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Abstract: The Bohai Economic Rim (BER) is an important economic Rim in north China. Since the
implementation of the Beijing−Tianjin−Hebei Coordinated Strategy in 2014, the provinces have be-
come more closely connected in economic development and environmental governance. This paper
investigates the dynamics and spillover effects of carbon emission intensity in the BER before and after
removing the common factors, and analyzes the reasons for the difference. In this study, the serial
dynamics characteristics and spatial spillover effects of the carbon emission intensity of provinces were
analyzed in the BER provinces between 2000 and 2019. Based on the Moran index and the spatial Durbin
model, the provincial carbon emission intensity and influence factors were examined. CD (Correlation
Dependence) tests were then applied, with the test results indicating that the carbon intensities had
strong spatial correlation. Therefore, the dynamic spatial Durbin common factor model was introduced,
characterizing the dynamic characteristics of the carbon emission intensity and the spatial spillover
effect in the BER. The consequences obtained are as follows: (1) The carbon emission intensities in the
BER were influenced by the energy intensity, urbanization level, economic growth, and population
density. There was a significant spatial spillover effect between a province and its neighboring provinces.
(2) The carbon emission intensities of the provinces exhibited a strong correlation. (3) The reason for the
strong carbon emission intensity correlation is associated with environmental protection policies that
are similar and the common external development environment. Combining the above findings and
study conclusions, the authors offer the following policy suggestions: (1) optimize the energy structure;
(2) improve the industrial structure; (3) construct a regional collaborative governance mechanism for
carbon emissions; and (4) formulate a precise policy. This study is crucial for reducing regional carbon
emissions, promoting the transition to a green economy and society, and achieving the “carbon peaking”
and “carbon neutrality” targets in China.

Keywords: carbon emission intensity; spatial dependence; common factors; Bohai Economic Rim

1. Introduction

In recent years, various extreme weather events caused by global warming have
intensified [1]. Carbon emission is the primary cause of global warming. The general
consensus of all countries now is to reduce carbon emissions to combat change [2–4].
During the past 40 years of reform and opening up, China has developed with considerable
speed and undergone remarkable development, but has also damaged the environment.
The challenge for the Chinese government to address is achieving balanced economic
and environmental development as it shifts to a high-quality developmental pattern [5].
In October 2022, President Xi Jinping proposed that we should encourage environmentally
friendly growth, cultivate harmony between humans and nature, and actively advance
“carbon peaking” and “carbon neutrality”. During the Paris Agreement discussions in
2015, China promised to decrease carbon emission intensity by 60~65% from 2005 to 2030.
President Xi suggested in September 2020 that we strive for “carbon neutrality” by 2060
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and have carbon dioxide emissions peak before 2030. China’s carbon emission intensity
has greatly reduced as the country’s economy and society continue to expand in a stable
and healthy way. China exceeded its pledge to the international community by reducing
carbon emission intensity by 48.4% from 2005 to 2020. However, China is still the world’s
biggest source of carbon emissions. Although many measures have been introduced to
attain the carbon emission reduction goals, China should still strengthen and consolidate its
capacity to reduce carbon emissions for the purpose of accomplishing the carbon neutrality
target before 2060 [6,7]. Under the reality in which total energy is limited and economic
development requires increasing energy, the task of achieving carbon neutrality must be
divided into the different regions of China. All regions need to take action to alter the
mode of economic development and focus on low-carbon and environmentally friendly
green development.

China’s Bohai Economic Rim (BER) refers to the coastal economic belt surrounding the Bo-
hai Sea, which takes the Liaodong Peninsula, Shandong Peninsula, and Beijing−Tianjin−Hebei
as the main body, and extends to Shanxi, Liaoning, Shandong, and the central-eastern part
of Inner Mongolia (Figure 1). The BER makes up 22.2% of the population and 13.31% of the
country’s total land area [8]. It is a vital region for China’s economic development, and an
important center for political and cultural development. As one of the three major economic
rims, it has natural geographical and resource advantages, a developed transportation net-
work, and a strong industrial foundation. At present, the BER has become northern China’s
most economically developed region [9]. Since the reform and opening up, the high-input,
high-pollution, and high energy-consuming economic development pattern has caused major
environmental contamination in the BER. The climate change caused by environmental pol-
lution is closely linked to economic growth [10]. Therefore, determining how to effectively
cut carbon emissions and maintain the area’s ecological environment while achieving the
medium–high economic development of the BER is one of the major issues currently being
faced [11].

Figure 1. The geographical position of the BER in China.

Understanding the dynamics and spatial correlation of carbon emission intensity is
crucial for realizing a low-carbon development mode [12,13]. To date, scholars have mainly
focused on the elements affecting regional carbon emissions at the national, provincial, and
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municipal levels, but the common factors have not been taken into account. This paper
investigates the dynamics and spillover effects of carbon emission intensity in the BER
before and after the removal of the common factors, and analyzes the reasons for any
differences. Meanwhile, it is of practical significance to quantitatively analyze the dynamics,
spatial spillover and common factors of carbon emission intensity in seven provinces within
the BER, namely Beijing, Tianjin, Hebei, Shanxi, the Inner Mongolia Autonomous Region,
Liaoning, and Shandong. The reason why these seven provinces were chosen is that all
the other provinces except Beijing and Tianjin surround Beijing and Tianjin and belong to
the Pan-Bohai Rim. Moreover, it was found through research that the industrial transfer
targets of Beijing−Tianjin−Hebei are mainly concentrated in these regions. During the
industrial transfer process, the trade and allocation of environmental protection indicators
will inevitably affect the relationship among carbon emission intensities within the BER.
To reduce regional carbon emissions, advance the socio-economic green transformation,
and ultimately realize China’s targets for “carbon peaking” and “carbon neutrality”, in this
process, it is crucial to assess the dynamics and spatial spillover, as well as the common
factors, of the BER’s carbon emission intensity.

The remainder of the study is structured as follows: the literature review is presented
in Section 2; the theoretical model and data description are introduced in Section 3. Section 4
details the results and discussion; and Section 5 offers conclusions and policy suggestions.

2. Literature Review

Over the last several years, with the deterioration in the global climate environment
and the deepening of people’s awareness of the need for environmental protection, studies
on carbon emissions have emerged and various analytical methods have been proposed [14].
The term “carbon emission intensity” refers to the amount of carbon dioxide emitted per
unit of gross domestic product (GDP). Compared with the more commonly known aggre-
gate carbon emissions, carbon emission intensity can more accurately reflect the current
status of a country’s economic development in relation to carbon emissions, and deter-
mine if a nation has successfully implemented an eco-friendly development paradigm.
Scholars have carried out extensive research on carbon emission intensity using various
estimation methods [15,16]. Meanwhile, many academics have examined the elements that
affect the intensity of carbon emissions. Research conducted by Cary (2020) proved that, as
the economy continues to upgrade, the global carbon emission intensity exhibits a decreas-
ing slope [17]. A great deal of research has recently investigated the link between economic
development and carbon emission intensity. To explore the connection between economic
growth, energy demand, and carbon emissions in 19 different countries or economies,
Apergis et al., (2010) tested a panel error correction model. The findings demonstrated
that an increase in energy demand and economic expansion would result in higher carbon
emissions [18]. Adebayo et al., (2021) identified a positive association between the devel-
opment of the economy and carbon emissions in Egypt [19]. Sharma (2011) and Shahzad
et al., (2017) researched how energy structure, population density, and trade openness
influence carbon emission intensity [20,21]. Dong et al., (2018) evaluated the factors affect-
ing the carbon emission intensity in 30 Chinese provinces using panel data from 1999 to
2014 based on quantile regression. The findings demonstrated that the final consumption
rate, industrialization index, and energy structure all have an impact on carbon emission
intensity [22]. According to a multivariate framework that took into account both labor
and gross fixed capital investment, Soytas et al., (2009) explored the connection between
Turkey’s energy use, economic growth, and carbon emissions [23]. Taking China as an
example, Green et al., (2017) researched the factors that fueled China’s increase in carbon
emissions and forecast future carbon emissions [24]. Using China’s Yellow River Basin
as an illustration, Xu et al., (2022) investigated the spatio-temporal evolution of carbon
emission efficiency and its affecting factors at the municipal level [25]. In addition, there is
a wealth of literature describing the geographical difference or spatial spillover as possible
influencing mechanism for carbon emissions. Padilla et al., (2013) used the Theil index to
reflect the spatial differences and factors that affected carbon emissions in 27 EU countries
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during the 1990~2009 period [26]. Wang et al., (2019) conducted an analytical investigation
into the spatial spillover effects and drivers of carbon emission intensity in Chinese cities
nationwide using kernel density estimation and spatial autocorrelation [27]. Song et al.,
(2021) studied the regularity of space and time in the BER’s carbon emission intensity at
the provincial level [28].

The above-mentioned studies show that scholars have mainly focused on the elements
that affect regional carbon emissions at the national, provincial, and municipal levels. Re-
search carried out by Sun et al., (2022) showed that coordinated carbon emission reduction
was necessary for creating a balance between economic development and carbon emission
reduction [12]. Taking the country level as the research scale can reflect the country’s total
carbon emissions situation, but it is not conducive to making carbon reduction policies
according to local conditions. This is because the ecological environment and economic
development among regions are very different. Although taking the province level as the
research scale can clearly reflect the traits of a province’s carbon emissions [29], it raises the
expense of developing policies and coordination difficulties among provinces, thus greatly
reducing the effectiveness of the policies [30]. Additionally, existing studies have shown
that biased inference may result from methods that do not concurrently take into account
serial dynamics, spatial dependency, and common factors, or that overlook one of these
problems [31].

The potential innovations in this work compared with the previous literature are that
this study introduces common factors because of the strong correlation of the BER’s carbon
emission intensity, extracts the common factors affecting carbon emissions in all provinces,
and then analyzes the serial dynamics and spatial spillover effects of carbon emission
intensity. This paper aims to propose reasonable policy recommendations for reducing
carbon emissions and reaching “carbon neutrality” at a regional level, and to improve the
theoretical exploration of carbon emission intensity in China’s BER.

3. Theoretical Model and Data Description

First, the spatial correlation of the BER’s provinces is described by calculating the
Moran index for each year in this research, considering whether carbon emission intensity
is correlated with space. If there is a spatial correlation, the serial dynamics and spatial
spillover effects of the carbon emission intensity of the BER’s seven provinces are carved out.
Additionally, if the empirical findings show that strong serial dynamics and spatial spillover
effects exist, various CD (correlation dependence) tests are applied to evaluate if the carbon
emission intensity is strongly spatially correlated. A more thorough investigation of the
spatial dependency and common factors of carbon emissions in each province is conducted
if the carbon emission intensity connection is strong. The dynamic panel spatial Durbin
model and the dynamic panel spatial Durbin common factor model were used to explore
the above issues.

The explained variable is the carbon emission intensity (CEI) of the BER’s seven provinces,
which indicates how carbon dioxide emissions fluctuate as the economy grows [32,33].
The method proposed by the Intergovernmental Panel on Climate Change (IPCC) is used to
determine the provinces’ carbon dioxide emissions.

3.1. Theoretical Models
3.1.1. Methods for Measuring the Carbon Emission Intensity

Since there is currently no universal system for monitoring carbon emissions, only
indirect methods—primarily three approaches: measurement, model simulation, and
algorithms for balancing—can be used to measure carbon emissions [34,35]. With regard to
the first method, it is challenging to conduct continuous monitoring and scientific sampling.
Macro-emissions projections, on either a national or global scale, are usually conducted
through model simulations. Most often, algorithms for balancing depending on fossil
energy use are employed to estimate at the provincial level [14]. The carbon emissions of
different energy sources are calculated in our paper using the emission coefficient approach
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(IPCC, 2006) (Table 1) [36]. First, each province’s carbon emissions are calculated in line
with the carbon emission factors corresponding to different energy sources:

Cr =
8

∑
p=1

Crp =
8

∑
p=1

Erp·SCCp·CEFp·
44
12

(1)

where Cr denotes the carbon emissions of the region r; r (r = 1, · · · , N) stands for, suc-
cessively, Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia, Liaoning, and Shandong; Erp
represents area r’s category p energy consumption; p (p = 1, · · · , 8) refers to the different
energy resources shown in Table 1; SCCp stands for the typical coal coefficient; and CEFp
represents the carbon emission factors. Table 1 includes a list of associated values. It should
be noted that the SCCp and CEFp of comparable energy sources in various places are
similar. The real provincial GDP of region r divided by the carbon emissions equals the
carbon emission intensity:

CEIr =
Cr

GDPr
(2)

Table 1. Carbon emission factors of different energy resources.

Energy Source Coal Coke Crude Oil Fuel Oil Gasoline Kerosene Diesel Natural Gas

SCC (kg standard coal/kg) 0.7143 0.9714 1.4286 1.4286 1.4714 1.4714 1.4517 1.33
CEF (kg/kg standard coal) 0.7559 0.855 0.5857 0.6185 0.5538 0.5714 0.5921 0.4483

Source: IPCC, 2006.

3.1.2. Moran Index

The Moran index, which measures the strength of spatial correlation, has the follow-
ing formula:

I =
n
s0

∑n
i=1 ∑n

j=1 wijzizj

∑n
i=1 z2

i
(3)

where zi is the deviation of the expected mean value xi −
−
x of the attribute of element i;

wij represents the spatial weight matrix W; n refers to the total amount of elements; and s0
stands for the total of the matrix’s spatial weights. The statistic Z form that corresponds to
the Moran index is:

ZI =
I − E[I]√

V[I]
(4)

where, E[I] = − 1
n−1 ;

√
V[I] = E

[
I2]− E[I]2.

The specific test procedure will be based on the form of the distribution obeyed by the
variable X.

3.1.3. Dynamic Spatial Durbin Model

The dynamic spatial Durbin model’s explanatory variables include the time-lagged
and the explanatory variables’ spatially lagged values, along with the explained variables’
spatially lagged values. Following is the model form:

CEIrt = β0CEIrt−1 + ρWCEIrt + β1LEI + β2UR + β3 AGDP + β4LPD + β5WLEI
+β6WUR + β7WAGDP + β8WLPD + εt

(5)

where CEIrt denotes the province’s carbon emission intensity r (r = 1, · · · , N) in the
year t (t = 1, · · · ,T); ρ measures the spatial autocorrelation; W stands for the geospatial
weight matrix; LEI and LPD are the logarithmic forms of energy intensity and population
density, respectively; UR stands for urbanization level; and AGDP is the GDP growth rate.
The model can portray both the serial dynamics and the spatial spillover effects of carbon
emission intensity.
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3.1.4. Dynamic Durbin Common Factor Model

Based on the common factor approach, this paper considers the spatial spillover effects
of carbon emission intensity among the BER’s provinces when the common influencing fac-
tors are excluded, then further analyzes the impacts of energy intensity, urbanization level,
economic growth, and population density on carbon emission intensity. The construction
of the spatial dynamic common factor model is divided into two steps [37–39].

The first step is establishing the following model:

CEIrt = γ0r + γ1r
1
N

N

∑
j=1

CEI jt + ert ≈ γ0r + γ1r MCEINt + ert (6)

where MCEINt denotes the area’s average carbon emission intensity, obtained using the
BER’s total carbon emissions divided by the GDP of the region; and ert is the random error
term for the r-th province in the year t, with a mean of 0 and a variance of σ2

e . According to
the formula, each province has an intercept term and a response coefficient.

The carbon emission intensity after removing the common factors is represented by
the residuals of Equation (7):

êrt = CEIrt − γ̂0r−γ̂1r MCEINt (7)

In this way, the common effects of carbon emissions from provinces in the BER can be
removed, so that the remaining variables can be used to portray the true spatial correlation
among the provinces.

The second step, the carbon emission intensity of the de-factor is constructed using a
dynamic Durbin model,

êrt = β0 êrt−1 + ρWêrt + β1LEI + β2UR + β3 AGDP + β4LPD + β5WLEI
+β6WUR + β7WAGDP + β8WLPD + εrt

(8)

where êrt is defined as shown in Equation (8). The model portrays the dynamics, spatial
dependence, and spatial spillover effects of carbon emission intensity after removing
the common factors. The parameters were estimated using area effects and the bias-
corrected QML (quasi-maximum likelihood) estimation method with both area and time-
fixed effects [40–42].

3.2. Data Processing

The energy consumption data were obtained from the China Energy Statistical Year-
book. The raw data required for the level of urbanization, economic growth, and population
density were obtained from the China Statistical Yearbook for each year and calculated
accordingly. The selected data period is 2000 to 2019. In consideration of the large-scale
outbreak of the COVID-19 pandemic in 2020 around the world, the data after 2019 may
show relatively large fluctuations, which is not useful for reference, so only the 2000 to 2019
data were selected.

The following are the explanatory variables selected for use in this study:

• Energy intensity (LEI)

This indicator is obtained by dividing total energy consumption by nominal GDP.
This paper used the logarithm of energy intensity as a proxy to research how industrial
development affects carbon emission intensity.

• Level of urbanization (UR)

The percentage of the country’s total population that lives in cities is typically used to
describe the level of urbanization, while some data prior to the 2006 urbanization levels
are expressed as a percentage of the total household population in non-rural areas. In this
paper, the degree of urbanization was used as a proxy to examine how carbon emission
intensity is affected by urban−rural patterns.

• Economic growth (AGDP)
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The GDP growth rate conveys the pace of economic growth as well as the current state
of economic development.

• Population density (LPD)

This study investigated how rising populations have an impact on carbon emissions.
The logarithmic form of population density is used.

Table 2 displays the variables’ descriptive statistics, with columns two through six dis-
playing the variables’ observation, mean, standard deviation, and minimum and maximum
values, respectively.

Table 2. Descriptive statistics.

Variables Obs Mean Std. Dev. Min Max

CEI 140 4.7118 3.6030 0.3275 19.3251
LEI 140 0.1074 0.5969 −1.5698 1.3907
UR 140 61.0322 34.3533 34.3533 93.9885

AGDP 140 2.0860 0.7260 0.9071 3.6832
LPD 140 5.7812 1.2631 2.9984 7.1883

4. Results and Discussion
4.1. Temporal Regularity of Carbon Emission Intensity

Figure 2 displays the average annual carbon emission intensity as well as the total
carbon emissions per province from 2000 to 2019. Overall, the mean value of carbon
emission intensity showed a downward trend year by year, with a slight turning point in
2006 and in 2018. The average value of carbon emission intensity reached the highest in
2000, which was 7.47 ton/CNY10,000. The lowest was 2.94 ton/CNY10,000 in 2016.

Figure 2. The average annual carbon emission intensity and the total carbon emissions in the
BER, 2000–2019.

The seven provinces show different carbon emission characteristics, and the average
carbon emission intensity decreases year by year. The carbon emission trends and the
related carbon emission intensity for each province between 2000 and 2019 are further
displayed in Figure 3. Overall, although the carbon emissions in all provinces basically
display a year-on-year increasing trend, the carbon emissions in Beijing, Tianjin, Hebei,
and Liaoning have tended to level off in recent years. Shandong’s carbon emissions show
a regular trend of year-on-year increase. Stimulated by the industrial rebound, carbon
emissions in provinces such as Shanxi and Inner Mongolia have increased significantly in
recent years.
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Figure 3. The carbon emission trends and the related carbon emission intensity for each
province, 2000–2019.

However, considering the huge differences in population and economic scale of these
provinces, the carbon emissions cannot reflect the real environmental changes, so carbon
emission intensity was chosen to further assess the link between economic benefits and
carbon emissions. Corresponding to the general national trend, the carbon emission
intensity in the seven provinces generally tends to drop. From 2000 to 2019, with the
advancement in environmental protection technologies, the carbon emission intensity
in the country as a whole has been decreasing. Among them, Beijing, Tianjin, Hebei,
Liaoning, and Shandong have a lower carbon emission intensity than other regions, and
industrial restructuring in these areas has been successful. The carbon emission intensity in
Shanxi and Inner Mongolia is higher than average and had a rebound trend in 2018. The
explanation for this is simple; with the abundance of coal resources in Shanxi and Inner
Mongolia, along with the higher economic contribution of the coal sector, carbon emissions
are comparatively higher.

4.2. Spatial Correlation Analysis of Carbon Emission Intensity

In this study, we adopted the geographical distance weight matrix, also known as the
adjacency spatial weight matrix; that is, a matrix was constructed to portray the adjacency
relationship among the provinces. In addition, the elements in the matrix were represented
by 0 or 1: if two provinces were adjacent, it was represented by 1; if not, it was represented
by 0, and a row normalized form was chosen.

Table 3 and Figure 4 demonstrate that the spatial correlation of carbon emission
intensity among the BER’s provinces starts to increase rapidly from 2002, declines in 2007,
then increases gradually in the following years for a more moderate period, declines
slightly in 2018, and starts to increase again in 2019. The general spatial correlation of
the BER provinces’ carbon emission intensity indicates a trend of increasing year by year,
notwithstanding some short-term variations. Therefore, to further separate out the impacts
of the carbon emission spatial spillover effects from the provinces within the BER, the
spatial Durbin model is taken into consideration.

Table 3. Moran index for the provinces in the BER, 2000–2017.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

Moran’s I 0.151 0.140 0.123 0.182 0.250 0.276 0.370 0.280 0.338 0.314
Z-Value 1.604 0.113 1.526 1.763 1.990 2.084 2.347 2.090 2.263 2.175

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

Moran’s I 0.331 0.356 0.354 0.322 0.325 0.330 0.399 0.439 0.415 0.430
Z-Value 2.222 2.272 2.277 2.163 2.206 2.224 2.483 2.587 2.495 2.544
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Figure 4. Moran index of carbon emission intensity in provinces in the BER, 2000−2019.

4.3. Analysis of the Serial Dynamics and Spatial Spillover Effects

According to the estimation results in Table 4, level of urbanization, economic growth,
and population density are all significant determinants of carbon emissions. Furthermore,
these variables have a sizable effect on the provinces’ carbon emission intensity along with
a strong spatial spillover effect. The spatial lagged values of all explanatory variables are
significant at the 1% significance level, which illustrates that the carbon emission intensity
has a significant spatial spillover impact among the provinces within the BER. The spatial
correlation coefficient ρ = 0.7007 demonstrates that the correlation between the carbon
emission intensity of each region within the BER and its neighboring regions is strong. The
finding portraying the short- and long-term effects of each contributing factor on carbon
emission intensity are shown in Table 5.

Table 4. Results of the dynamic panel spatial Durbin model estimation.

Main Wx

L.CO2 0.4878 *** (10.8765)
LEI 11.7014 *** (21.8454) LEI 15.4547 *** (20.9148)
UR 0.0778 *** (5.5383) UR 0.3510 *** (15.6908)

AGDP −0.2371 * (−2.2827) AGDP −1.2212 *** (−8.2902)
LPD −8.9321 *** (−5.4003) LPD 92.4067 *** (27.1613)

ρ 0.7007 *** (7.4619) σ̂2 0.2847 *** (9.0249)
Note: *** and * indicate significance at the 1% and 10% levels, respectively.

Table 5. Direct and spillover effects of each explanatory variable on carbon emission intensity
(short-term and long-term).

Variables Short-Term Direct
Effects

Short-Term Spillover
Effects

Long-Term Direct
Effects

Long-Term Spillover
Effects

LEI 9.8585 *** (15.3239) 6.2073 *** (7.7820) 45.4678 (0.0831) −22.8609 (−0.0418)
UR 0.0051 (0.2444) 0.2496 *** (13.5079) −3.2842 (−0.0418) 3.6428 (0.0464)

AGDP 0.0239 (0.1731) −0.8929 *** (−5.7331) 9.1986 (0.0432) −10.4223 (−0.0489)

LPD −33.5870 ***
(−6.8704) 83.0126 *** (20.4094) −1500 (−0.0442) 1600 (0.0462)

Note: *** indicate significance at the 1% levels.

According to Table 5, the BER’s population density, level of urbanization, economic
growth, and energy intensity all have significant short-term effects on carbon emission
intensity, directly as well as indirectly. That is, each province’s carbon emission intensity
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is not only influenced by numerous variables in their own province, but also by various
related factors in neighboring provinces, and a significant spatial spillover effect exists.
All influencing factors have negligible long-term direct and long-term indirect impacts on
the region’s carbon emission intensity. This is consistent with the short-term properties
of carbon emissions, that is, there is a long-term equilibrium stability relationship. When
spatial individuals show a strong correlation, the introduction of common factors can be
considered to analyze the extent to which each province’s carbon emission intensity is
influenced by the external macro-environment or policies. In the next section, the strong
correlation among the carbon emission intensities will be examined.

4.4. Strong Correlation Test

Through the analysis of the above content, the authors believe that there may be a
strong correlation among the carbon emission intensities, so a strong spatial correlation test
is considered for carbon emission intensity. Table 6 displays the test’s outcomes.

Table 6. Results of various strong correlation tests for carbon emission intensity.

Variables Test Statistic Value of Test Statistic p-Value Standard Error

Carbon emission
intensity

CD 18.3210 0.000 1
Local CD 10.6756 0.000 0.0806
Index α 1.0127 0.000 0.0889

Note: 0.5 ≤ α < 1 indicates a strong correlation between cross-sectional individuals. Under the null hypothesis of
cross-section independence, CD~N (0, 1).

Table 6 shows the results of the CD test, local CD test, and index α test on the carbon
emission intensity. The test results all show a substantial spatial association among the
carbon emission intensities of the BER provinces. This strong spatial correlation suggests
that it may be due to the external macro-environment’s influence or the policies that the
province share, thus leading to a strong correlation among the provinces’ carbon emission
intensities. Therefore, the decomposition of the spatial correlation is further explored in
this research.

4.5. Spatial Common Factor Analysis

The identification of common factors (high cross-section correlation) and spatial depen-
dency (weak cross-section correlation) is increasingly becoming the focus of research [43].
In our paper, the average carbon emission intensity of the BER’s seven provinces was used
as a proxy variable for the common factor, and each province’s carbon emission intensity
was regressed on the common factors. The portion of each province’s carbon emission
intensity that was susceptible to common factors was represented by the common factors.
The regression coefficients obtained are displayed in Table 7.

Table 7. Regression results of carbon emission intensity on common factors for each province.

γ0r T-Statistic γ1r T-Statistic

Beijing −1.232 ** (−2.82) 0.622 *** (6.06)
Tianjin −1.377 *** (−3.15) 0.965 *** (9.4)

Hebei Province 0.567 (1.3) 0.953 *** (9.28)
Shanxi Province −3.409 *** (−7.8) 3.450 *** (33.6)
Inner Mongolia

Autonomous Region 1.775 ** (4.06) 1.201 *** (11.7)

Liaoning Province −0.5889 (−1.35) 1.290 *** 12.56)
Shandong Province 1.108 ** (2.54) 0.441 *** (4.3)

R2 0.9907
F (14, 126) 955.28

Note: ***, ** indicate significance at the 1%, 5% levels, respectively.
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Each province’s carbon emission intensity was influenced by the common factor,
additionally each province was affected differently by the common factor in terms of
strength. Table 7 illustrates how common factors significantly affected all provinces, among
which Shanxi Province was the most influenced by the common factor, which is closely
related to the expansion of Shanxi Province’s coal industry. We further removed the
common factor from consideration to obtain the de-factored carbon emission intensity,
denoted by êrt. The dynamic panel spatial Durbin model was still built for êrt, with Table 8
reflecting the results.

Table 8. Spatial Durbin model estimation results for carbon emission intensity after de-factoring.

Main Wx

L.ert 0.7154 *** (9.7105)
LEI 2.4573 *** (2.8448) LEI −1.8785 * (−2.0333)
UR 0.0013 (0.0796) UR −0.0053 (−0.1471)

AGDP 1.1497 (0.4044) AGDP −12.0461 ** (−3.1882)
LPD −10.0486 ** (−2.6105) LPD 1.5287 (0.2200)

ρ 0.1519 (1.5472) σ̂2 0.5080 *** (9.4572)
Note: ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively.

This illustrates how significantly spatial dependence is affected by the extraction of
common components. Furthermore, the carbon emission intensity without the common
factor still has significant dynamics, but the spatial autocorrelation part becomes incom-
pletely significant, indicating that its own spatial dependence is no longer significant, while
the spatial spillover effect also decreases. Aside from the fact that the province’s carbon
emission intensity is significantly influenced by its energy intensity, and there is a certain
spatial spillover impact, the impact of other variables has declined or disappeared.

We describe in further detail the short- and long-term impacts of energy intensity, level
of urbanization, economic growth, and population density on carbon emission intensity,
with the outcomes displayed in Table 8.

Table 9 reveals that the only factor with a significant short-term direct effect on car-
bon emission intensity is energy intensity, and economic growth has a strong short-term
spillover effect. The short-term effects of additional explanatory factors have declined
or disappeared. Moreover, there are no long-term direct or spillover effects for any of
the explanatory variables. This indicates that the BER’s carbon emissions have a spatial
correlation that is mainly caused by the common external factors faced by the provinces.
For instance, all provinces in the BER are situated in China’s northern region, with close
geographical proximity and convenient transportation, and are facing the same or similar
macroeconomic policies, as well as relatively similar environmental protection policies.

Table 9. Direct and spillover effects of each explanatory variable on carbon intensity after de-factoring
(short term and long term).

Variables Short-Term Direct
Effects

Short-Term Spillover
Effects

Long-Term Direct
Effects

Long-Term Spillover
Effects

LEI 2.3442 *** (4.0844) −1.6566 (−1.7180) 8.5081 (0.8330) −0.7152 (−0.0088)
UR 0.0026 (0.1561) −0.0046 (−0.1098) 0.0358 (0.0577) 0.2215 (0.0447)

AGDP 0.5116 (0.1890) −13.6424 *** (−3.3804) −10.1149
(−0.1198) −110 (−0.1634)

LPD −10.0308 *
(-2.5698) −0.0428 (−0.0057) −47.7209

(−0.3498) −93.6846 (−0.0877)

Note: *** and * indicate significance at the 1% and 10% levels, respectively.

4.6. Robustness Test

Making the aforementioned research findings more compelling, we conducted a
robustness test by replacing the spatial weight matrix. The spatial weight matrix of the
above spatial panel Durbin model was reset, and the spatial distance matrix was replaced
by the spatial economic matrix. Table 10 displays the model’s estimated outputs.
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Table 10. Robustness test results of spatial economic matrix.

Main Wx

L.CO2 1.106 *** (27.3916)
LEI 16.108 *** (33.2388) LEI 21.737 *** (28.8538)
UR 0.114 *** (8.9595) UR 0.163 *** (7.8659)

AGDP −2.682 *** (−23.0522) AGDP −1.029 *** (−6.4240)
LPD −8.919 *** (−9.1732) LPD 287.122 *** (54.1891)

ρ 0.518 *** (9.2307) σ̂2 0.263 *** (8.4720)
Note: *** indicate significance at the 1% levels.

The main regression coefficients of the model remain largely consistent after changing
the spatial weight matrix settings, which pass the significance test and remain consistent
with the main findings of the paper.

The spatial distance matrix takes the place of the spatial economy matrix, and Table 10
displays the outcomes of the spatial Durbin model estimation of carbon emission intensity
after de-factoring.

Putting the spatial weight matrix of economic distance in place of the spatial weight
matrix of geographic distance, the spatial Durbin model of carbon emission intensity
was estimated after extracting the common factors. It is evident that the main regression
coefficients in Tables 8 and 11, along with the significant levels, are similar.

Table 11. Robustness test results using the spatial economic matrix to de-factor.

Main Wx

L.ert 0.6017 *** (8.7155)
LEI 1.4315 *** (3.6027) LEI −0.0898 (−0.1515)
UR 0.0086 (0.9080) UR 0.0278 (1.7139)

AGDP 0.0605 (0.6832) AGDP −0.1493 (−1.2307)
LPD 1.1406 (1.4812) LPD 5.4395 (1.2835)

ρ 0.0538 (0.6828) σ̂2 0.1681 *** (8.3754)
Note: *** indicate significance at the 1% levels.

In summary, the measures in this paper are all relatively reliable.

4.7. Discussion

By comparing our findings with the existing literature, we found that the spatial
correlation results of carbon emission intensity were consistent with Wang et al., (2020) [44].
The results of the effect of energy intensity, level of urbanization, economic growth, and
population density on carbon emission intensity are basically consistent with the finding
of Song et al., (2021) [28], Wang et al., (2016) [45], Liu et al., (2023) [46], and Wu et al.,
(2018) [47]. However, the influence of common factors was not taken into account in the
previous studies, nor did they eliminate common factors to study the spillover effect of
carbon emission intensity. Furthermore, when the common factor has been eliminated, the
conclusions drawn in this paper are more in contrast with the previous papers. The only
factor with a significant short-term direct effect on carbon emission intensity is energy
intensity, and economic growth has a strong short-term spillover effect. The short-term
effects of other explanatory factors declined or disappeared. Moreover, our study takes
into account the dynamics for carbon emission intensity, and the dynamics exist for each
model. Since the strategy of the “coordinated development of Beijing, Tianjin, and Hebei”
was proposed in 2014, the environmental links between the provinces in China’s BER have
become closer. Therefore, a strong carbon emission intensity correlation is present. The
primary factors behind this strong association are the common environmental policies
and the strong association between the economic environments of the provinces. Similar
effect factors also cause a strong correlation, so after removing the common factors, some
spillover effects become non-significant. To reduce emissions, more attention should be
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paid to regional coordination and the optimization and adjustment of the macroeconomic
environment and policies.

5. Conclusions and Policy Suggestions
5.1. Conclusions

This study selected China’s BER to study the dynamics and spatial spillover of the car-
bon emission intensity, and to examine the dynamics and spatial spillover after removing
the common factors for the carbon emission intensity. Specifically, first, the Moran index
was calculated for the carbon emission intensity of the BER’s provinces. The results demon-
strated that the spatial correlation increased year by year starting from 2002. A dynamic
spatial Durbin model was then considered to quantitatively examine the spatial spillover
effect of the carbon emission intensity of BER’s provinces. According to the results, the
carbon emission intensity was strongly determined by its lagged value, and significantly
influenced by the energy intensity, level of urbanization, economic growth, and population
density. Additionally, provinces in the BER had a Moran index of carbon emission intensity
that exceeded 0.4 in 2019, and the authors believe that there may be a strong spatial corre-
lation. The results of the CD test, local CD test, and index α test all indicated that carbon
emissions had a strong spatial correlation among the provinces. Therefore, the extraction
of common factors within the BER and the impact of common factors on each province’s
carbon emission spillover effect were further explored. The empirical analysis revealed
that, after removing the common factors, the dependent variable’s spatial autocorrelation
part became insignificant, all of the explanatory variables’ absolute values became smaller,
and some explanatory variables became no longer significant, indicating that all of the
explanatory variables’ levels of influence on the carbon emission intensity decreased.

We draw several conclusions from the study: (1) The energy intensity, urbanization,
economic growth, and population density are the four main factors that have a marked
impact on the BER’s carbon emission intensity. In addition, both direct and indirect effects
exist, which means that each province’s carbon emission intensity is not only affected by
various factors in their own province, but also by various related factors in neighboring
provinces. Hence, there exists a significant spatial spillover effect. (2) There may be a
strong correlation among the levels of the variables affecting carbon emissions in each
province, thus exhibiting a strong correlation between the carbon emission intensities of
each province. (3) The reason for the strong correlation among carbon emission intensities
is mainly related to the similar environmental protection policies faced by each province.
Meanwhile, the common external development environment also has a great impact on the
spatial correlation among carbon emission intensities within this economic rim.

5.2. Policy Suggestions

Combining the above findings and study conclusions, the authors offer the following
policy suggestions.

5.2.1. Optimization of Energy Structure

The empirical research results demonstrate that energy intensity, level of urbanization,
economic growth, and population density all have substantial effects on carbon emission
intensity. Carbon emission intensity is significantly impacted by energy intensity in partic-
ular. Furthermore, after extracting the common factors, energy intensity has an impact on
carbon emission intensity both directly and indirectly over the short term, as well as directly
and indirectly over the long term. All other influencing factors were not fully significant.
Therefore, the first step in reducing carbon emissions in the BER is to make appropriate
adjustments to the energy consumption structure. The government should encourage
businesses to use sustainable and environmentally friendly energy, and promote clean
energy for the purpose of transforming the composition of energy used. The production of
heavy chemical enterprises would become greener, and the economy could be more easily
transformed to a green economy.
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5.2.2. Optimizing Industrial Structure

Reducing carbon emissions in the BER depends on improvements to the industrial
structure. Enhancing industry’s level of advancement and rationalization can reduce the
burden of carbon emissions to some extent. For industries that do not achieve the carbon
emission indicators, corresponding environmental protection policies can be formulated,
and strict control and regulation can be carried out. In the rationalization of the industrial
structure, optimizing the rationalization of resource allocation should be actively advanced,
enabling the achievement of high profits and low emissions. We should strive to modernize
and transform traditional industries while fostering strategic emerging industries.

5.2.3. Constructing a Regional Collaborative Governance Mechanism for Carbon Emissions

As one of the three major economic rims in China, the BER has been crucial in advanc-
ing China’s economic development. However, the BER development method is character-
ized by high input and high energy consumption, bringing severe environmental pollution
during development. From the results regarding the spatial spillover effects and other
analyses, it can be seen that the provinces in the BER possess a high spatial correlation,
moreover the carbon emission intensity exhibits a strong correlation. For the purpose of
reducing carbon emissions in the BER, a regional cooperative governance mechanism for
carbon emissions should be constructed. In addition, we should try to establish a regional
carbon compensation and carbon trading system according to the level of economic devel-
opment. Among these, carbon trading can help industrial enterprises to actively seek clean
fuels and green production methods as a way to encourage cooperation among enterprises
from all provinces in the BER, and to jointly promote the regional economy’s green and
synergistic growth.

5.2.4. Making Precise Policy

The construction of a regional collaborative governance mechanism for carbon emissions
is not a “one-size-fits-all” strategy. Instead, its aim is to implement differentiated emission
reduction policies and to promote regional industrial technology cooperation according to
the industrial structure and the economic development status of each province and city. For
example, the Hebei region should focus more on reducing emissions and saving energy at
the production end, with the opportunity to decommission Beijing’s non-core functions. In
addition, the introduction of advanced production technologies and processes in Beijing
and Tianjin should be encouraged, eliminating backward production capacity, adjusting and
optimizing industrial structure, and vigorously lowering the proportion of heavy industry.
Furthermore, while Beijing and Tianjin adjust and optimize their own industries, they should
strengthen their technology transfer to assist Hebei and Shandong, along with other provinces,
to implement an industrial low-carbon energy-saving transformation, as well as putting
low-carbon cooperative development into practice in the BER.

Additionally, the regional carbon emission accounting system should be refined by
the government. The government should fully consider the economic benefits gained by
the provinces, as well as their energy-use efficiency, on the verge of developing provincial
carbon emission accounting guidelines, so as to assure the sustainability of provincial
efforts to reduce carbon emissions.

With thoroughness, to accomplish the BER’s carbon emission reduction targets, we
should focus on optimizing the energy structure and the industrial structure, constructing a
regional collaborative governance mechanism for carbon emissions, and trying to establish
a regional carbon compensation and carbon trading system. Furthermore, differentiated
emission reduction policies should be implemented according to the economic development
status of each province. Enterprises in each province need to be encouraged to strengthen
cooperation and to jointly promote the regional economy’s green and synergistic growth.
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5.3. Limitations and Future Research

There are three limitations in this paper. First, the method presented in this paper can
only be used to solve long panel data problems. Second, this paper only analyzed the serial
dynamics, spatial spillover and common factors of carbon emission intensity in the BRE,
without further exploring the influencing mechanism of carbon emission intensity. Finally,
only the BER is studied in this paper without a comparative analysis of multiple regions.
In future, studies could be carried out on the influence mechanism of carbon intensity and
a comparison between multiple regions based on common factors made.
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