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Abstract: To effectively manage the stability of in-pit dumps with an underlying weak layer, a new
plan for the treatment of a staged floor during the life of a mine was proposed in this study. Based on
direct shear test results, the shear properties of contact surfaces between the weak layer, dumped
spoil, and mudstone were determined. Taking the Baiyinhua No.1 Open-pit Mine as an example, a
direct shear test of the contact surface between the spoil and the mudstone determined its cohesion to
be 25.78 kPa, and the internal friction angle was 17.58◦. The cohesion of the contact surface between
the spoil and the weak layer was 7.50 kPa, and the internal friction angle was 9.72◦. Different floor
treatment rates were subsequently determined based on discontinuous structural surface and limit
equilibrium theories. The in-pit dump plan was divided into stages based on a 10-year mine plan;
a “safety reserve coefficient” was used as the conditional factor to calculate the minimum floor
treatment rate. The results of a numerical simulation analysis of the slope stability of the untreated
and treated inner dumps showed good agreement with results obtained by the limit equilibrium
method. The position and shape of the sliding surface were also found to be similar, indicating the
validity of the established numerical simulation model and the reliability of the calculated results.
Based on field application and economic effect analysis, it was found that this proposed method can
minimize the floor treatment rate effectively while maintaining a sufficient factor of safety. The direct
economic benefit of this method was approximately 1,694,259 dollars at the Baiyinhua No.1 Coal
Mine. This method is of great significance to safe and efficient production, and can be widely applied.

Keywords: in-pit dumps; slope stability; weak layer; contact surface; floor treatment rates

1. Introduction

Coal mining is divided into two types: underground mining and open-pit mining.
Among them, open-pit mining has outstanding advantages, such as good safety conditions,
high resource recovery rate, large production scale, easy automation, low production cost,
and easy environmental repair [1]. It has become the main mining method of coal resources
in many countries, and open-pit mining accounts for more than 90% in some countries [2].
Open-pit mine dumping refers to the operation of dumping stripped materials into the
designated site from the open pit. There are two types of dumping sites: internal and
external. The former is located inside the stope, with short transportation distance and
low cost; the latter is set outside the open-pit mining boundary and takes up a lot of land.
In-pit dumps in open-cut mining have a number of advantages, including minimizing the
mining footprint, reducing long hauls, and improving productivity. It can also manage dust,
spontaneous combustion, and slope stability effectively [3]. However the in-pit the dump
is constructed, its stability is critical for coal mining and operational safety. Large-scale
dump failures have occurred previously in numerous open-cut coal mines, especially with
a weak underlying stratum beneath the pit floor. Such a layer usually has high hydraulic
conductivity and clay content with low shear strength. It provides a slippery surface
for a dump or low wall failures [4]. Therefore, it is of practical significance to study the
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stability control measures of the inner dump slope for the safe and efficient production of
open-pit mines.

Researchers have proposed a series of control methods, e.g., reducing batter angle [5],
backfilling rocks to squeeze out ooze [6,7], floor disruption [8,9], coal pillar buttressing [10],
drainage [11,12], floor grouting [13,14], chemical treatment [15–17], and slope consolidation
grouting [18]. Reducing slope angle will improve slope stability. However, it will reduce
dump space at the same time. Mud base removal can improve shear resistance to some
extent, although it is not effective with thick, or deep, weak layers. The effectiveness of
dewatering is standard during coal mining and before dumping, which can not be used as
the main floor treatment technique. Coal pillars can provide sufficient buttresses to low
walls in the next strip. However, it results in economic loss. Electrochemical modification
can improve the strength of mudstone, but the reinforcement cost is too expensive and
it is not suitable for large-scale applications. Floor disruption can disturb weak layers,
reduce the risk of slope instability, and improve operational safety. Chen et al. [19] used
the friction model experiment to study the deformation and failure characteristics of in-pit
dumps under the natural state the saturated state. Wang et al. [20] obtained the shear
strength parameters of clay by performing triaxial shear and direct shear tests. Based on
experimental results, they revealed the deformation and failure pattern of dumps with
underlying weak layers. In order to solve the matter of the slope stability of dumps
in anticline areas, zhao et al. [21] compared and analyzed three models to solve dump
stability issues with steep floors, which include floor shot, floor trenching, and coal pillar
buttressing. Based on model results, floor shot was selected as the most appropriate
treatment plan. Based on experimental studies on changes in groundwater level, pore
water pressure, soil sedimentation, and other indicators during the treatment of weak
layers, Ni et al. [22] proposed a new floor treatment method called “vacuum dynamic
consolidation”. Although many studies have proposed floor treatment methods for weak
layers, there is no universally accepted method that can be cost-effective and safe for the
life of the mine.

Therefore, this study investigated the floor treatment methods for weak layers beneath
pit floors in open cut coal mines. Based on the discontinuous structural surface theory, the
method to determine the equivalent mechanical index of the contact surface corresponding
to the different treatment rates of the weak base in the in-pit dump was proposed for the
first time, and an innovative cost-effective staged floor treatment method was proposed.
This provides a technical means for safety and an effective treatment method for sloped
floor treatment engineering under similar conditions. The research results have broad
application prospects.

2. Determination of Weak Layer Material Properties

As in-pit dumping is usually completed post floor treatment, the contact surface
between spoil and floor is newly generated. This study reconstructed the spoil and floor
rock samples based on moisture content, particle size distribution and physical simulation
tests. Direct shear tests were then carried out to obtain the mechanical properties of the weak
layer. The rock samples were supplied by the Baiyinhua No. 1 Coal Mine (Xilingol, China).

2.1. Test Instruments

The test instruments mainly include a weighing balance, oven, grinder, screening ma-
chine, ring knife, compactor, NT.IJD-1 strain controlled direct shear apparatus (Figure 1), etc.
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Figure 1. Schematic view of direct shear test. 
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Table 1. Water content of rock specimens. 
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(2) Particle size distribution of rock specimen 
Dumps are formed by spoil, for which the particle size distribution is one of its major 

indexes and a basis of its mechanical properties [24,25]. By crushing, drying, and screen-
ing the specimens, the particle size distributions of various rock types were obtained (see 
Figure 2). Results are shown in Table 2. 
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Figure 2. Specimen preparation. (a) Grinding; (b) Screening; (c) Weighting. 

Table 2. Particle size distribution of specimens. 

Rock Type 
Particle Size Distribution (%) 

>2 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm 
0.075–0.25 

mm 
<0.075 mm 

Dumped spoil 4.711 14.317 33.268 13.842 22.515 11.347 
Mudstone 21.344 14.625 26.383 10.968 18.182 8.498 

Figure 1. Schematic view of direct shear test.

2.2. Test Scheme

(1) Moisture content of rock specimen

The natural moisture content of the rock sample was determined using a drying
method according to national standard GB/T 23561.6-2009 [23]. Results are shown in
Table 1 below.

Table 1. Water content of rock specimens.

Rock Type Weight Pre-Drying
(g)

Weight Post-Drying
(g)

Water Content
(%)

Dumped Spoil 40.32 38.69 4.20
Mudstone 33.74 30.73 9.79

Carbonaceous mudstone 28.31 23.16 22.24

(2) Particle size distribution of rock specimen

Dumps are formed by spoil, for which the particle size distribution is one of its major
indexes and a basis of its mechanical properties [24,25]. By crushing, drying, and screening
the specimens, the particle size distributions of various rock types were obtained (see
Figure 2). Results are shown in Table 2.
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Figure 2. Specimen preparation. (a) Grinding; (b) Screening; (c) Weighting.

Table 2. Particle size distribution of specimens.

Rock Type
Particle Size Distribution (%)

>2 mm 1–2 mm 0.5–1 mm 0.25–0.5 mm 0.075–0.25 mm <0.075 mm

Dumped spoil 4.711 14.317 33.268 13.842 22.515 11.347

Mudstone 21.344 14.625 26.383 10.968 18.182 8.498

Carbonaceous mudstone 11.037 27.414 26.346 11.927 16.318 6.959
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(3) Rock remodel and direct shear test

Crushed material was mixed according to moisture content and particle size distribu-
tions to reconstruct rock specimens with 24 h sealed saturation, such that particles were
fully mixed with water. When preparing a sample, the mixture was compressed three
times with equal amounts of input material, and the compressive pressure was applied
9 times after each addition [26]. The rock sample was made into a cylindrical specimen of
ϕ 618 mm × 20 mm. A dumped spoil and a floor rock specimen were combined into a set
of specimens.

A direct shear test was carried out based on the national standard GB/T23561.11-
2009 [27]. Normal stress was first applied on top of the specimen with the shear stress
applied from horizontal displacement of the shear box. The shear stress was obtained
through the deformation of the measuring force ring and the specimen failed along a shear
surface. The shear stress vs. normal stress curves were plotted based on different shear
strength results; associated cohesions and friction angles were then obtained. Results can
be seen in Figures 3 and 4.
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Based on curve fitting equations, the cohesion of dumped-spoil–mudstone contact sur-
face was 25.78 kPa with an internal friction angle of 17.58◦. The cohesion and friction angles
of the dumped-spoil–weak-layer contact surface were 7.50 kPa and 9.72◦, respectively.

3. Optimized Staged Floor Treatment Plan for In-Pit Dumps
3.1. Determination of Weak Layer Shear Properties

The precondition slope stability calculation is determined by the mechanical shear
properties of the contact surface corresponding to different floor treatment rates. This
study estimated the mechanical properties of contact surfaces based on the discontinuous
structural surface theory. Based on the theory, a discontinuous structural surface consists
of a fracture surface and discontinuous rock bridges. During shearing, it is expected that
both the fracture surface and rock bridges provide shear resistance [28–30]. By assuming
the stress is evenly distributed along the shear surface, the continuity coefficient of the
structure plane is P and the shear strength of the regenerated structural plane is [28]:

τ = PCj + (1 − P)C + σ[P tan φj + (1 − P) tan φ] (1)

Based on the Mohr–Coulomb failure criterion, different treatment rates Kn are equiva-
lent to the linear continuity coefficient P of the structural surface. Hence, the equivalent
cohesive force Ci and the equivalent internal friction coefficient tanϕi of the structural
surface are obtained as:

Ci = KnCj + (1 − Kn)C
tan φi = Kn tan φj + (1 − Kn) tan φ

}
(2)

where Ci, cohesion of contact surface, kPa; ϕi, effective friction angle of contact surface, ◦;
Kn, floor treatment rate, %; Cj, cohesion of dumped spoil-floor rock contact surface, kPa; C,
cohesion of weak layer, kPa; ϕj, friction angle of dumped spoil-floor rock contact surface, ◦;
ϕ, friction angle of weak layer, ◦.

It can be seen from the above formula that the shear strength of the discontinuous
structural surface is higher than that of the continuous structural surface, which is in line
with reality. Before the floor treatment, dumped spoil is in contact with the weak layer; and
post floor treatment, dumped material is in direct contact with mudstone under the weak
layer. The shear mechanical parameters of two contact surfaces can be measured by a direct
shear test of the contact surface. Based on different floor treatment rates, the mechanical
properties of contact surfaces can then be substituted with Equation (2) for calculation,
such that the equivalent mechanical properties based on various floor treatment rates can
be obtained.

3.2. Analysis Method of Slope Stability

Take the i-th column on the sliding surface as an example; as i = 0, 1,... n, the base
sliding angle of the i-th column is αi, and the base inclination of the i − 1-th column is αi−1,
the residual thrust of the i − 1th column is Ei−1, and the force analysis of the block in the
slider is shown in Figure 5.

Establish a tangential force balance equation for the direction parallel to the base of
the i column [31]:

Ei = Wi sin αi + Ei−1 cos(ai−1 − ai)− Si (3)

Construct a normal stress equation for the i th column [31]:

Ni = Wi cos αi + Ei−1 sin(ai−1 − ai) (4)

Based on Mohr–Coulomb failure criterion [31]:

Si =
Cili + Ni tan φi

F
(5)
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By rearranging the above equations, the residual thrust of upper sliding body Ei [10]:

Ei = Wi sin αi + Ei−1 cos(ai−1 − ai)−
Cili + [Wi cos ai + Ei−1 sin(ai−1 − ai)] tan φi

F
(6)

where Ei, residual thrust of the ith column, kN; Wi, weight of the ith column, kN; Si, shear
stress of the ith column, kN; αi, back-scarp angle of the failure envelope, ◦; Ni, normal stress
at the bottom of the ith column, kN; Ci, cohesion of the ith column, kPa; ϕi, friction angle of
the ith column, ◦; li, width of the ith column, m; F, reduction coefficient.
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Substituting the equivalent cohesive force Ci and the equivalent internal friction
coefficient tanϕi of the structural surface into Equation (6), the residual thrust under
different floor treatment rates Kn can be obtained as:

Ei = Wi sin αi + Ei−1 cos(ai−1 − ai)−
[KnCj(1 − Kn)C]li + [Wi cos ai + Ei−1 sin(ai−1 − ai)][Kn tan ϕj − (1 − Kn) tan ϕ]

F
(7)

By adjusting the reduction factor F so that the residual thrust of the lowest block is 0,
the factor of the safety of the in-pit dump at the slip surface can be obtained. According to
this calculation, Fmin calculated by self-programming is the stability coefficient correspond-
ing to the most unstable slip surface, that is, the slope stability coefficient under a certain
treatment rate.

3.3. Staged Floor Treatment for Weak Layers under In-Pit Dumps

From establishment to the completion of in-pit dumps, it is assumed that there are
r typical engineering positions in the whole life cycle of its development, that is, r devel-
opment stages, which are numbered 1, 2, . . . , n, . . . , r stage. When optimizing the floor
treatment rate of the open-cut mine at each stage, it is assumed that the slope shape at
the same stage does not change during the optimization process, and the slope stability
is only related to the floor treatment rate. Based on this assumption, the floor treatment
rate of each stage, under the condition that the slope stability meets the safety reserve
factor, is determined stage by stage. Considering the rate of the floor treatment extent to
the floor covering extent at a certain stage to be the floor treatment rate Kn, Fs is the slope
stability coefficient, and Fst is the safety reserve coefficient. The specific steps are shown in
Figure 6 below.
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4. Field Application
4.1. Field Background

The in-pit dump of the Baiyinhua No.1 Coal Mine started in September 2018 and is
located south of the pit. With the continuation of mining and overburden haulage, it is
expected the dump height will keep increasing and result in a higher risk of slope failure.
The high wall consists of Categories 3 and 4 sand, Cretaceous coal, and mudstone layers
from top to bottom. The 33◦ dump batter is designed to be 13.5 m high with a 40 m bench.
There is a continuous weak layer beneath the floor with an average floor dip between 8◦

and 14◦. Such a pit-toward dipping floor is unfavorable to dump stability (see Figure 7).
Therefore, treating the weak base layer is necessary to improve the stability of dumps.
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The development plan for the dump at the Baiyinhua No. 1 Coal Mine in the next ten
years is to follow the advancing face to the north. The high wall face is arranged obliquely,
such that the east is ahead and to the west of the dump is the reserve trench; the east
advances towards the north to develop in a fan shape.

According to the provisions of the “Code for Design of Open Cut Mine in Coal
Industry” (GB50197-2015) [32], the factor of safety of the in-pit dump needs to be at least
1.2. Due to the existence of a weak layer, it is prone to shear sliding along the layer. The
physical and mechanical properties of the rock and soil mass used in the calculation of
slope stability are shown in Table 3.

Table 3. Mechanical properties of strata.

Rock Type Friction Angle
(◦)

Cohesion
(kPa)

Test Weight
(KN/m3)

Dumped spoil 17.49 25.38 17.80
Category 4 sand 23.98 0.00 17.50
Category 3 sand 24.00 85.00 19.30

Coal 26.32 58.00 11.90
Mudstone 21.85 26.00 20.10

Dumped-spoil–weak-layer contact surface 9.72 7.50 20.20
Dumped-spoil–mudstone contact surface 17.58 25.78 20.20

4.2. Cross-Section Selection

According to the development plan of dumps at the Baiyinhua No. 1 Open-pit
Coal Mine, it is divided into 10 development stages. In different stages, where slope
dimensions or geological conditions change significantly, the cross-section perpendicular to
the direction of the dump strike should be selected. A total of 18 calculation sections were
selected with the first stage (2021) and the tenth stage (2030) as examples. Cross-sections of
the calculated profiles are shown in Figures 8 and 9 (From AUTOCAD2016).
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4.3. Determination of Shear Resistance

The base of the dump at this mine is 2~5 m thick and soft carbonaceous mudstone
with mudstone beneath this weak layer. The mechanical properties of the contact surface
between the dumped spoil and the weak layer, and the dumped spoil and the mudstone,
were determined by the above-mentioned direct shear tests. Subsequently, the equivalent
shear properties of the contact surface under different treatment rates were obtained via
Equation (2) (see Table 4).

Table 4. Equivalent shear properties of contact surfaces.

Floor Treatment Rate (%) Cohesion (kPa) Friction Angle (◦)

0 7.500 9.720
10 9.328 10.528
20 11.156 11.332
30 12.984 12.131
40 14.812 12.926
50 16.640 13.716
60 18.468 14.500
70 20.296 15.279
80 22.124 16.052
90 23.952 16.819

100 25.780 17.580

4.4. Determination of Floor Treatment Rate at Each Stage

According to the above-mentioned staged treatment method, the floor treatment rate
of each stage was determined. Taking the process of determining the floor treatment rate of
the second stage as an example, as shown in Figure 10 (From AUTOCAD2016), the rate
of the 2-1 section selected in the second stage was calculated. When the floor treatment
rate was 0% and 10%, the factor of safety of the slope was 1.019 and 1.073, respectively,
which did not satisfy Fst-Fs ≤ 0.05. When the floor treatment rate was at 20%, the factor of
safety was calculated to be 1.199, which meets the criteria. Therefore, the floor treatment
rate of Section 2-1 in the second stage was determined to be 20%. Following the same
process, the factor of safety of Section 2-2 was calculated. When the floor treatment rate of
the profile was 0%, the factor of safety was 1.303. This meets the requirements of the safety
reserve factor. Therefore, the minimum floor treatment rates of the two calculation profiles
selected in the second stage were 20% and 0%, respectively. To ensure the slope stability
of all sections in the second stage, the higher rate was selected for the second stage, i.e.,
K2 = 20%. By calculating the slope stability for each calculation section, the factor of safety
and the floor treatment rate of each calculation section were obtained, as shown in Table 5.
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Table 5. Slope stability calculation and floor treatment rates of each cross-section post optimization.

Stage Cross-Section Relevant Kn (%) Floor Treatment Rate (%) Fs Kn (%)

1
1-1 — 20 1.199

1001-2 — 100 1.196

2
2-1 K1 = 100 20 1.199

202-2 K1 = 100 0 1.303

3

3-1
K1 = 100

0 1.358

0
K2 = 20

3-2
K1 = 100

irrelevant 1.196K2 = 20

4

4-1

K1 = 100

0 1.269

0

K2 = 20

K3 = 0

4-2
K1 = 100

irrelevant 1.283K2 = 20

5 5-1

K2 = 20

0 1.240 Repeated K5 = 20K3 = 0

K4 = 0

6

6-1

K2 = 20

0 1.327

0

K3 = 0

K4 = 0

K5 = 20

6-2

K1 = 100

irrelevant 1.210
K2 = 20

K3 = 0

K4 = 0
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Table 5. Cont.

Stage Cross-Section Relevant Kn (%) Floor Treatment Rate (%) Fs Kn (%)

7

7-1

K4 = 0

0 1.205

0

K5 = 20

K6 = 0

7-2

K1 = 100

irrelevant 1.199

K2 = 20

K3 = 0

K4 = 0

K5 = 20

8 8-1

K5 = 20

20 1.198 20K6 = 0

K7 = 0

9

9-1 K8 = 20 0 1.241

0
9-2

K1 = 100
irrelevant 1.267K2 = 20

10

10-1 K9 = 0 0 1.251

0
10-2

K4 = 0

0 1.217
K5 = 20

K6 = 0

K7 = 0

4.5. Numerical Simulation

(1) Establishment of numerical simulation model

A numerical simulation analysis was conducted to investigate the effect of weak floor
treatment on the slip mode and slip mechanism of inner dump slopes. The stability of
the inner dump slope with an untreated and treated base was analyzed by constructing a
numerical simulation model for the 2-1 section. The model range (length × height) was
determined to be 1800 m × 447 m based on actual terrain and excavation conditions, and
the section design consisted of 5757 nodes and 18,363 cells, as shown in Figure 11. The
stratum distribution was: the first layer was the waste, the second layer was the Quaternary
sand, the third layer was the Tertiary sand, and the following was the ore body. The
physical and mechanical parameters of the rock mass are shown in Table 3.
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(2) Initial-boundary conditions

The simulation calculation for the stability analysis of the inner dump slope only
considered displacement constraints in the horizontal (X) direction on the left and right
boundaries, under the condition of self-weight stress. Vertical (Y) displacement constraints
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were applied to the bottom boundary of the model [33,34], while the top and step slope
positions were free boundaries to ensure the balance of the entire system. The failure
criterion of the rock mass was determined using the D-P criterion, and the connectivity
of the plastic zone and the mutation of displacement of characteristic parts were used as
instability criteria [35].

(3) Analysis of effect

The simulation results obtained by calculation are shown in Figures 12 and 13 (From
FLAC3D5.0). Analysis of displacement and shear strain contours revealed the formation of
an arc-like shear failure zone beneath the slope due to the presence of a weak layer. This
zone was sheared along the weak layer by the slope’s gravity, resulting in the formation of
a sliding plane. The numerical simulation results were found to be consistent with those
obtained from the limit equilibrium method, with the position and shape of the slip surface
closely matching, thus indicating the correctness of the numerical simulation model and
the reliability of the calculation results.
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5. Results and Discussion

According to the treatment process of the in-pit dump base stage by stage, the slope
stability was calculated for each calculation section one by one, and the treatment rate of
the base at each stage was obtained. The floor treatment range at each stage is shown in
Figure 14 (From AUTOCAD2016). Among them, the treatment rate of the first stage was
100%, the second, fifth, and eighth stages were all 20%, and the treatment rate of other
stages were 0%.

Analysis from numerical simulation results, post floor treatment, showed that the
shear strength of the contact surface between spoil dump and base increased. At the treated
location, the upper deformation and shear strain increment were significantly reduced and
the slope stability was significantly improved. The factor of safety was improved from
1.10 to 1.21. The failure mode and factor of safety are basically consistent with the results
obtained by the two-dimensional calculation. The two methods verified each other, which
proves the validity of the slope stability analysis.

From the economic benefit point of view, the base treatment cost was calculated
according to the optimization results of the base treatment rate of each stage. By referring
to the previous floor treatment cost of the Baiyinhua No. 1 Mine, the estimate was based
on the treatment unit price of 1.17 dollars/m3. The total volume of the weak layer in the
first, second, fifth, and eighth stages of the in-pit dump was 2,711,400 m3; and the volume
of the weak layer to be treated after the optimization was 1,263,315 m3. The cost of the
original process was about 3,172,338 dollars, whereas the optimized substrate processing
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cost was about 1,478,079 dollars. This optimization saves about 1,694,259 dollars. Under
the condition that the floor was not treated, we must adopt the design scheme of the gentle
slope to ensure the stability of the in-pit dump. After the design, the slope angle of the in-pit
dumps was 9.5◦, which was 4◦ lower than the floor treatment scheme. The gentle slope
scheme reduced the dumping amount of the in-pit dumps, so it was bound to increase the
dumping amount of the out-pit dumps. This scheme not only increased the land purchase
cost of the out-pit dumps, but also added to the transportation cost. Compared with
other floor treatment methods, the floor treatment plan also had a slight advantage. For
example, Zhao et al. [21] proposed a blasting treatment method for the floor. This mode
needs high processing costs, a long cycle, and the blasting scheme needs to be tested and
designed, which is not suitable for large-scale floor treatment. Tang et al. [36] applied the
reserved coal pillar method by the example of the Huolin river open-pit mine, and the
slope stability coefficient was obviously improved. However, the method of reserving coal
pillars was bound to cause coal losses. At present, there is no mature method to optimize
the parameters of reserved coal pillars.
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Land is a valuable property and a key element for sustainable development. By
treating the floor of the inner dump, the capacity of the dump can be increased, and
existing land resources can be utilized more efficiently. This, in turn, can reduce the
land occupation of the outer dump, leading to a reduction in transportation costs, land
expropriation expenses, ecological damage, and the cost of ecological restoration. Therefore,
the proposed treatment method is beneficial for the sustainable development of open-pit
mines. Moreover, improving slope stability can effectively prevent casualties, equipment
damage, and the destruction of surrounding facilities caused by landslide disasters, leading
to significant social benefits. The optimization method presented in this study serves as
a reference for the treatment of inner dump bases in other open-pit mines and provides
useful guidance and reference.

6. Conclusions

This study is based on the Baiyinhua Open-pit Coal Mine in Inner Mongolia, China.
The main findings are as follows:

(1) A direct shear test of the contact surface between the spoil and the mudstone de-
termined the cohesion to be 25.78 kPa, and the internal friction angle is 17.58◦. The
cohesion of the contact surface between the spoil and the weak layer is 7.50 kPa, and
the internal friction angle is 9.72◦. The determination’s methods of effectiveness, such
as the contact surface corresponding to the different treatment rates of the weak layer,
was proposed based on the theory of discontinuous structural surface theory. This
provided fundamentals for the calculation of slope stability.
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(2) By considering the factor of safety of dumped spoil at each stage of development
and associated safety reserve coefficient, together with the aim of minimum floor
treatment, a new staged optimization treatment method for the weak layer for the
life of the mine was proposed. The Baiyinhua No.1 Open-pit Coal Mine applied this
method to optimize the treatment of the inner dump base, and the treatment rate of
the first stage was 100%, the treatment rate of the second, fifth and eighth stages was
20%, and the treatment rate of other stages was 0%. Through comparative analysis,
the treatment cost of the scheme was about 1,694,259 dollars less than that of the
base full treatment scheme, which effectively solved the slope stability problem of the
dump in the soft base and improved the economic benefits of the open pit mine.

(3) The numerical simulation analysis results show that the failure mode before and after
the floor treatment was sliding. However, the maximum deviation and shear strain
increment at the floor treatment location were significantly reduced, while the slope
stability was significantly improved. This was consistent with the two-dimensional
stability analysis results.

(4) The floor treatment plan for the inner dump can significantly enhance slope stability
and increase the utilization rate of inner dump space. This, in turn, reduces the occu-
pied area of the outer dump and minimizes the impact on the natural environment,
making it an effective measure for controlling coal spontaneous combustion and dust,
with potential ecological and social benefits.
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