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Abstract: Affordable and clean energy is one of the Sustainable Development Goals (SDG). SDG
compliance and economic crises have boosted investment in solar energy as an important source of
renewable generation. Nevertheless, the complex maintenance of solar plants is behind the increasing
trend to use advanced artificial intelligence techniques, which critically depend on big amounts of
data. In this work, a model based on Deep Convolutional Generative Adversarial Neural Networks
(DCGANs) was trained in order to generate a synthetic dataset made of 10,000 electroluminescence
images of photovoltaic cells, which extends a smaller dataset of experimentally acquired images.
The energy output of the virtual cells associated with the synthetic dataset is predicted using a
Random Forest regression model trained from real IV curves measured on real cells during the image
acquisition process. The assessment of the resulting synthetic dataset gives an Inception Score of
2.3 and a Fréchet Inception Distance of 15.8 to the real original images, which ensures the excellent
quality of the generated images. The final dataset can thus be later used to improve machine learning
algorithms or to analyze patterns of solar cell defects.

Keywords: generative adversarial neural networks; photovoltaics; artificial intelligence; synthetic
data; electroluminescence

1. Introduction

A number of factors (energy crisis, wars, climate change, etc.) are causing a rise in
renewable energies use. Solar energy can be easily and affordably converted either into
thermal energy by means of thermal panels or into electrical energy, using photovoltaic
panels (PV) [1]. Industrial plants generating electricity from solar energy, commonly known
as solar farms, are generally composed of a high number of photovoltaic (PV) panels made
of PV cells. As the number of installations increases, the maintenance of solar farms
becomes a nontrivial problem [2]. The energy produced depends on different conditions,
such as the state of the panels, the climate, or the time of year. Solar panels are also
vulnerable to phenomena that can reduce or nullify their performance. These issues make
necessary a system to control and optimize production, since manual human labor is not
enough as the number of panels gets higher.

Artificial intelligence is usually applied to solve difficult control and optimization
problems. When applied to PV systems, different AI methods such as fuzzy logic, meta-
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heuristics, or neural networks have been used to solve problems [3]. The most important
problems include [4] max power point tracking, output power forecasting, parameter
estimation, and defect detection.

Defect detection is one of the most interesting problems and researched topics in PV
systems [5,6]. It is usually tackled with different kinds of neural networks, since they have
great performance, although, as an important drawback, they need high amounts of data to
perform better than other machine learning methods [7]. This could be a major impossibility
for problems where it is difficult to harvest new data. Most of the approaches to detect
the state of PV panels use electroluminescence images of the cells as an input, which is an
invasive method that makes it difficult to carry out measurements and gather data.

Data augmentation is the most common method to deal with image data scarcity
by means of the introduction of slight modifications (rotations, flips, and minor deforma-
tions) to the original images in order to create new images [8–10]. More recent papers
promote the use of more complex AI techniques, such as Generative Adversarial Networks
(GANs), to generate synthetic images [11,12]. GANs are state-of-the-art algorithms for
data generation [13]. They have also been applied to PV systems for solving different
problems [14].

The generation of synthetic EL images of PV cells using GANs has also been proposed
in other works [11,12]. These works present synthetic datasets created with different GAN
architectures trained with EL images of cells with different kinds of defects. Although the
datasets in these works have not been made public, from their work, it can be deduced
that the synthetic images are just labeled from visual inspection in order to train standard
defect/normal classifiers, ignoring the output energy output performance of synthetic cells,
since they cannot be measured.

In this paper, we present a new approach to deal with the image data scarcity prob-
lem. Starting from a small set of electroluminescence images of PV cells obtained under
experimental conditions to be described, a synthetic dataset of images was created using
Generative Adversarial Networks (GANs). For each synthetic image, a scalar value that
represents the performance of their energy production is associated using machine learning
techniques trained with the energy production of the original PV cells. It is also a continua-
tion of the paper presented in [15], where we augmented and improved the dataset and
applied new metrics to ensure the appropriate quality of the generated data.

To ensure reproducibility, the resulting dataset was made publicly available, so it can
be used to improve the performance of AI models, to analyze the characteristics, properties,
and defects of the cells, or to compare with other methods of generation of synthetic images.

This paper is structured as follows: Section 2 briefly reviews the Generative Adver-
sarial Networks, Section 3 presents the methodology that was followed to generate the
dataset, in Section 4, the synthetic dataset is described, and finally, the conclusions of the
paper are presented in Section 5.

2. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [16] are one of the most important and
popular technologies nowadays and have been applied to different fields [17]. They can
be applied to semisupervised and unsupervised learning. A GAN is usually defined as a
pair of neural networks that are competing against each other. The network known as the
Generator is the one designed with the job of trying realistic new data to try to deceive the
other network, known as the Discriminator. This network has to decide if the data that it
receives were forged.

The Generator does not have access to the real data, which is an important feature of
these algorithms. The Generator has to learn how to create the data based on the feedback
from the Discriminator. The Discriminator has access to both kinds of data, but it does not
know which kind of data is an image before carrying out the prediction. The networks
change their weights depending on the results of the deception; the Generator uses them to
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improve the forgeries, while the Discriminator tries to improve its recognition of forgeries.
Figure 1 shows a diagram of the behavior of the algorithm.

Figure 1. Diagram of a GAN.

The basic principle of operation of a GAN can be expressed as a two-player minimax
game played between D and G, with a value function VGAN(G, D) given by the following
mathematical expression [16], a binary cross-entropy function, commonly used in binary
classification problems:

min
G

max
D

VGAN(G, D) = Ex∼pdata(x)[log D(x)] +Ez∼pz(z)[log(1 − D(G(z)))]. (1)

The first term in (1) represents the expected value of entropy given by the Discriminator
over the real data and the second is the entropy given by the Generator over the fake
data obtained.

GANs are usually composed of Deep Feed-forward Networks, but more complex
architectures can be used in order to improve the generative capacities of the algorithm
and the quality of the forged data. One of the most used architectures are Convolutional
Neural Networks.

Deep Convolutional GAN

Research on GANs has led to new interesting architectures which substantially im-
prove the performance of the networks and the quality of the forged data [18]. For this
paper, we implemented the architecture known as Deep Convolutional GAN [19]. This ar-
chitecture is based on convolutional layers, but it also provides a set of constraints in order
to provide more stabilized training and better quality in the output. The most important
guidelines are the following:

• Use of batch normalization in the Generator and the Discriminator.
• Removal of fully connected hidden layers in both networks.
• Usage of convolutional transposed layers instead of the stridden convolutional layers.

This is only applied in the Generator network.

3. Methodology

The correct preparation of the real and synthetic image datasets is a complex process
which requires several steps to complete. In this section, we present the methodology that
was followed in this research, which implies four relevant stages: manual acquisition of
real EL images of PV cells beside their electrical characteristics (IV curves); data prepro-
cessing to prepare for synthetic image generation using GAN; maximum power output
assignment to synthetic cells from regression models trained with real images; and model
and result validation.
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3.1. Real Images Acquisition

Data availability is one of the most critical issues when using deep learning techniques.
For precise PV cell characterization, we need two different kinds of data: the electrolu-
minescence (EL) images of the photovoltaic cells and their corresponding IV curves. For
the first, there are some public datasets available in the bibliography [20], but they do
not include information about the IV curve, since it is not easy to measure the individual
curve of a single PV cell. To solve this problem, we had to obtain the data using a specific
technique developed previously [21] and following a manual process in the laboratory.

The capturing of the EL images was performed using a Hamamatsu InGaAs Camera
C12741-03. The cell was isolated from external light in other to avoid the light produced by
other kinds of radiations. Figure 2a presents the camera for taking the pictures. EL was
chosen as the image capture technique, since it is widely used for detecting defects on PV
modules [22] and it is the most used technique in other related works with PV systems. In
order to test the different levels of luminous emission of the cell, various values of current
were used to power the LED array when obtaining the IV curve and to the PV cell when
capturing the EL image.

To measure the IV curve, we used a device specifically designed to measure the values
of current and voltage of a single cell [21]. This device (Figure 2b) provided voltage and
current values to build the IV curve of the cells. The IV curves can be used to calculate
the max power point and the performance of the cells. Figure 2c shows the setting used
for taking the IV curves. The original paper for this device validates the accuracy of
the measurements.

(a) (b) (c)
Figure 2. Devices used to obtain the data: (a) InGaAs Camera; (b) IV curve tracer; and (c) setting to
measure the IV curves.

The number of damaged cells was extremely limited in quantity and variety. The so-
lution for this issue was to create artificial shadows in order to improve the amount and
variety of images. The different shadows were created taking into account the most impor-
tant defects found in solar farms. Figure 3 presents a representative image of each kind of
artificial shadow that was used.

The final acquired dataset was composed of 602 different EL images with their cor-
responding IV curves. In order to allow the repeatability of the experiments, the dataset
was made publicly available (The dataset can be downloaded from https://github.com/
hectorfelipe98/Synthetic-PV-cell-dataset. The repository includes the original images,
the synthetic dataset, and a CSV file that maps each image with its relative power and
its class).

https://github.com/hectorfelipe98/Synthetic-PV-cell-dataset
https://github.com/hectorfelipe98/Synthetic-PV-cell-dataset
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(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. Shadows and defects used to create the dataset: (a) shadow/defect 0: original image;
(b) shadow/defect 1: long horizontal line; (c) shadow/defect 2: long vertical line; (d) shadow/defect
3: big central circle; (e) shadow/defect 4: small central circle; (f) shadow/defect 5: two small circles
in the corners; (g) shadow/defect 6: big circle in one corner; and (h) shadow/defect 7: other defects.

3.2. Image Preprocessing

The captured EL images were not suitable to be directly used with machine learning
algorithms, since there were factors affecting image quality to be addressed first. For this
reason, some algorithms were used to improve both the quality and normalization of
the images. This section explains how the different problems found in image quality
were solved.

• Dead pixels and luminous noise: The insulation of the system when capturing the
images was not perfect. Some leaks could be found in some cases. This produced
luminous noise when the image was taken. Another problem could be found in the
camera. Due to its extended use, the camera had some dead pixels. Even though these
phenomena are not easily visible to the human eye, they degenerate the quality of the
obtained images. In order to solve these two problems, an image was taken before the
real measure and without turning on the lights from the LED array. This provided
information about the luminous noise and the dead pixel of the camera. Having this
information, it is possible to perform a subtraction of the noise from the original image.
This process was performed for each of the EL images.

• Images with poor lighting: The scale of the histograms of the images can produce
problems in some libraries or programs which cannot recognize which values corre-
spond with the white color. Figure 4a,b shows how the values are distributed in only
a small fraction of the possible values, which makes the image look extremely dark.
The solution to this problem corresponds to performing a min–max normalization,
subtracting the minimum values of the image, and dividing it by the maximum value.
The resulting image can be found in Figure 4c,d.

• Black surrounding contours: Figure 4c shows how images are surrounded by a black
area. The reason for this phenomenon is caused by a limited focusing of the camera,
which is capturing part of the walls of the insulated area. The solution to this issue
consisted of performing a change in perspective. The first step consisted of applying
different filters in order to delete the details, obtaining the maximum contour polygon
of the cell. The next step consisted of performing a Hough transform to find the
corners of the cells, using the polygon calculated previously as the base. In some cells,
it was necessary to make some tweaks manually, as they presented strange defects
that notably changed the aspect of the cell. The results of the transformation can be
found in Figure 5.
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(a) (b)

(c) (d)
Figure 4. Image before and after applying color normalization: (a) original image; (b) original
histogram; (c) image after the min–max normalization; and (d) histogram after the normalization.

Figure 5. Cell after removing the surrounding image contour corresponding to wall portions.

3.3. Generation of the Synthetic Images

As announced, a Deep Convolutional Generative Adversarial Network was chosen to
generate extra images from the original recorded set. The model is composed of two differ-
ent networks: the Generator and the Discriminator. This section explains the architecture
and parameters of both networks and the process of training.

3.3.1. Generative Network

The generative network was created following the principles of the DCGN. It has 3
different Convolutional Transpose Layers (Deconvolutional) in order to generate patterns.
The use of these layers in combination with batch normalization [23] improves the gen-
erative capacities of the network and improves the stability of the training, The network
uses Leaky Relu [24] as an activation function, since it usually outperforms the standard
Relu. The architecture of this networks is represented in Figure 6. The input to the network
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(Figure 7a) is a random noise array from a normal distribution. The output is a 200 × 200
image (Figure 7b. This size was chosen in order to reduce the computation cost of the
algorithm while still obtaining images with a large amount of information. Other important
hyperparameters can be found in Table 1.

Figure 6. Architecture of the generative network.

(a) (b)
Figure 7. GAN’s output images before and after training. (a) Output image before training. (b) Output
image after training.

Table 1. Hyperparameters for both networks

Activation Function Loss Function Learning Rate Epochs Batch Size Output Size

Leaky Relu Cross Entropy 5 × 10−5 800 4 200 × 200

3.3.2. Discriminator Network

The Discriminator network also followed the principles of DCGAN. The network uses
different Convolutional Neural Networks to find patterns from the images. The typical
feed-forward part of the network was also removed, with only the output layer remaining.
The use of dropout layers and batch normalization improves the generalization capacity
of the networks and stabilizes the training. The architecture is represented in Figure 8.
The input corresponds to a 200 × 200 image and the output to a binary value that determines
if the image is a real cell or a forgery. The other important hyperparameters were the same
as the Generator, so they can be found in Table 1.
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Figure 8. Architecture of the Discriminator network.

3.3.3. Training the GAN

The training was performed simultaneously in both networks with all the available
samples (602). The training loop starts with the creation of synthetic images by the Gen-
erator using random seeds. After that, the Discriminator is provided with a mix of real
and synthetic images. That input data are used to train the network, the loss is computed
for each of the networks, based on the results of the Discriminator. Figure 9 shows the
evolution of the loss for both networks. In the first epochs, the loss of the Discriminator
network is quite high. It has not learned the patterns of the original images, so it cannot
identify which images are real or forgered, even if the forged images are extremely similar
to noise. After a while, the Discriminator reduces its loss since it can differentiate which
images are real; this provokes an increase in the loss of the Generator. After that, the loss
of the Generator steadily decreases its value since it starts to learn the patterns to create
images similar to the original ones. Until epoch 400, it continues to learn when it obtains
its lowest value. At the same time, the Discriminator is unable to identify which images
are real, making its loss its maximum value. After epoch 400, the values have almost no
change, so it can be concluded that the training should end at this point.

Figure 9. Evolution of the Generator and Discriminator loss.

The training was performed with a CPU AMD Ryzen 7 5800H, 16 GB of RAM, and a
GPU Nvidia Geforce GTX 1650. It took 2 h and 41 min to complete the training.

After completing the training, the Generator network was used to generate the syn-
thetic dataset. A total of 10,000 different images were created using 10,000 different random
seeds. Figure 10 presents a selection of some generated images.
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Figure 10. Samples of the synthetic images generated by our GAN-based method.

3.4. Assigning Maximum Power to Cells

The labeling of the images was not a trivial process, since it required associating each
image (real or synthetic) with an output maximum power value, which represents the
performance of the cell. This section explains how this association was made both for
original and GAN-generated images.

3.4.1. Original Images

As explained before, each EL image has an associated IV curve. The IV curve provides
information about the performance of the cell, which can only be obtained after taking the
following steps:

• Compute the power–voltage curve of each cell from its IV curve.
• The maximum value of the curve is saved as the max power point (MPP).
• We gather the cells into 6 groups, in terms of the irradiance used to excite the cell

before emission, since the MPP depends on the amount of light projected onto the cell.
• For each group, the 5 highest values of MPP are considered, and their mean is calculated.
• This average of the maximum values is understood as the expected MPP of a cell

without any defects or shadows in that group.
• The MPP of each cell is divided by the averge MPP of the cell group it belongs to.

The resulting value will measure the relative performance of the cell, normalizing its
MPP with the maximum value of the cells of the same group. This maximum is the mean of
the 5 highest values, since it reduces the effects of potential incorrect measurement. Values
of relative power near 1 will correspond with cells in good condition, with only a few or no
defects. Low values correspond with underperforming cells, mostly due to their defects.

3.4.2. Synthetic Images

The labeling of the synthetic dataset was a completely different problem. As explained,
the values of the original images were calculated based on their IV curve. This process
cannot be replicated in the synthetic images, since they are not real cells; so, they cannot
be measured.
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To solve this problem, we formulated it as a regression problem that can be solved us-
ing a machine learning model. The model is trained with the full dataset of original images,
together with their normalized power (MPP) calculated from IV curves, as explained in
the previous subsection (602 samples). The chosen model is Random Forest [25], since it
provided a low error in the original dataset and showed excellent generalization power
to associate the MPP to the synthetic images. The implementation of the algorithm in the
Sklearn library [26] was used for this work. The tuning of the hyperparameters of the RF
model was carried out using the Grid Search method in the Sklearn library (GridSearchCV),
obtaining the optimal values shown in Table 2.

Table 2. Estimation of Random Forest hyperparameters using GridSearchCV.

Parameter Range Optimum Value

n_estimators [20, 500] 200

max_depth [0, 10] 10

min_samples_split [1, 10] 1

min_samples_leaf [1, 10] 1

min_weight_fraction_leaf [0, 0.8] 0

Since Random Forest is not suitable to work directly on raw images, some features
were extracted from the images. The features are based on typical statistics (mean, standard
deviation, etc.) and other characteristics directly extracted from the histogram (amounts
peaks, peaks width, peaks height, amount of colors, etc.) A complete list can be found in
Table 3. Feature selection (FS) is an important step in the preparation of machine learning
models. We used correlation-based FS. As depicted in Figure 11, the cross-correlation
between all the original sets of features shows that almost no feature is highly correlated
with the others, except for the standard deviation and the variance, which are completely
dependent on each other, meaning one of them can thus be safely removed from the final
set of features.

The dataset was split into two sets: training (67%) and validation (33%). We decided
to only use two due to our data limitation. The target variable was the relative power of
each cell, standardized between 0 and 1.

Table 3. Features for Random Forest Regressor.

Mean Median Mode Variance Std

roughness blacks burned whites others peaks_number

peaks distance peak 0 height peak 0 width peak 1 height peak 1 width

The model obtained a Mean Absolute Error (MAE) of 0.041 and a Mean Squared Error
(MSE) of 0.0038 in the validation dataset. The distribution of the predictions of the model
can be found in Figure 12. The low error and the similarity in the distribution confirm the
validity of the model. The distribution of the prediction for the synthetic dataset can also
be observed. Finally, the images were divided into two groups according to their predicted
power (class 0 > 0.8 and class 1 <= 0.8). In total, 6963 images were classified as class 0 and
3037 as class 1.
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Figure 11. Correlation heatmap of the initial set of features.

Figure 12. Histograms of real and predicted normalized power of the original and generated dataset.

4. Results

The resulting dataset was divided into two different folders, one for each class: Class
0 (6963 samples, Figure 13a) represented the images whose relative power is at least 0.8,
and the images in that class can be considered as functional PV cells. Class 1 (3037 samples,
Figure 13b) represented the images with a power of less than 0.8, and the images in that
class can be considered as underperforming PV cells.
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(a) (b)

Figure 13. Sample of images of both classes. (a) Sample of images of class 0. (b) Sample of images of
class 1.

4.1. Visual Analysis

For ensuring the quality and similarity of the images, we propose two different
methods: in this section, an analysis based on visual characteristics and histogram, and in
the next section, an analysis based on different metrics.

As can be observed in Figure 13, the generated images present a similar structure while
presenting new patterns of shadows different from the original ones (Figure 3). This is an
interesting feature produced by the generative capacity of the GAN, since it can combine
the different kinds of shadows presented in the original images in order to create new kinds
of patterns. This improves the variety of shadows presented in the dataset.

Figure 14 presents the distribution of the features selected previously for labeling
(Table 3). For each feature, the relationship between the values of the feature and the
relative power of the cell is presented. Synthetic images are represented with orange dots,
and the original images are represented with blue dots. In most features, the original
dataset images appear as a subset of the synthetic dataset, with some exceptions caused
mostly by underrepresented cases. This means that synthetic images not only present the
characteristics of the original images, but they also present new cases of defects or shadows
while maintaining the most important characteristics. This is mostly produced by the
generative properties of the GAN, which can create new patterns combining the patterns
of the input data; these new patterns improve the diversity of the dataset. This can lead
to an improvement in performance in the machine learning methods that use this dataset.
Another interesting finding is that the most underrepresented cases in the original data do
not appear in the synthetic data; this is also provoked by the properties of the GAN, since
it needs a considerable amount of samples to find patterns.

4.2. Histogram Analysis

The histogram of the images gives a lot of information about them. Figure 15a presents
the mean histogram of all images of class 0 of the original dataset and the mean for all of
the pictures of class 0 of the synthetic one. It can be seen that the images in this class present
a large amount of light gray–white pixels (Values near 200), but they also can present some
minor defects or shadows, as can be seen by the number of black pixels (values near 0).
A difference between both datasets can be seen: the synthetic dataset images have higher
but narrower peaks and are sometimes a bit moved to the left.
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Figure 14. Distribution of the relative power generated by a cell as a function of the value of
each of the sixteen features used to characterize the images: orange dots—synthetic images; blue
dots—original images.

Figure 15a presents the same information for the images in class 1. The images in this
class present a large number of dark pixels due to their defects and shadows. The amount
of lighter pixels is considerably lower. In the synthetic images, the peak of black pixels is
higher, but its width is narrower. The light pixels are extremely similar to the original ones.

(a) Histogram of the images of class 0 (b) Histogram of the images of class 1

Figure 15. Different generated images of both classes.
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As shown, the aspect of the histograms of both datasets is quite similar. The minor
differences are mostly produced due to the augmented variety of patterns of defects
and shadows.

Figure 16 presents two different cells of class 1: one original and one synthetic with
similar aspects. Visual inspection of both histograms shows that they have a similar
structure, presenting the same amount of peaks and even placed in a similar position.
Nevertheless, synthetic images tend to show a more symmetrical histogram and a shift
from maximum to lower intensities, since the extreme intensity values are less frequent
than in real images.

(a) A defective synthetic cell with its histogram

(b) A defective original cell with its histogram

Figure 16. Comparison of a defective synthetic cell and a defective original cell.

Figure 17 presents the same for two images of class 0. Both images have almost no
apparent defects. Their histograms have similar shapes, as can be seen by the number of
peaks and their placement.
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(a) A defective synthetic cell with its histogram

(b) A defective original cell with its histogram

Figure 17. Comparison of a defective synthetic cell and a defective original cell.

Figure 18a presents a comparison of the histograms of the position of the maximum,
found in the right half of the histograms (gray/white colors); it can be seen that both
histograms have a similar shape. Figure 18b presents the histograms of the number of
pixels that have low values (up to 10% of the maximum values); it can be seen how the
synthetic images do not completely imitate the original ones. A similar case can be seen
in Figure 18c, which represents the histograms of the number of pixels in the last decile;
it shows how even if the shapes are pretty similar, there is a shift to the left. It seems this
GAN method has some flaws when finding the patterns around the most extreme values.
This issue is not critical but shows that this method still has some room to improve.
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(a) (b)

(c)
Figure 18. Comparison of the different aspects of the histograms of both original and synthetic images:
(a) histogram of the position of the peak of gray/white colors for both original and synthetic images;
(b) histogram of the number of dark pixels (first decile) for both original and synthetic images; and
(c) histogram of the number of white pixels (last decile) for both original and synthetic images.

4.3. Image Quality Metrics

Previous works related to the synthetic generation of EL images of PV cells have not
addressed the issue of ensuring the quality of their data by providing objective metrics.
The Inception Score (IS) and the Fréchet Inception Distance (FID) are the most important
metrics to ensure the quality of synthetic images. In the next paragraphs, both metrics are
explained and used. A summary of the results of these metrics can be found in Table 4.

Table 4. Metrics for ensuring the quality of the synthetic dataset (Original: O, Synthetic: S, and Noise: N).

Metric Mean Score Std.

IS (O) 2.144 0.055
IS (S) 2.341 0.407
IS (N) 1.050 0.002

FID (O-O) 0.431 0.095
FID (S-S) 0.150 0.025

FID (N-N) 2.511 0.016
FID (O-S) 15.80 0.075
FID (O-N) 293.8 0.366
FID (S-N) 296.7 0.735

4.3.1. Inception Score

This metric was first proposed in 2016 [27] for evaluating the quality of generated
artificial images. The score is computed based on the results of a pretrained InceptionV3
model [28] applied to the generated images. This score is maximized when two conditions
are met: The value of the labels is the same for each image, in other words, the entropy of
the distribution is minimized. The other condition is that the images are diverse, meaning
that the labels are evenly distributed across all possible labels.
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For our problem, we used a custom implementation of the metric based on Python
and Tensorflow. We compared the results of three different datasets: the original dataset,
the synthetic dataset, and a dataset composed only of noise. For each experiment, we
split the evaluated dataset into 10 subsets and computed the IS of each one; after that, we
computed the mean and the standard deviation. This process reduces the memory cost of
the algorithm and the effects of randomness.

The original dataset obtained a mean score of 2.1440 with a standard deviation of
0.0559, the synthetic dataset obtained a mean score of 2.3418 with a standard deviation of
0.4079, and the noise dataset obtained a mean score of 1.0506 with a standard deviation of
0.0026. The results show that both datasets do not obtain a great result with this metric,
but their results are better than the results of the noise. This is provoked mostly by the
fact that Inceptionv3 was not trained to deal with EL images. It can also be observed that
the results of both datasets are similar, with an error of 9.2%. The fact that [26] produced
similar IS values for both shows that they have a high similarity. This proves the quality of
the synthetic dataset but also shows that it has some room to improve.

4.3.2. Fréchet Inception Distance

This metric was first proposed in 2017 [29] to evaluate the quality of synthetic images.
In contrast to the IS, this metric compares the distribution of the synthetic data with the
distribution of the original data, measuring the similarity between the two datasets.

As in the other case, we used a custom implementation based on Python and Tensor-
flow. We compared the same three datasets as in the other metric. To compare each dataset
with itself, we divided the datasets into two halves after shuffling them. We repeated the
process five times in order to reduce the effects of the randomization. The results show that
the values of the datasets with themselves were near 0 (0.43118 originals, 0.15095 synthetics,
and 2.5117 noise).

We also compared the distance between the three datasets: 15.808 between originals
and synthetics, 293.82 between originals and noise, and 296.77 between synthetics and
noise. It can be seen that both originals and synthetics are considerably far from noise.
It is true that the distance between them is not a value near 0, but it is still a low value,
which shows that the difference between both datasets is not high. This is reinforced
when this difference is compared with the difference between the noise and both datasets.
The difference from 0 is mostly provoked due to the new patterns of shadows and defects
that are generated due to the combinations of the different shadows of the original images,
thanks to the generative capacity of the DCGAN models.

5. Conclusions and Future Work

The creation of synthetic electroluminescence images of photovoltaic cells is not a
trivial problem. Different factors need to be taken into account in order to create high-
quality images. The gathering of data is by its nature a manual process, requiring the EL
image and its IV curve. The IV curve was measured individually for each cell, which is
an innovation from other papers in the bibliography. The obtained images need proper
preprocessing in order to perform well in the models. The labeling of the generated data
is also a complex problem, since it is not possible to measure the output power or the IV
curve of a not-real cell; so, we designed a model to assign a value of performance. This
model was trained with the values of the real images, and its low error values show its
good performance.

The algorithm used for creating the new images, DCGAN, has shown great perfor-
mance, not only creating images that are very similar to the originals but also creating
new patterns of defects and shadows. This similarity between the original images and
the synthetics images was proved using different methods: A visual inspection of the
cells shows that they present the characteristics of a real PV cell, and the histogram also
proves their similarity, since they share the most important aspects of its shape. Image
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quality metrics such as Inspection Score (2.3) and French Inception Distance (15.8) also
prove their similarity.

The results of this paper prove the quality of the synthetic images, but the dataset
can be improved. The most direct way of improving the dataset would be increasing
the amount of data. The inclusion of new kinds of defects and shadows would improve
the generative capacities of the GAN. Another interesting option would be trying to use
different kinds of PV cells, such as monocrystalline PV cells, since our dataset only consists
of polycrystalline PV cells. This would improve the usefulness of the dataset in machine
learning problems that use other kinds of PV cells.

Another way of improving the quality of the dataset would be increasing the size of
the networks. The size of the current networks are based on the limitations in hardware
and budget. Bigger networks could reduce the amount of epochs and improve the quality
of the generated images. The use of the most innovative architectures could also improve
the dataset.
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