion between RHAC and caffeine molecules decrease
the adsorption rate. For pHs less than 6 (pH < pHzpc), the RHAC surface is positively
charged. However, caffeine is uptaken mainly in the neutral form based on the dissociation
constant (pKa = 8.3). The reason for higher adsorption in these pHs is non-electrostatic
forces, which include hydrogen bonding [9]. Other similar studies indicated that a complex
interaction between electrostatic and non-electrostatic forces may occur for the adsorption
of organic compounds onto carbon materials. This interaction is related to chemical
characteristics of the solution and the properties of the carbon material and adsorbate [42].

3.2.2. Effect of Contact Time

According to Figure 3, adsorption capacity and adsorption efficiency increase rapidly
with enhancing contact time until reaching maximum values at 240 min (96.20% and
11.54 mg/g, respectively). This increase can be related to the longer contact time between
the pollutant and the functional groups in the adsorbent structure. The adsorption is
constant from 90 min onwards; therefore, this time can be selected as the optimal time.
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Figure 2. Effect of pH on caffeine uptake by activated carbon of rice husk (caffeine initial concentra-
tion: 60 mg/L, adsorbent dose: 0.5 g, contact time: 360 min, temperature: 25 ◦C).
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Figure 3. The influence of reaction time on caffeine uptake by rice husk-derived activated carbon
(caffeine initial concentration: 60 mg/L, adsorbent dosage: 0.5 g, pH = 7, temperature: 25 ◦C).

3.2.3. Effect of Initial Concentration of Caffeine

Figure 4 shows the changes in adsorption capacity and adsorption efficiency relative
to the increase in the initial concentration of caffeine. Increasing the initial caffeine concen-
tration from 20 to 60 mg/L enhanced the removal efficiency from 38.56% to 87.6%, and then
it began to decline. The adsorption capacity also increased by enhancing the initial caffeine
concentration from 20 to 80 mg/L and then declined. Augmented adsorption capacity
with increasing caffeine initial concentration is related to the possible interaction between
caffeine ions and the RHAC surface. However, after the caffeine concentration exceeded a
certain level, the adsorption capacity decreased, which could be due to the occupation of
most of the adsorbent sites in the early stages of adsorption.
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Figure 4. Effect of caffeine initial concentration on caffeine uptake by activated carbon of rice husk
(adsorbent dose: 0.5 g, contact time: 360 min, pH = 7, temperature: 25 ◦C).

3.2.4. Effect of RHAC Adsorbent Dose

Figure 5 represents the effect of adsorbent dose on the adsorption capacity and ad-
sorption efficiency of the rice husk activated carbon in removing caffeine from an aqueous
solution. The adsorption capacity and the adsorption efficiency had the opposite reaction
to increasing the adsorbent dose, as with increasing the RHAC dose from 0.1 to 1.25 g, R%
increased from 33.9% to 88.9%, but q decreased from 33.9 to 7.11 mg/g. The reason for
this trend is that the initial concentration of caffeine is constant, and the adsorbent dose
increases [43]. The optimum adsorbent dose was selected as 0.5 g because the increase in
adsorption efficiency and the decrease in adsorption capacity did not occur sharply from
this value onwards.
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Figure 5. Effect of activated carbon of rice husk adsorbent dose on caffeine adsorption (initial
concentration of caffeine: 100 mg/L, contact time: 360 min, pH = 7, temperature: 25 ◦C).

3.3. Adsorption Models

According to the outputs of the isotherm and kinetic models presented in Table 2,
the Freundlich and the pseudo-first-order models with the lowest RMSE (0.96 and 0.63,
respectively) and the highest coefficient of determination (99.74% and 99.41%, respectively)
had the best-fitting model for the adsorption of caffeine by RHAC. The value of 1/n is be-
tween 0.1–1, which represents the multilayer adsorption of caffeine onto the heterogeneous
surface of the RHAC [44]. Additionally, the adsorption capacity constant (KF) was found to
be 0.76 (mg/g) (mg/L)−n. The adsorption capacity calculated by the pseudo-first-order
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model (11.77 mg/g) is very close to the value measured in the experiment (11.54 mg/g).
A better fit of the PFO model on the kinetic data indicates that the caffeine uptake by the
RHAC occurs only at local sites without any interaction [24].

Table 2. The results of the kinetic and isotherm models.

Model Parameters R2 RMSE

Kinetic models

PFO Kf = 0.023 1/min
qe = 11.77 mg/g 99.41 0.63

PSO Ks = 0.002 mg/g min
qe = 13.58 mg/g 99.16 0.76

Elovich α = 0.75 mg g−1 min−1

β = 0.34 g mg−1 98.45 1.02

FP a = 2.06 mg g−1

b = 0.32 h−1 97.01 1.42

Isotherm models

Langmuir qm = 239.67 mg/g
b = 0.002 L/mg 99.68 3.31

Freundlich KF = 0.76 (mg/g)(mg/L)−n

n = 1.11 99.74 0.96

R-P
kR = 0.71 L g−1

α = 0.08 (L mg−1) β

β = 0.38
99.72 0.99

3.4. Statistical and Mathematical Modeling Results

The tree structure of the adsorption process simulated using the CART algorithm is
presented in Figure 6, which shows the influence of independent variables (reaction time,
initial caffeine concentration, adsorbent dose, and initial solution pH) on the dependent
variable of uptake capacity (q). The CART algorithm has five nodes, and the last three
nodes reveal a numerical quantity as an output (Mu), which represents the mean adsorption
capacity of RHAC related to the information of that branch of the tree. Based on these
results, the most effective parameter in determining the uptake capacity of RHAC adsorbent
to eliminate caffeine from an aqueous media is the adsorbent dosage. In the first node, the
adsorbent dose parameter was selected as the most significant attribute to create a branch,
which indicates this variable’s effect on the adsorption capacity. The mean adsorption
capacity in all 31 data sets is 8.83 mg g−1, but at the adsorbent dose greater and less
than 0.37 g, it is 7.50 and 28.11 mg g−1, respectively. According to the uptake capacity
equation, the lower the adsorbent dosage, the smaller the denominator, which increases
the adsorption capacity [11]. In node 3, the contact time is divided into values greater
and less than 37.5 min. The comparison of the mean adsorption capacity in nodes 4 and
5 shows that the contact time increases, and subsequently the caffeine uptake capacity
also increases.

Figure 7 also confirms these results, so the order of the most effective parameters on
the uptake capacity of RHAC is dose, reaction time, initial caffeine concentration (C0), and
pH. The effect of reaction time and initial caffeine concentration on the uptake capacity is
the same, but as shown in Figure 6, after the adsorbent dose, the contact time has the most
significant effect on q. The RFR outputs in Figure 8 and Table 3 show that the adsorption
capacity is more sensitive to C0, followed by t, pH, and (Cs) according to the percent increase
of mean squared error index. Moreover, the increased node purity index categorized the
factors as C0 >> time > Cs > pH.
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Table 3. Sensitivity of RFR to input data.

Factor %IncMSE IncNodePurity

pH 18.88 78.88
time 29.13 168.54
C0 30.45 306.22

Dose (Cs) 10.66 92.09

To specify the priority of parameters according to both indices, their average rank was
illustrated in Table 4. Based on these results, C0 has the most effects on q, while time, dose
(Cs), and pH are in the later ranks that the latter two are equally effective. Commonly, the
RFR procedure demonstrates that C0 and time factors were the most efficient forecasters
of q, and Figure 9 proves this result. The R2 of the RFR method forecast ability was
acquired at 99.08%, which signifies the adequacy of this model. Afterward, the uptake
capacity sensitivity to each of the factors was studied by applying the simultaneous impacts
of other factors. The obtained results represented in Figure 10 demonstrate that raising
the pH leads to enhancing the adsorption capacity up to pH = 7 and then decreasing.
The q increases with a mild slope from pH = 2 to about 3.8, then increases sharply to
pH = 7 and finally decreases in the alkaline pH range. Therefore, the optimum amount
of pH to acquire the maximum q is 7. The dominant neutral form of caffeine at acidic
conditions (pH < pKa = 8.3) and positive charge of RHAC surface (pH < pHzpc = 7.8) reveal
the performance of the non-electrostatic force including hydrogen bonding. Adsorption
mitigation at the alkaline range is related to the repulsive electrostatic interactions between
negatively charged RHAC surface and the anionic form of caffeine, as well as competition
between the caffeine molecules and hydroxyl ions for binding to vacant sites [32].

Table 4. Ranking of parameters in estimating q.

Parameter I1 I2 Mean Rank

C0 1 1 1
time 2 2 2
pH 3 4 3.5

Dose (Cs) 4 3 3.5
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The caffeine reduction using RHAC can be distinguished into three stages; (i) stage
one: the relatively fast adsorption process at the initial stage of up to 40 min, (ii) stage
two: a maximum adsorption capacity happened between 40 to 60, and (iii) stage three: the
caffeine adsorption approaches equilibrium after 90 min. The uptake capacity of caffeine
increases when the initial concentration is enhanced. This phenomenon might be explained
by the increase in the mass transfer driving force as well as diffusion coefficient of caffeine
molecules toward the RHAC pores at a higher concentration gradient [45].

Enhancing the RHAC dosage resulted in increasing the uptake capacity of caffeine
due to the enhancement of the RHAC particles in the solution, resulting in the increase in
active surface sites to receive the pollutant molecules [14].

Summary outputs of BMLR in Table 5 reveal that the importance of factors at up-
take capacity attainment based on posterior probability is as C0 = 99.86%, Cs = 90.95%,
time = 75.79%, and pH = 45.00%. Similar to RFR outputs, this technique also denotes
that C0 is the most effective predictor of q. According to the PostProbs row in Table 5,
model 1, which bodes on the validness of all factors, has the greatest abundance percent
(37.52%). Moreover, model 2, which bodes on the validness of time, C0, and Cs factors,
has an abundance percent of 33.63%. The other models owning less abundance percent
display that extenuating the number of the parameters leads to model accuracy decrement,
as model 5 boding on the effectiveness of only C0 (the most important predictor) has the
least abundance percent (3.88%).

Table 5. Results of BMLR model.

P(B! = 0|Y) Model 1 Model 2 Model 3 Model 4 Model 5
Intercept 1.0000000 1.0000000 1.00000 1.0000000 1.0000000 1.0000000

pH 0.4499508 1.0000000 0.00000 0.0000000 1.0000000 0.0000000
Time 0.7578746 1.0000000 1.00000 0.0000000 0.0000000 0.0000000

C0 0.9986494 1.0000000 1.00000 1.0000000 1.0000000 1.0000000
Cs 0.9094843 1.0000000 1.00000 1.0000000 1.0000000 0.0000000
BF NA 0.2788726 1.00000 0.6294309 0.1655664 0.1153485

PostProbs NA 0.3752000 0.33630 0.1411000 0.0557000 0.0388000
R2 NA 0.6334000 0.62280 0.5659000 0.5764000 0.4589000

Dim NA 5.0000000 4.00000 3.0000000 4.0000000 2.0000000
Logmarg NA −94.40509 −93.12809 −93.59103 −94.92647 −95.28789

NA: Not Available.
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The coefficients and upper and lower limits of the effective factors fitted by BMLR are
represented in Table 6. So, the acquired BMLR model can be stated as:

q̂ = 9.25− 0.14pH + 0.006time + 0.12C0 + 7.53Cs (12)

If 7 < pH < 10.3; 1 min < t < 90 min; and 0.1 g < Cs < 1 g.

Table 6. Coefficients of parameters in BMLR.

Post Mean Post SD Post p (B! = 0) 2.5% 97.5% Beta

Intercept 9.253 0.572 1.000 8.047 10.419 9.253
pH −0.145 0.300 0.449 −0.921 0.357 −0.145

time 0.006 0.0049 0.757 −0.0002 0.015 0.006
C0 0.121 0.0303 0.998 0.0596 0.185 0.121
Cs 7.526 3.805 0.909 0.000 13.672 7.526

According to this equation, contact time, initial concentration of pollutant, and ad-
sorbent dosage have a positive effect on adsorption capacity, while pH has a negative
effect. Figure 11 shows the β values and upper and lower limits of the coefficients related
to each of the effective parameters. Finally, the coefficient of determination (R2) for the
prediction capability of the BMLR model obtained 99.27%, which bodes on the adequacy of
the BMLR model.

Sustainability 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 11. Limits of the β amounts related to each of the effective factors. 

The results of different parameters’ importance on adsorption capacity investigated 
by multiple linear regression (MLR) are tabulated in Table 7. The adsorption capacity was 
the response parameter, and the other parameters were continuous predictor variables. 
Based on these results, only the effects of C0 and Cs are significant in adsorption capacity. 
Both of the significant parameters have a positive effect on q. Additionally, based on the 
significance level, the initial concentration of pollution is the most significant parameter 
affecting the adsorption capacity. Therefore, the obtained equation of the MLR model 
was presented as: 

 𝑞  =  −2.80 − 0.32 𝑝𝐻 + 0.01 𝑡 + 0.12 𝐶 + 8.21 𝐶  (13)

If 7 < pH < 10.3; 1 min < t < 90 min; and 0.1 g < Cs < 1 g. 
Based on the final model, the input factors of t, C0, and Cs have a positive effect on 

uptake capacity, of which the latter two factors are significant. On the other hand, pH has 
a negative impact on adsorption capacity. The R2 value for the estimation capability of the 
MLR model was determined at 63.30%. 

Table 7. Results of MLR model. 

 Estimate Std. Error t Value Pr(>|t|) 
Intercept −2.796 3.473 −0.805 0.428 

pH −0.323 0.373 −0.865 0.395 
t 0.008 0.004 2.010 0.055 

C0 0.115 0.028 4.060 0.000** 
Cs 8.212 3.085 2.662 0.013* 

The significant independent parameters impacting on RHAC adsorption capacity 
was determined by lasso regression. The fitted equation acquired is represented as: 

 𝑞  =  −2.14 + 0.0055 𝑡 + 0.0999 𝐶 + 5.87 𝐶  (14)

It was observed from Equation (14) that the adsorbent dose and caffeine initial con-
centration followed by contact time were the most significant variables influencing ad-
sorption capacity. That means these variables always have a positive impact on the 
RHAC adsorption capacity in eliminating caffeine.  

Eventually, the coefficient of determination (R2) for the prediction capability of the 
lasso model was acquired at 91.67%. In addition, the p-value of more than 5% (0.68) re-

Figure 11. Limits of the β amounts related to each of the effective factors.

The results of different parameters’ importance on adsorption capacity investigated
by multiple linear regression (MLR) are tabulated in Table 7. The adsorption capacity was
the response parameter, and the other parameters were continuous predictor variables.
Based on these results, only the effects of C0 and Cs are significant in adsorption capacity.
Both of the significant parameters have a positive effect on q. Additionally, based on the
significance level, the initial concentration of pollution is the most significant parameter
affecting the adsorption capacity. Therefore, the obtained equation of the MLR model was
presented as:

q̂ = −2.80− 0.32 pH + 0.01 t + 0.12 C0 + 8.21 Cs (13)

If 7 < pH < 10.3; 1 min < t < 90 min; and 0.1 g < Cs < 1 g.
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Table 7. Results of MLR model.

Estimate Std. Error t Value Pr(>|t|)

Intercept −2.796 3.473 −0.805 0.428
pH −0.323 0.373 −0.865 0.395

t 0.008 0.004 2.010 0.055
C0 0.115 0.028 4.060 0.000 **
Cs 8.212 3.085 2.662 0.013 *

“*” indicates significance at p < 0.05; “**” indicates significance at p < 0.01.

Based on the final model, the input factors of t, C0, and Cs have a positive effect on
uptake capacity, of which the latter two factors are significant. On the other hand, pH has a
negative impact on adsorption capacity. The R2 value for the estimation capability of the
MLR model was determined at 63.30%.

The significant independent parameters impacting on RHAC adsorption capacity was
determined by lasso regression. The fitted equation acquired is represented as:

q̂ = −2.14 + 0.0055 t + 0.0999 C0 + 5.87 Cs (14)

It was observed from Equation (14) that the adsorbent dose and caffeine initial concen-
tration followed by contact time were the most significant variables influencing adsorption
capacity. That means these variables always have a positive impact on the RHAC adsorp-
tion capacity in eliminating caffeine.

Eventually, the coefficient of determination (R2) for the prediction capability of the
lasso model was acquired at 91.67%. In addition, the p-value of more than 5% (0.68)
revealed that the difference between observed and predicted adsorption capacity values
is nonsignificant.

The ridge model, unlike the lasso model, determined all the independent parameters
as significant on the adsorption capacity. The fitted equation obtained is represented as:

q̂ = −1.35− 0.27 pH + 0.0075 t + 0.098 C0 + 7.21 Cs (15)

If 7 < pH < 10.3; 1 min < t < 90 min; and 0.1 g < Cs < 1 g.
Accordingly, the Cs, C0, and contact time were the most significant variables positively

influencing adsorption capacity. Meanwhile, pH, similar to other models, had a negative
effect. Ultimately, the coefficient of determination (R2) for the prediction capability of the
ridge model was achieved at 92.23%. Additionally, the p-value of more than 5% (0.76)
indicated that the difference between observed and predicted adsorption capacity values
is nonsignificant.

3.5. Comparison of Models

The performances of the CART, RFR, BMLR, MLR, LR, and RR models are presented
in Table 8. The similarity between the predicted values and the experimental data of models
is also represented in Figure 12. The RFR model exhibited the best execution with the
highest determination coefficient (R2 = 0.9517) and the least error (RMSE = 2.28). Then,
the RR, MLR, and LR models demonstrated better execution than the BMLR. Based on
the coefficient of the 1:1 line, the MLR and RFR models forecasted the nearest values
of q to experimental data, respectively. Moreover, the BMLR model overestimated the
adsorption capacity values. These findings are consistent with the results of Beigzadeh
et al. [32] in 2, 4-D removal modeling. Ranking the independent variables by various
models demonstrated that the initial concentration of caffeine and RHAC adsorbent dose is
the most effective parameter on the adsorption capacity.
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Table 8. Evaluation of the studied models’ performance in the adsorption process.

R2 RMSE 1:1 Line
Coefficient Variables Rank

CART Cs > t > C0 > pH
RFR 0.9517 2.28 0.9570 C0 > t > pH, Cs

BMLR 0.8775 13.14 2.0162 C0 > Cs > t > pH
MLR 0.9237 3.01 1.0064 C0 > Cs
LR 0.9166 3.01 0.8968
RR 0.9223 2.90 0.9057
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3.6. Comparison with Other Adsorbents

The adsorption performance of RHAC as compared with some adsorbents recently
reported for the elimination of Caffeine from wastewater is Tabulated in Table 9. According
to Table 9, the adsorption capacity of RHAC is greater than other adsorbents for caffeine
removal. The result reveals that the RHAC has a high potential to attenuate caffeine from
the contaminated waters.
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Table 9. Adsorption capacities for some adsorbents employed for caffeine elimination from aqueous
solution.

Adsorbent Adsorption Capacity (mg/g) Reference

MWCNTs 35.61 [9]
Coconut leaf AC 73.83 [46]

Fique bagasse biochar 19.5 [47]
Granular AC 88 [48]
Sepiolite clay 48.7 [49]

RHAC 239.67 This study

4. Conclusions

The selection of proper simulation and design models for adsorption processes is
a great challenge in water quality prediction. In this regard, the performance of CART,
RFR, MLR, BMLR, LR, and RR models was examined to predict the removal efficiency
of caffeine by RHAC as a function of various experimental parameters. The textural
properties determined by BET analysis showed an increase in the specific surface area
and the average pore size of the sample. Fitting the adsorption data on pseudo-first-order
kinetics and Freundlich isotherm is indicative of heterogeneous and varying pores of the
RHAC, multilayer adsorption, adsorption at local sites, and no interaction between the
adsorbed particles. Investigation of various parameters’ influence on caffeine adsorption
by the efficient statistical and mathematical models (CART, RFR, MLR, BMLR, LR, and RR)
showed that adsorbent dose and initial contamination concentration had a more significant
impact on adsorbent capacity. Additionally, RFR was much more accurate in modeling
the removal of caffeine compared to other techniques due to its ability to capture the non-
linear relationships between operating parameters and the adsorption capacity of RHAC.
It was concluded that the permanent monitoring of contaminated waters is possible with
the suggested model application as an accurate and fast alternative to the experimental
procedures. Moreover, the RFR model can be used instead of traditional models applied in
the literature in adsorption modeling.
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