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Abstract: Crop insurance is a crucial way to avoid disaster losses and to guarantee farmers’ basic
production income in China and abroad. Securing agricultural production is a critical way to eradicate
hunger and reduce poverty and an essential means to achieve the UN Sustainable Development Goals.
How to pay out more quickly and fairly after a disaster has become an urgent issue for agricultural
insurance. The standard domestic crop insurance rate is determined based on the statistical data of the
entire administrative unit and ignores the spatial risk difference of disasters inside the administrative
unit. Therefore, obtaining a pure premium based on crops inside the administrative unit is a key
problem. Based on remote sensing data and insurance actuarial models, we studied and determined
the fair premium rates to insure winter wheat at the farmer level in Heze, Shandong, China. Our
study shows that remote sensing data can provide data security for determining a pure premium
rate at the level of individual farms, and provide the primary reference for determining farmer-
level crop insurance premium rates. The use of remote sensing for determining those rates can
improve the customization of crop insurance and reduce farmers’ lower incomes due to exposure
to natural disasters, improve farmers’ resilience to risk, and prevent a return to poverty due to
disasters, ultimately reaching the UN Sustainable Development goals of eradicating hunger and
reducing poverty.

Keywords: UN sustainable development goals; crop insurance; premium rate; remote sensing;
winter wheat

1. Introduction

Agricultural production, especially crop production, relies on environmental factors
such as climate, soil, and biotic factors [1]. Crop production losses caused by natural disas-
ters can seriously limit rural development and make crop raising a vulnerable industry [2].
Post-disaster reconstruction and recovery are a financial burden for farmers [3]. These
contradict the UN Sustainable Development Goals of eradicating hunger and reducing
poverty, as shown in Figure 1 [4,5]. Interventions in the land and agri-food sectors have a
positive impact on the UN Sustainable Development Goals, and agricultural insurance is
one of the key instruments [6]. Crop insurance has become an important tool for China
to achieve its sustainable development goals [7]. Some scholars have suggested the sig-
nificance of agricultural insurance for sustainable development from the perspective of
crop insurance demand [8]. The R4 Rural Resilience Initiative in Ethiopia is a widely cited
example of a program that serves the most vulnerable and includes aspects of resource
management, and access by the poor to financial services, including insurance and sav-
ings [9]. Crop insurance is an essential way for farmers to reduce the risk of disasters and
unaffordable recovery by sharing the risk of production loss with the insurance industry.
In crop insurance, the pure premium, the main component of crop insurance premiums,
determines the rationality of premium prices [10]. Therefore, fairness and accuracy of pure
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premium rate-making are fundamental and essential for a good crop insurance contract,
increasing farmers’ resilience and reducing their risk and vulnerability to climate-related
extreme events and other environmental shocks and disasters.
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Figure 1. Official website of the Sustainable Development Goals.

Some research on pure premium rate-making has been carried out on crop insurance,
and several rate-making models, such as yield-based crop insurance, index-based crop
insurance, and weather insurance, have been explored [11]. However, traditional methods
cannot acquire a pure premium rate at a fine scale, ignoring the risk distribution’s spatial
heterogeneity [12]. As an example, the area–yield crop insurance model [13] has overcome
the moral hazard problems, but its rate-making unit is often at the county level, which
ignores heterogeneity within each county unit [14] and disregards the actual yields of
various farmers’ lands. It is common to use administrative divisions as premium rate
units [15]. In other words, the same insurance premiums are applied to all farms in a
county, which does not consider the risk differences among the farms [16]. Therefore,
crop insurance requires a method to determine fine-scale pure premium insurance rates to
improve the deficiency mentioned above.

On the other hand, research has been conducted on remote sensing applied to the
agriculture field, especially in mapping vegetation worldwide [17]. Many remote sensing
products, such as the enhanced vegetation index, the normalized difference vegetation
index, and gross primary production (GPP) sensing can determine crop growth status
and yield levels [18]. It has been proven that the remote sensing data used to estimate
agricultural biomass are highly correlated with statistically derived estimates of the actual
biomass [19]. Moderate resolution imaging spectroradiometer (MODIS) products generate
many vegetation indices that are widely used for crop yield estimation due to those prod-
ucts’ high quality and cost-effectiveness [20]. Although many studies have been published
concerning crop yield estimation and monitoring crop growth via remote sensing [21],
few studies have examined agricultural insurance from the perspective of building the
resilience of the poor and those in vulnerable situations [22].

In order to accomplish the UN Sustainable Development Goal of eradicating hunger
and reducing poverty, more refined insurance rates are obtained to achieve quick and
precise payouts to farmers. Our study developed a pure premium rate-making method
using satellite remote sensing data to explore the possibility of applying remote sensing
technology in the insurance industry. First, this study used MOD17A2 data to generate
GPP data for the winter wheat growing season from 2007 to 2017. Second, Heze City
administrative boundary data and Landsat 5/7/8 TM/ETM data were used to calculate
winter wheat area ratios from 2007 to 2017 at a 1 km spatial resolution. Third, the pure
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premium rate of winter wheat in 2018 was obtained via the Bühlmann–Straub model and
the empirical rates method. Finally, the difference between traditional statistical methods
and the remote sensing method are compared, and in this paper, the advantages to the crop
insurance industry of using remote sensing are pointed out.

2. Methods
2.1. Study Area

Heze (34◦48′ N, 116◦04′ E) is in the southwestern Shandong Province, China (Figure 2).
Winter wheat is the main crop in this region. The local rural farming industry comprises
small-scale scattered agricultural units operated by individual farmers. They are usually
unable to bear alone the losses caused by natural disasters, and crop insurance must share
the risks of crop production. However, the current crop insurance policy in Heze is based
on a county-level crop insurance premium rate, and it does not provide a farmer-level
differential insurance rate based on land parcels.
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The winter wheat in the Heze area has the following four major growth stages:
(1) seeding, from early October to early March, (2) stem extension from early March to
mid-April, (3) heading from late April to late May, and (4) ripening in early June. Tempera-
ture and precipitation are the two main climatic factors affecting winter wheat production.
Although the climate in Heze is suitable for winter wheat, unfavorable climatic conditions
frequently occur and cause loss of crop production. A spring drought occurs once every
two years during the stem extension growth stage of the wheat when water is critical for
the growth of the plant; secondly, frostbite is often caused by low temperatures in winter
wheat during the heading period, leading to yield reduction and crop failure [23].

2.2. Data

In this research, the study of winter wheat insurance rates in Heze, Shandong required
remote sensing data and statistical data.
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2.2.1. Remote Sensing Data

Yield Data: GPP is the gross chemical energy converted and stored as biomass from
luminous energy by vegetation [24]. It is used as an indicator of vegetation growth status.
MODIS GPP data are collected daily, and 8 d GPP data are available to the public. It is
possible to calculate the sum of the GPP over a certain period [25]. Reeves et al. have
successfully used MODIS GPP products to estimate wheat yield [26]. Thus, we chose
MODIS GPP product data as the analog yield data to calculate a winter wheat insurance
pure premium. MOD17A2 (MODIS GPP dataset) 8 d GPP data products for Heze, covering
the period from early March to mid-June between 2007 and 2017, were chosen for building
a pure premium insurance rate-making model based on winter wheat cumulative GPP loss
(https://modis.gsfc.nasa.gov/ accessed on 18 July 2019). The data can be downloaded
from the Numerical Terradynamic Simulation Group. Photosynthesis of winter wheat in
Heze minimally contributes to its GPP value at its early growth stage, and the GPP data in
Heze experience a sharp rise during the reviving period and peak in mid-April. Therefore,
the primary growing season, from early March to mid-June, is chosen to calculate the
winter wheat cumulative GPP.

Cultivated Land Area Data: To accommodate the model, this study used cultivated
land area data from 2007 to 2017. In addition, in November in the Shandong province, only
winter wheat has a solid biological prominence. Other biological entities such as trees and
grass are less prominent, so extracting areas planted with winter wheat is easy. Therefore,
we chose Landsat-7 TM/ETM images from 2006 to 2016 for each November as the basis
for judging the cultivated area of winter wheat harvested from 2007 to 2017 (https://
earthexplorer.usgs.gov/ accessed on 19 July 2019). The 8 m resolution multispectral image
of GF-1 was used to verify the accuracy of winter wheat planting area in the experimental
area (http://www.cnsa.gov.cn/ accessed on 25 February 2020).

2.2.2. Statistical Data

Statistical data were needed to calculate the traditional result using the same actuarial
method to compare the traditional method with the remote sensing method. We used
winter wheat yield data and the planted areas of each county in Heze from 2007 to 2017.
All the data were from the Heze statistical yearbook [27].

2.2.3. Administrative Border Data

The administrative border data used in this research included the administrative map
of Heze at the county level and a Chinese boundary map. All the border data were from
China’s State Bureau of Surveying and Mapping.

2.3. Models

In this study, first, the proportion of winter wheat cultivated land area is calculated,
and the theoretical GPP is calculated based on the Bühlmann–Straub confidence model
using the actual GPP and the proportion of the winter wheat cultivated land area. The
actual GPP is the accumulated GPP of the crop for the current year. The theoretical GPP
is the GPP value set for the individual plot payout calculated from historical multi-year
actual GPP data and the proportion of winter wheat cultivated land area. The payout is
triggered if the current year GPP value is lower than the theoretical GPP value. Second, the
GPP loss rate is obtained using both the theoretical GPP data and the actual GPP data. In
traditional insurance, the loss rate of a product is the ratio of the payout expense of that
product to the premium income, and the average of the loss ratios over many years is the
pure rate of insurance. In this paper, the winter wheat insurance rate belongs to GPP index
insurance, and the GPP loss rate is the rate of the difference between the theoretical GPP
and the actual GPP to the theoretical GPP. Finally, the empirical rate method is used to
calculate the crop pure insurance rate.

https://modis.gsfc.nasa.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
http://www.cnsa.gov.cn/
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2.3.1. Theoretical GPP Calculation

The Bühlmann–Straub model is commonly used to calculate the theoretical GPP
value [28,29]. The model considered the weights (i.e., the proportion of cultivated land) of
random GPP variables. The theoretical GPP of each land block during its primary growing
season was derived from the historical GPP of previous years for that land block.

First, the sum of the GPP values in the growing season (from the beginning of March
to mid-June) was calculated for each land block and each year (2007 to 2017) to obtain the
months of accumulated GPP for each land block per year.

Second, the proportion of cultivated land for each land block was calculated via
remote sensing images (Landsat 5/7/8 TM/ETM). The method of supervised classification
is used to extract cultivated land for each year [30]. Using ENVI 5.3 software, we obtained
cultivated land grid-level values in the Heze area from 2006 to 2016, reflecting the winter
wheat planted area from 2007 to 2017, respectively. The confusion matrix method was
used to verify the classification accuracy of winter wheat acreage. Taking the classification
results of winter wheat in 2017 as an example, the classification results of high-resolution
GF-1 images were taken as the real results, and the confusion matrix as well as the user
accuracy were calculated by comparing a random sample of Landsat image classification
results with GF-1 image classification results, and the user accuracy of the winter wheat
classification can reflect the accuracy of extracting winter wheat acreage in the experimental
area using Landsat images. The formula for calculating the theoretical GPP is as follows:

Gj
′
(n+1) =

(
1− Zj

)
G + ZjGj (1)

where Gj
′
(n+1) is the theoretical GPP of land block j; G is the average actual GPP value of

all land blocks from 2007 to 2017; Gj is the theoretical GPP of land blocks j from 2007 to
2017; Zj is the Bühlmann–Straub model reliability factor.

Finally, the Bühlmann–Straub model is used to derive the theoretical GPP of the winter
wheat during the growing season. As stated above, Gj

′
(n+1) was then considered as the

approximate value of the theoretical GPP of j land in the predicted year 2018.

2.3.2. Loss Rate Calculation

The loss rate is generally calculated from the theoretical GPP value and the actual yield
GPP value. First, we calculated the theoretical GPP value of crop production, as mentioned
above. Second, the crop yield loss rate for each year was determined by calculating the
difference between the actual yield and the theoretical yield. For the single land block j, the
detail of the model is described by the following equation:

Pij =
{

max
[(

Gj
′
(i) − Gij

)
, 0
]

/ Gj
′
(i)

}
(2)

where Pij is the yield loss rate of the land block j in year i, Gj
′
(i) is the theoretical GPP value

of land block j in year i, and Gij is the actual GPP of land block j in year i.
Pij is understood as follows: for the year i and land block j, if the theoretical GPP is

greater than the actual GPP, the actual yield cannot reach the predicted yield, which results
in a loss, and Pij is the loss rate. In addition, if the theoretical GPP is less than the actual
GPP, the actual yield exceeds the predicted yield, in which case there is no yield loss, and
Pij is set to 0.

2.3.3. Prue Insurance Rate Calculation

Pure premium rates are calculated by the empirical rate method [31]. Empirical rating
is determined by the approximation of the social average loss rate of crop production
over the years. Firstly, the crop yield loss rate in each year is determined and the average
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loss rate over the years is used as the pure crop insurance rate. This is described by the
following equation:

Pj =
1
n

n

∑
i=1

Pij, (i = 1, 2, . . . , n) (3)

where Pj is the social average loss rate of j; that is, the average yearly yield loss in the
n-year period, and i and n are indicators of the time series. According to the principle of
the ER method, the social average loss rate Pj can be used as an approximation of the pure
premium rate.

2.4. Technology Implementation

In this study, the theoretical GPP value is first calculated using the GPP data and the
winter wheat area ratio data from 2007 to 2017. Next, using the actual GPP value and the
theoretical GPP value, the 10 years’ actual loss rates can be calculated. We implemented
this model by using the actuar package of the R language [32]. Finally, the pure rate in 2018
for each land block is calculated by the loss rate of 10 years using the model described in
2.3. The data processing flowchart is shown in Figure 3.
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3. Results

According to the Bühlmann–Straub confidence model, using the Section 2.2 of the
remote sensing data and the equations in Section 2.3, the following three key results were
obtained: the winter wheat actual GPP, proportion of winter wheat cultivated land area
and experimental winter wheat pure premium insurance rate in Heze.

3.1. Actual GPP

According to the method in Section 2.3., maps of the accumulated GPP analog yield
data from 2007 to 2017 are shown in Figure 4. From the result, we can observe the following:
(1) the maximum and minimum of the winter wheat GPP value are 1280 and 21,452,
respectively, while that east of Heze was relatively lower than those of the other districts.
(2) Each year had several empty districts, shown in white, and the positions of these empty
districts were constant. Urban districts did not have GPP values; in the MOD17A2 product,
those values were shown as the maximum value. When the accumulated GPP is calculated,
those districts are found and set aside. (3) The accumulated GPP values mostly ranged
from 8000 to 20,000, were relatively stable, and were suitable for base data to calculate
insurance premiums. (4) The role of the GPP data in the study was to calculate the variance
and mean in every district. The mean determined the base theoretical GPP value, but the
weight of the base theoretical GPP value was determined by both the district variance and
the cultivated land area.

The actual GPP of winter wheat allows the calculation of the variance and mean of
the actual GPP of winter wheat for each kilometer grid cell. The mean of the actual GPP of
winter wheat can be used to determine the theoretical GPP value, while the weight of the
theoretical GPP value of winter wheat is determined by the weight of each kilometer grid
cell of winter wheat. The weight of the theoretical GPP value of winter wheat is determined
by the variance and mean value of the actual GPP of winter wheat in each kilometer grid
cell, in addition to the variance of the actual GPP and proportion of winter wheat cultivated
land area of each kilometer grid cell.

3.2. Proportion of Winter Wheat Cultivated Land Area

The area of cultivated land from 2007 to 2017 is shown in Figure 5. Several white
districts are urban areas, as mentioned above. Overall, the northwestern part of Heze City
and the central and western regions have less arable land due to the poor environmental
conditions in the Yellow River flood area. Due to the smaller proportion of cultivated
land in those areas, each weight of the GPP production at the corresponding positions
decreased during the model calculation, and the weight of the average GPP yield in those
areas increased.

3.3. Winter Wheat Pure Premium Insurance Rates in Heze

The map of the winter wheat pure premium insurance in Heze shown in Figure 6
is obtained using satellite remote sensing data based on the pure premium rate-making
method. The value represents the loss rate of the winter wheat production on the land block
corresponding to each pixel. Under the 100% coverage level condition, the maximum pure
premium rate is 8.56%, and the minimum pure premium rate is 0.61%. The high-loss-rate
areas are mainly in eastern regions and some western regions.
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3.4. Accuracy Verification of Winter Wheat Cultivated Land Area

Accuracy evaluation is an important tool to test the results of winter wheat distribution
extraction using remote sensing images. Random sampling of the classification results
obtained from the Landsat ETM data in 2017 is shown in Figure 7. The confusion matrix
of winter wheat classification results in the experimental area in 2017 was obtained by
comparing these results with the classification results of GF-1 images, as shown in Table 1.
The user accuracy of the winter wheat acreage classification in the experimental area in
2017 was 96.0%; therefore, there was an error of 4.0% in the extraction of winter wheat
acreage in this experimental area.
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Table 1. Accuracy Verification of Winter Wheat Classification Result in 2015.

Landsat-7 ETM Classification
Results/Image Elements User

Accuracy/%
Winter Wheat Others

GF-1 classification
result/image element

Winter wheat 413 12 96.0
Others 17 158 92.9

4. Discussion
4.1. Spatial Refinement of Premium Rate

To visually show the spatial refinement differences, all the counties’ pure premiums
in Heze were set using the same method with statistical data at the county level. We used
winter wheat yield data and the planted area of each county in Heze from 2007 to 2017 and
calculated the pure premium rate of winter wheat in each county in 2018.

The result is shown in Figure 8. Figure 8a shows the distribution map of the pure
premium insurance rates for winter wheat in Heze that is calculated by the pure premium
rate-making method using satellite remote sensing data. Figure 8b shows the pure premium
insurance rates for winter wheat in Heze produced using the pure premium rate-making
model with statistical data at the county level.
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Compared with the statistical method, which had only one value, the rates obtained
by the remote sensing method accounted for different risks in the county-level regions.
From the perspective of administrative divisions, the rate distribution of the remote sensing
data in each region fluctuated wildly, the rate distribution of the statistical data fluctuated
less, and the variance in the remote sensing method was more significant than the variance
in the statistical method. This result shows that remote sensing data can distinguish more
crop production rates than county-level crop insurance and at the kilometer level.

The spatial resolution of remote sensing data ranges from meters to thousands of
meters, and the data can easily be adjusted to meet actual requirements. Supported by the
varied spatial resolution remote sensing data, the pure premium rate-making method using
satellite remote sensing data produces refined and differential premium insurance rates that
accurately reflect the risk differences at a smaller scale. It makes a map of pure premium
rates on each square kilometer, which means that every earth scope of 1 square kilometer
has a premium rate. This is extremely meaningful in countries with small farms in remote
areas. When a disaster strikes, there is a need for timely and differentiated payouts to
different farmers, as the damage to farmers in an administrative division is not exactly the
same, and differentiated payouts make winter wheat insurance more equitable.

4.2. Potential of Remote Sensing Applications for Agricultural Insurance and Impact on
Sustainable Development

Using the remote sensing method, this research found the potential of remote sensing
applied to crop insurance mainly in the following points.

4.2.1. Farm-Level Insurance Accessibility

In China, most provinces’ cultivated area per rural household is less than 0.5 hectares [33].
The insurance applicants are the farmers, who care about the output of the crops only on
their own farms. Considering the farmers’ motivation, it is better to assign the farmers rates
that depend on their farms’ crop growth situations. Rates that are different for each pixel
make farm-level insurance possible and fair, encouraging the farmers to buy the derived
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crop insurance product. The method in this study makes it possible to set more accurate
and flexible pure premium insurance rates and provide a platform for more effective crop
insurance contracts. Both farmers and insurers should easily accept the results of this
method. This encourages the commercialization of crop insurance.

4.2.2. Data Convenience

MOD17, the data used in this study, is a near-real-time, continuous, consistent opera-
tional data set. As a result, the payouts could be made faster than those of the traditional
method using statistical data. Decreasing the cost of the infrastructure and manpower is
another important improvement in this method. Some remote sensing data are available at
a low price or even free. This reduces the initial cost of crop insurance rate-making.

4.2.3. Moral Hazard Reduction

This study used data collected from an independent third party to calculate pure
premium insurance rates; therefore, it avoided possible moral hazards caused by dishonest
individuals providing false yield-loss information. At the same time, data not affected
by stakeholders increase the objectivity and reliability of the rates, so stakeholders can
encourage the farmers to buy related crop insurance products, which in turn encourages
the commercialization of crop insurance.

4.2.4. Sustainable Agricultural Development

In this study, remote sensing image data were used for insurance rate determination
to obtain more spatially refined results. The results of the rate determination can help
to accurately determine and quickly settle claims after winter wheat damage, protect
farmers’ basic income, prevent farmers from returning to poverty due to natural disasters,
and contribute to the achievement of the UN goals of poverty eradication and hunger
reduction [34].

5. Conclusions

This study applied remote sensing data to the winter wheat insurance rate in Heze,
Shandong, China. The results show that the winter wheat rate determined by remote
sensing data has a higher resolution than rates determined by traditional methods, and
winter wheat insurance can be fairer and more reasonable. For the government, remote
sensing data can produce more reasonable and practical crop insurance policies, increase
farmers’ willingness to purchase crop insurance, and protect farmers’ economic interests
through rapid and adequate compensation to ensure farmers’ reasonable income security.
Refined crop insurance enables insurance companies to collect premiums at different crop
insurance rates based on different risk levels at different locations, ensuring that insurance
companies operate smoothly, increase revenue, and reduce claims costs. Refined agricul-
tural insurance provides strong support for reducing the number of low-income farmers
and for food security in the context of the UN’s sustainable development goals. Therefore,
determining pure insurance premium rates based on remote sensing crops by grid units
can guarantee the application of fair crop farmers’ insurance rates, ultimately reaching the
UN Sustainable Development goals of eradicating hunger and reducing poverty.
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