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Abstract: Existing methods for generating 2D plans based on intelligent systems usually require
human-defined rules, and their operations are complex. GANs can solve these problems through
independent research and learning. However, they only have generative design research based on a
single constraint condition, and whether they can generate a qualified design scheme under many
constraints is still unclear. Therefore, this paper develops the M-StruGAN generative model based
on the structural design framework of a GAN. Its application research is extended to the 2D-plan
layout generation of homestay based on the constraints of hybrid structures, and the feasibility of
the method is comprehensively verified through three aspects: image synthesis quality assessment,
scheme rationality assessment, and scheme design quality assessment. Experimental results show
that the quality of the drawings generated by M-StruGAN is qualified, designers have a high degree
of acceptance of the design results of M-StruGAN, and M-StruGAN completed the learning of the
critical points of the 2D layout. Finally, through the human–computer interaction application of
M-StruGAN, it can be found that compared with traditional design methods, M-StruGAN based on
pix2pixHD has high-definition image quality, higher design efficiency, lower design cost, and more
stable design quality.

Keywords: homestay; 2D-plan; machine learning; GAN; Pix2pixHD

1. Introduction

Since the 20th century, with the acceleration of urbanization, the transformation
and utilization of old buildings has attracted more and more attention from all walks
of life [1]. Reusing existing buildings not only realizes the sustainable development of
buildings but also effectively reduces the carbon emissions of buildings [2]. During the
renovation of a building, the 2D-plan layout is part of the core content of the scheme design
of the building [3]. A reasonable functional layout that satisfies the space size, quantity,
connection, and other relationships of the house to the greatest extent can bring comfort to
people’s daily lives [4]. The emergence of mass tourism has brought opportunities for the
development of homestays. At the same time, it has also put forward high requirements
for the design of the 2D-plan layout of homestays [5]. The 2D-plan layout of a homestay
is a long and tedious task in the traditional design process, especially when it comes to
complex structural constraints, which require designers to repeatedly try and modify the
design process, which consumes a lot of time and energy [6,7]. The design of a 2D-plan
layout mainly faces the following problems: (1) The scheme design takes a long time and
needs to be revised repeatedly. (2) The cost required in the design process is relatively
high. (3) The design of a 2D-plane layout requires designers to master specific professional
knowledge, which requires high requirements for designers [8] (Figure 1).
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Figure 1. Traditional design method flow.

To sum up, the current development of homestays urgently needs to break through
the problems by optimizing or even automating the design process.

The automatic generation of 2D plans is a crucial approach to addressing these limita-
tions. Using computer-program-aided architectural scheme designs can intelligently generate
floor plans for designers’ references, which can bring more convenience to designers [9–11].

For the 2D-plan layout problem, many methods of computer-aided design consider the
division of space and the requirements of architectural functions, describing them by artifi-
cially defining rules and using specific algorithms. In recent years, the generation methods
have generally had four directions [12–14]: (1) one based on rule-based systems [15]; (2) one
based on multiagent systems [16]; (3) one based on evolutionary algorithms [17]; and
(4) one based on mathematical programming algorithms [18]. The one based on rule-based
systems is a system for querying and rewriting computer restriction rules. Based on the
rule system, Veloso et al. split the given room outline in combination with the preset shape
grammar rules and, based on the industry foundation classes (IFC) standard, established
the room’s building information modeling (BIM) to reduce the time and labor costs of
automatic production drawings [19]. However, this process has professional operation
requirements, making it difficult for nonprofessionals to operate. For the direction based on
multiagent systems, Paul Merrell et al. applied a Bayesian network in multiagent systems
to learn the plan function relation diagram and realized the automatic generation of the
plan layout relation diagram of the house by counting the conditional probability of each
factor relation [20]. However, this research has yet to generate a feasible plan map from the
functional relationship diagram. Regarding the direction based on evolutionary algorithms,
Laignel et al. proposed a new method for automatically generating apartment layouts
based on evolutionary algorithms [21]. Given an apartment’s boundaries and a list of
rooms, an evolutionary algorithm generates multiple floor plans with architectural and
functional constraints. However, the optimizer’s code setting and result generation require
real-time control by professionals. For the direction based on mathematical programming
algorithms, Inoue et al. explored the layout planning of floor plans using mathematical pro-
gramming algorithms [22]. However, the results of their generation cannot play a guiding
role. These design directions all use written functions to modify the initial conditions and
obtain the engineering results through calculation. In the design process, the above four
directions need to adjust the parameters to control the output manually, and the operation
has a certain complexity and is not universal. Furthermore, the current research shows that
the accuracy of its design ability needs to be improved.

Compared with the traditional parametric design, deep learning has a more powerful
learning ability [23]. It learns through automatic research in the design process and finds
the laws in it, then gives reasonable results [24]. This greatly reduces the user’s operational
difficulty and design cost. Therefore, the algorithm framework of deep learning is expected
to serve as the basic architecture of our system and contribute to the intelligent generation
of 2D plans based on mixed structural constraints.
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2. Literature Review

Deep learning is a machine learning method with great potential in generative de-
sign [25]. Deep learning can simulate the human brain’s neural structure, fully extract
valuable feature information in the input data, and then train, adjust, and optimize its
model and obtain a reasonable model structure fitting the input data distribution [26,27].
Generative adversarial networks (GANs), a deep learning model that uses neural networks
to generate images, were first proposed in 2014 by Goodfellow et al. [28]. In recent years,
GANs have also become the most promising deep learning model in unsupervised learning.
It has also been applied in the fields of architecture and urban design [29]. However, the
original GAN has some shortcomings in the training process: (1) There is no user control
ability. That is, the generation process is random. (2) There is low resolution and low
quality in the generated results (Figure 2). The images generated by GANs are random,
and it is impossible to control the category of the generated images. Deng et al. proposed
an improved version based on the original GAN, the conditional generative adversarial
network (cGAN) [30].

Figure 2. GAN structure frame diagram [31].

A conditional generative model is implemented by adding an additional condition to
the generator (G) and discriminator (D) of the original GAN. Additional conditions can be
category labels or other auxiliary information. Therefore, the proposal of cGAN enables
GAN to use images and corresponding labels for training and use given labels to generate
specific images in the test phase. For example, Liu Yuezhong divided data into familiar and
unfamiliar data according to whether the data belong to the dataset [31]. They proposed us-
ing the conditional generative adversarial network (cGAN) to learn familiar data to process
unfamiliar data to support the urban design process. The results show that the method can
effectively support the decision-making process of urban graphic scheme designs. Huang
W et al. used the cGAN model to effectively control the results to generate satellite images,
hand-drawn architectural sketches, and architectural plan function zoning maps based on
the boundary and functional training [32]. Shen et al. extracted urban information and
simplified it into a floor plan and used cGAN to generate architectural layouts based on
site conditions to achieve a rapid urban design method [33]. Cho Dahngyu et al. use cGAN
to classify and recognize basic objects of floor plans. In summary, cGAN solves the problem
that the original GAN model has no user control ability [34].

Based on cGAN, somebody proposed the pix2pix algorithm, which uses paired data
for training to learn the mapping from the input image to the output image. For example,
Philip Isola studied the usability of cGAN as a general solution to the image-to-image
translation problem and found that using pix2pix can complete the general image trans-
lation task better than cGAN [35]. When pix2pix realizes image-to-image translation, its
application in architecture and urban design is also extensively promoted. In line with
the research purpose of allowing ordinary people to participate in architectural design,
Peters N used pix2pix to train a model that can automatically generate a simple layout
of a building plan [36]. However, its design accuracy still needs to be high for designers
to refer. Liu Yubo et al. constructed two small-sample campus layout datasets from the
perspective of architects in their exploration of using deep learning to generate campus
layouts [37]. Furthermore, these datasets train the pix2pix model to generate campus
entrances automatically, given the campus boundary and surrounding road conditions.
In summary, although pix2pix achieves image-to-image correspondence, it is difficult to
generate high-quality images.
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pix2pix proposes a unified framework to solve various image translation problems, while
pix2pixHD better solves the problem of high-resolution image translation based on pix2pix [38].
For example, Wang et al. built a more refined network pix2pixHD based on pix2pix, which
increased the image resolution from the original 256 × 256 to 2048 × 1024 pixels and applied it
to the automatic generation of simple plans in apartments [39]. The results show high-quality
architectural interior design drawing generation, but it is also more time-consuming. To
sum up, compared with pix2pix, pix2pixHD improves the accuracy of the entire model
and dramatically improves the accuracy of the data. Therefore, M-StruGAN (the automatic
2D-plan generation system under mixed structural constraints for homestays) equipped
with pix2pixHD can better realize the control output and improve the output image quality
and stability requirements in the existing architectural plan layout. Current researchers
mainly focus on the pixel refinement of simple plans. There is no research on the feasibility
of intelligent generation of 2D plans under the constraints of hybrid structures [40–44]
(Figure 3).

Figure 3. GAN, cGAN, pix2pix, and pix2pixHD relationship diagram.

To sum up, in order to realize the intelligent generation of 2D layout drawings under
the constraints of mixed structural constraints, this paper proposes an intelligent generation
system, M-StruGAN (Mixed-Structure GAN), equipped with the pix2pixHD framework.

3. M-StruGAN Method

This study takes homestays as the starting point and establishes an intelligent genera-
tion method of a 2D-plan layout based on pix2pixHD under mixed structural constraints.
The developed method consists of three parts: (1) implementation of M-StruGAN, includ-
ing data processing methods and model training; (2) analysis of M-StruGAN generation
results, including image synthesis quality assessment, scheme rationality assessment, and
scheme design quality assessment; and (3) M-StruGAN application (Figure 4).

1. Implementation of M-StruGAN: First, the implementation of M-StruGAN involves the
selection of mixed structural elements (such as columns, shear walls, and traffic cores),
which is key in determining the generation of control 2D-plan layouts. Second, there
is the establishment and processing of the dataset, since the probability distribution
and quality of the M-StruGAN design are directly related to the dataset’s quality.
Finally, there is the training of the M-StruGAN model. The processed dataset is fed
into the pix2pixHD model in two steps, and the functional partition model (A-B) of
M-StruGAN and the space partition model (B-C) of M-StruGAN are trained. This
procedure combines the steps of the designer’s method of designing the building plan.
Furthermore, we use the generator loss curves of the two models to judge whether it
was trained successfully.



Sustainability 2023, 15, 7126 5 of 19

2. Analysis of M-StruGAN generation results: This study establishes an evaluation
method for intelligently generated plan schemes and evaluates the image synthesis
quality, scheme design rationality, and scheme design quality of M-StruGAN.

3. M-StruGAN application: Applying M-StruGAN to the human–computer interaction
interface, the user can quickly generate a 2D-plan layout diagram of a homestay
by modifying and adjusting the hybrid structure. Moreover, compare it with the
timeliness and economy of the designer’s design scheme.

Figure 4. Implementation, evaluation, and application of M-StruGAN.

4. Implementation of M-StruGAN

M-StruGAN attempts to generate a set of 2D floor plans that satisfy architectural and
functional constraints and input specifications from edge maps of homestays under mixed
structural constraints (Figure 5). Additionally, it can quickly generate a 2D-plan layout that
meets the functional specifications of the homestay by adjusting the input conditions. The
realization of M-StruGAN mainly includes three steps: (1) extraction of mixed structural
elements; (2) dataset production; and (3) M-StruGAN training and results.
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Figure 5. Schematic diagram of M-StruGAN input and output: (a) Mixed structural constraints and
(b) expected output.

4.1. Mixed Structural Element Extraction

During the 2D-plan design process of the homestay, to avoid large demolition and
construction, the internal structure and external contour of the original living space are
usually reinforced and retained. These reserved elements are the constraints in our program
process, including columns, shear walls, traffic cores, courtyard space edges, building
layout edges, doors, and windows (Figure 6) [45–47].

Figure 6. Example of the homestay 2D-plan mixed structural constraints.

4.2. Dataset Production

GANs do not have the ability to make distribution assumptions on real data. They
optimize and adjust the model by continuously learning the high-dimensional features of
real data and finally complete the task of sample generation through the learned model.
This also makes the probability distribution and quality of the M-StruGAN design directly
related to the dataset’s quality. Therefore, to ensure the quality of the 2D-plan generation
of an M-StruGAN’s homestay, this study collected nearly 1600 sets of homestay floor plans.
In addition, these drawings meet all relevant design specifications and are screened, opti-
mized, and assessed for design quality by qualified designers. After the quality screening,
1000 floor plans that met the relevant specifications of the 2D-plan design of homestays
were used to explore the layout method of M-StruGAN. This enables GAN models to im-
prove design proficiency by learning from existing high-quality design documents, thereby
significantly improving design efficiency and performance. Then, the data graphs are
classified and semanticized based on the original design dataset.

Based on the filtered original flat datasets, we classify them and mark them as the
corresponding A-, B-, and C-side datasets. Subsequently, the A-, B-, and C-side datasets are
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semantically processed to extract the primary inputs and design elements in the design
images and encode them with color patterns, thereby maintaining key design elements
and corresponding 2D floorplan information. Semantic design can effectively reduce the
dimension of probability distribution and improve training performance.

The A-side data processing is to extract the mixed structural elements in the dataset
and mark them so the program can recognize them as input conditions. The processing of
the B-side data is to keep the marks of the mixed structural elements of the A-side and then
divide the floor plan into different functional areas according to functions and other color
codes for each functional area. The processing of the C-side data is mainly to extract the
spatial layout of the dataset and draw it with CAD. In detail, the A, B, and C terminal data
correspond to three images of a homestay plan. Among them, A is the mixed structural
constraints of the homestay plan, B is the functional area division of the homestay floor
plan, and C is the layout of the homestay plan (Figure 7).

Figure 7. A-, B-, and C-side data and legend: (a) A-side data: input data; (b) B-side data: functional
zoning diagram; and (c) C-side data: plan layout.

Finally, the size of the processed A-, B-, and C-side data reshapes to 512 × 512. Since
all the data scales are uniform, the datasets of these three parts also contain information on
size and distance, which can better help M-StruGAN learn the rules of the 2D-plan design
of homestays. In the dataset of 1000 sets, 950 sets are used for training, and 50 sets are used
for testing.

4.3. M-StruGAN Training and Results

As far as the system of M-StruGAN is concerned, in addition to the regular training
recommended by pix2pixHD, this study also tunes its architecture by simplifying the
generator architecture to generate more restricted and precise image elements.

The training of M-StruGAN was divided into two parts (Figures 8 and 9 show some
typical results).

Model 1: A feature partitioning model (A–B) for training M-StruGAN. The A-side
data are used as the input, and the B-side data are used as the output to train the functional
partition model of M-StruGAN. M-StruGAN can quickly and automatically generate a 2D-
plan functional partition map of the homestay according to the mixed structural conditions
of the input.
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Figure 8. Partial display of M-StruGAN’s Model 1 generation results.

Model 2: Training the spatial partitioning model (B–C) of M-StruGAN. The B-side data
are used as the input, and the C-side data are used as the output to train the M-StruGAN
scheme model. We trained it to generate an interior space plan layout according to a
functional partition map.

Each group performed 25,000 iterations, among which the training of model 1 took
48 h, and the training of model 2 took 6 h. From the display results in Figures 9 and 10,
we can see that the test results of Model 1 are not good, and the generated B-side data
are far from the real B-side data, while the test results of Model 2 reach the ideal state.
The partition data trained by model 1 contain many element details and complex content,
and a small amount of data training is insufficient to achieve accurate functional partition
capabilities.

This study improves the performance of Model 1 by carrying out the following:
(1) expanding the dataset, the dataset is expanded by vertical, horizontal, and left–right
mirroring methods, so that the data used for model 1 training are raised from 250 to 1000;
(2) adjusting the algorithm architecture of pix2pixHD, the generator architecture of Model
1 can be simplified to generate more local and precise B-side data. The number of residual
blocks in the global downsampling layer (n_downsample_global) and the global generator
network (n_blocks_global) is reduced from 4 to 2 (or 1) and from 9 to 6, respectively.

Based on the above adjustments, Model 1 was retrained, in which 1000 sets of pictures
were used as the dataset, 950 sets were used as the training set, and 50 sets were used as the
test set. This experiment also performed 25,000 iterations and took 62 h. The final result is
shown in Figure 10. From the comparison chart, it can be seen that the adjusted and trained
Model 1 generates ideal results.

Finally, The loss curves of the two qualified performance models are shown is shown in
Figure 11. After training, the generator_loss of the two models is 0.38 and 0.091, respectively,
and the curves converge, indicating that M-StruGAN learned the features of the 2D flat
room functional layout and can automatically generate a 2D functional floor plan according
to the input mixed structural conditions.
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Figure 9. Partial display of M-StruGAN’s Model 2 generation results.

Figure 10. Final display of M-StruGAN’s Model 2 generation results.
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Figure 11. Model evaluation: (a) Model 1 generator_loss and (b) Model 2 generator_loss.

5. Result Evaluation

The experimental results are shown in the figure below (Figure 12). Although M-
StruGAN uses the input data of the training dataset, the generated results are entirely
different from the data results of the training dataset. As a result, M-StruGAN was able to
generate data autonomously that is entirely different from the original data based on the
learned 2D-plan layout rules. So far, M-StruGAN realized the generation of 2D-plan layout
diagrams based on mixed-structure conditions. However, the effectiveness of the results
generated by M-StruGAN, whether they can provide designers with specific design guidance,
and the extent to which they guide designers to design is unknown. Therefore, to objectively
evaluate the generation quality of M-StruGAN, this paper evaluates its (1) image synthesis
quality, (2) scheme design rationality, and (3) scheme design quality.

Figure 12. M-StruGAN generated results.

5.1. Image Synthesis Quality Assessment

The generation model based on M-StruGAN can generate realistic images from new
input data, but the generated images cannot distinguish minor quality differences through
subjective judgment. Therefore, in order to objectively evaluate the image quality generated
by M-StruGAN, this paper uses computer-vision-based synthetic image evaluation tech-
niques, namely peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM), to
evaluate the similarity between the M-StruGAN output and the target image [48].

PSNR is one of the most widely used methods in evaluating synthetic images based
on computer vision. It is based on error-sensitive image quality evaluation. The smaller
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the PSNR value, the better the image quality [49,50]. PSNR can be calculated by the
following formula:

PSNR = 10 · log10

(
MAX2

I
MSE

)
(1)

MSE =
1

M × N

M

∑
i=1

N

∑
j=1

(f i(i, j)− f(i, j))
2

(2)

where MAX2
I is the maximum possible pixel value of the image; MSE is root mean squared

error (mean squared error); M and N are the length and width of the image; R and F are the
output result and the reference target image, R(i,j) and F(i,j) are the gray values of the pixel
at coordinates (i,j) in the image; and MAX (value range 0–255) represents the largest gray
value in the image.

SSIM is also an evaluation index to measure image quality. SSIM focuses more on
evaluating the consistency of images in terms of brightness, color, etc., while taking into
account high-frequency information such as image edges and details. The value of SSIM is
calculated by the following formula:

SSIM =
(2µ xµy+C1)(2σ xy+C2)

(µ 2
x+µ2

y+C1)(σ
2
x+σ2

y+C2)
(3)

where µx and µy are the average gray values of R and F, σ2
x and σ2

y are the variance of the
gray value of R and F, σxy is the gray value covariance of R and F, and C1 and C2 are two
constants close to 0. The maximum value of SSIM is 1, and the smaller the value of SSIM,
the worse the similarity quality of the generated images.

This study calculated and arithmetically averaged the PSNR and SSIM of 50 different
2D-plan functional partition pictures and 2D-plan layout pictures generated by M-StruGAN.
The summary results are shown in Table 1.

Table 1. Image quality evaluation results.

Evaluation Indicators A to B B to C

PSNR (average) 28.563 31.897
SSIM (average) 0.856 0.889

Comparing PSNR with SSIM shows that the SSIMs of the images generated by Model 1
and Model 2 are both greater than 0.8, and the average PSNR is around 30. Since the images
generated by Model 1 (A to B) contain more coding information and the accuracy is difficult
to grasp, the PSNR and SSIM values of this group of algorithms are smaller than those
of the Model 2 (B to C) algorithm group. The evaluation results show that although the
quality of the images generated by M-StruGAN does not reach the quality of the target
images, it still has a certain authenticity and practicability.

5.2. Plan Rationality Assessment

More complex than image quality assessment is the quality assessment of generative
designs, which requires reasonable consideration of the rationality of 2D-plan functional
designs. Through a literature review, the authors found that Amazon Mechanical Turk
(AMT) perception evaluation is a commonly used method for judging the rationality of
generated results, that is, judgment by professionals from a professional perspective [51].
Therefore, this study develops a designer perceptual-based evaluation method to evaluate
the rationality of the 2D-plan layouts generated by M-StruGAN based on the extensive use
of ATM-aware evaluation. Designer perception evaluation is the most direct evaluation
method for the quality of automatic plane generation. A total of 25 experienced architectural
designers were invited for this evaluation experiment. Ten of them are senior experts (with
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more than 15 years of work experience) and 15 are in-service designers or graduate students.
During the interview, they were asked to evaluate the following two parts of the 2D-plan
based on their experience and perception:

1. Judging whether the 2D-plan is generated by artificial intelligence or drawn by
a designer.

2. Evaluate and score the rationality of the 2D-plan design drawings.

Additionally, according to the collected and statistical evaluation results, the corre-
sponding analysis indicators were put forward, where SEP−1 is the success rate of deception
to judge whether the 2D plan is AI- or designer-generated, expressed by Equation (4), SEP−2
is the score made by the designer based on the design scheme, expressed by Equation (5).
ηex and ηnonex are weight coefficients for expert vs. nonexpert scores, as in Equation (6).

SEP−1 =
1

Nex+Nnoex

Nex+Nnoex

∑
i

NF

NF+NT
(4)

SEP−2= ηex
1

Nex

Nex

∑
i

(
1

Nimg

Nimg

∑
J

Sj

)
+ηnonex

1
Nnonex

Nnonex

∑
i

(
1

Nimg

Nimg

∑
J

Sj

)
(5)

ηex =
σnonex /µnonex

σex /µex+σnonex /µnonex
ηnonex= 1 − ηex (6)

Nex and Nnoex are the numbers of experts and nonexperts, NF and NT are the numbers
of misjudgments and correct judgments of the design, Nimg is the number of evaluation
images, Sj is the score of image J, σex and σnonex are the scores of experts’ and nonexperts’
standard deviation, and F and H are the averages of expert and nonexpert scores. The
determination of the weight coefficient in the equation refers to the coefficient based on
the variation method proposed by Diakoulaki et al., wherein a smaller variation coefficient
corresponds to a higher weight. The questionnaire is presented in Table 2.

Table 2. The perception questionnaire of architectural designers.

Look at the Two Pictures below and Answer the Questions
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Table 2. Cont.

Question Answer Options

1. Please distinguish whether the above 2D-plan drawing is generated by AI or
designed by designers. A. AI generation B. Designer design

2. Please evaluate the rationality of the 2D-plan drawing. (1 is unreasonable, 5 is
very reasonable) A. 1 B. 2 C. 3 D. 4 E. 5

The result statistics are shown in Table 3.

1. About 63.20% of the M-StruGAN-generated drawings were evaluated as architects’
drawings, 73.80% were evaluated as architect’s design drawings by nonprofessional
designers, and the corresponding equals 68.50%. It can be seen that it is difficult for
experimenters to distinguish M-StruGAN from the designer’s design accurately.

2. The difference in rationality quantification between the design drawings generated
by M-StruGAN and the designer’s design drawings is about 13.01%, which confirms
the excellence of M-StruGAN 2D graphic design and the designer’s recognition of its
design generation results.

Table 3. Analysis of evaluation results.

Designer

Judging the Probability of AI or
Designer Design Quantitative Scoring

Percentage of
AI-Generated Images
Marked as Designers

SEP-1

Designer
Design
Score

(Average out
of 5)

AI Design
Score

(Average
Out of 5)

Designer
Design SEP-2

Score

AI Design
SEP-2 Score

SEP-2 Score
Difference

Expert 63.20%
68.50%

3.50 3.30
3.60 3.05 −13.01%

Nonexpert 73.8% 3.81 3.54

In conclusion, M-StruGAN meets the requirements of high efficiency and high quality
in the preliminary scheme design of 2D plans. Although the overall rationality of the
preliminary 2D plan generated by M-StruGAN is not as good as the designer’s optimized
design, it is believed that the initial setup of M-StruGAN will be a good starting point for
subsequent optimization. Moreover, with the continuous optimization of M-StruGAN, the
gap between its design and the designer’s design will gradually narrow.

5.3. Design Quality Assessment

To evaluate the quality of the scheme generated by M-StruGAN, we analyzed its
generation scheme according to the design elements of the floor plan and judged how it can
better assist the design. This mainly includes (1) whether the room type is complete [52],
(2) whether the area of the room is within a reasonable range [53], (3) whether the bay
and depth of the room meet the needs of users [54–56], (4) whether the room has natural
lighting [57], (5) room accessibility [58], and (6) whether the adjacency of the rooms is
correct (Figure 13) [59–63].

In addition to design quality, design efficiency, economy, and stability of design quality
are also crucial. The performance of the output of M-StruGAN was tested against these
criteria to assess how well M-StruGAN understands certain architectural factors. This
study evaluated a total of 50 2D-plan drawings automatically generated by M-StruGAN,
and the authors analyzed it according to the above six design criteria. We found that 98%
of the 2D-plan solutions were fully functional (including living room, kitchen, dining room,
bathroom, guest room, and utility room), and more than 95% of the area of the rooms is
within a reasonable range. The depth of 90% of the rooms meets the needs of use, the
lighting of more than 70% of the rooms meets the sunlight requirements, the accessibility
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of 90% of the solutions is good, and the adjacency relationship between the rooms of more
than 80% of the solutions is correct (Figure 14). These results show that M-StruGAN learned
the “design rules” in the 2D-plan layout of homestays and can handle the interrelationships
between various functions well.

Figure 13. Some examples of output evaluation: 1. Function. 2. Area. 3. Bay depth ratio.
4. Daylighting. 5. Accessibility. 6. Adjacency.

Figure 14. M-StruGAN performance test results.

6. Human–Computer Interaction Application

The purpose of this research is not only to realize the automatic generation of layout
results by machines but also, hopefully, to apply the results in the real design process to
assist designers or users in rapid design ideas, so as to provide a possible thinking scheme.
In response to this problem, we provide users with a simple M-StruGAN interface. This
intelligent aided design webpage can directly use the model we trained for the 2D-plan design
of homestays. It can quickly and automatically generate layout results and feedback to the
user according to the mixed-structure information input by the user (Figures 15 and 16).

By comparing the timeliness and economy of M-StruGAN and designer designs, we
find that it takes about 3.5 h for a designer to design a 2D-plan preliminary design for a
homestay, while M-StruGAN takes 10 min or less. M-StruGAN is about 20 times more
efficient than a designer’s design. The cost of designing a plan for the designer pays hourly
or monthly wages according to the time and workload. At the same time, M-StruGAN
only needs to complete the previous model training to continuously generate plans with
zero cost. The quality stability of the designer’s design scheme is related to the designer’s
design experience. In contrast, the design quality of M-StruGAN is related to the training
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dataset, so its design quality is stable and has nothing to do with the user’s experience level
(Table 4).

Figure 15. M-StruGAN web application version.

Figure 16. M-StruGAN generation of 2D-plan layout and traditional method generation results.
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Table 4. Comparison of timeliness and economy between M-StruGAN and designer designs.

Categories Timeliness Economy Design Quality Stability

Designer 3.5 h/preliminary design Each item is charged at the market price Depends on the designer’s experience
M-StruGAN 10 min/preliminary design Efficient and fast operation with 0 fees The design quality is stable

Comparison M-StruGAN design
efficiency is 20 times faster

The design cost of M-StruGAN is much
lower than the designer’s design cost

M-StruGAN design quality is
more stable

7. Conclusions and Discussion

This paper proposes an intelligent 2D-plan generation method based on mixed struc-
tural constraints for homestays. The purpose of this method is to quickly and efficiently
generate the corresponding function layout diagram by giving the conditions of the mixed
structural constraints, thereby effectively reducing the designer’s workload. Then, the im-
age synthesis quality, scheme design rationality, and scheme design quality of the generated
results of M-StruGAN are evaluated. It can provide designers with effective architectural
layout schemes and has broad application prospects in auxiliary design. Finally, we apply
it to human–computer interaction. The user can modify the structural conditions according
to the requirements and obtain the generated results in time. To sum up, M-StruGAN
provides architects with a preliminary homestay layout and improves the quality and
efficiency of 2D layout design. The conclusions drawn are as follows:

1. The trained M-StruGAN can generate 2D plans based on mixed structural constraints.
2. This study used three evaluation methods: image synthesis quality assessment,

scheme rationality assessment, and scheme design quality assessment. Image syn-
thesis quality assessment quantifies and confirms the drawing generation quality of
M-StruGAN; the rationality evaluation of the scheme shows that designers have a
high degree of acceptance of the M-StruGAN design; and the scheme design quality
evaluation shows that M-StruGAN has completed learning 2D layout design elements.

3. Through the human–computer interaction application of M-StruGAN, it can be found
that compared with traditional design methods, M-StruGAN based on pix2pixHD
has high-definition image quality, higher design efficiency, lower design cost, and
more stable design quality. Therefore, M-StruGAN has a high application prospect in
aided design.

The 2D-plan generation method based on mixed constraints proposed in this study
can be well applied in plan layout with structural constraints. In terms of the design
method, the design method of M-StruGAN is very in line with the 2D-plan creation
process of architectural designers. In terms of design efficiency, this method of directly
generating 2D-plan functional zoning diagrams and scheme layout diagrams from the
first draft drawing limited by structural conditions saves the tedious process of drawing
sketches in the middle and dramatically improves the efficiency of scheme design. From
the perspective of application scenarios, M-StruGAN can also meet the needs of designers
for scheme deliberation, and this repetitive modification work does not consume too much
from computers. More scheme comparison means a more refined design, and this system
helps designers to focus more on creative ideas.

In addition to generating the layout of homestays with mixed structural restrictions,
M-StruGAN can also be applied to the layout and renovation design of museums, garages,
and teaching buildings. In fact, with the saturation of urban construction, any design that
needs to relayout and reuse the original building functions can use a similar method to
deliberate on the floor plan.

However, this study also found that although M-StruGAN was initially applied in
2D-plan functional layouts, there are still limitations, such as unstable model training,
blurred image recognition, and insufficient output solutions. For example, the design
quality evaluation results of M-StruGAN show that M-StruGAN has some unexpected
problems in the functional layout, and there are significant errors in meeting the room’s
natural lighting. In addition, the intelligent generation algorithm pix2pixHD used in this
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study, in terms of image generation quality, can already meet the resolution requirements
of 2D-plan scheme diagrams. However, it can only be used as a design reference for
designers and cannot be directly applied to detailed design engineering. Although the
data resources of architectural 2D plans are sufficient, collecting and processing data is
currently a particularly time-consuming task. Therefore, the generation system proposed
in this study needs further improvement in intelligent data processing.

Author Contributions: Conceptualization, X.G. (Xiaoni Gao); methodology, X.G. (Xiaoni Gao); soft-
ware, X.G. (Xiaoni Gao); supervision, X.G. (Xiangmin Guo) and T.L.; visualization, X.G. (Xiaoni Gao);
writing—original draft, X.G. (Xiaoni Gao). All authors have read and agreed to the published version
of the manuscript.

Funding: This research was supported by the following funds: Later Funded Projects of National
Philosophy and Social Science Foundation of China (No. 19FXWB026); Youth Project of National
Natural Science Foundation of China (No. 51908158); Higher Education Research and Reform Project
of Guangdong Province (No. HITSZERP19001); General Project of Stabilization Support Program
of Shenzhen Universities (No. GXWD20201230155427003-20200822174038001); Shenzhen Excellent
Science and Technology Innovation Talent Training Project (No. ZX20210096).

Data Availability Statement: Data presented in this research are available upon request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kim, G.; Schaefer, L.; Kim, J.T. Development of a Double-Skin Façade for Sustainable Renovation of Old Residential Buildings.

Indoor Built Environ. 2012, 22, 180–190. [CrossRef]
2. Liao, H.; Ren, R.; Li, L. Existing Building Renovation: A Review of Barriers to Economic and Environmental Benefits. Int. J.

Environ. Res. Public Health 2023, 20, 4058. [CrossRef]
3. Häkkinen, T.; Ruuska, A.; Vares, S.; Pulakka, S.; Kouhia, I.; Holopainen, R. Methods and Concepts for Sustainable Renovation of

Buildings; VTT Technical Research Centre of Finland: Espoo, Finland, 2012; pp. 154–196.
4. You, W.; Shen, J.; Ding, W. Improving Wind Environment of Residential Neighborhoods by Understanding the Relationship

between Building Layouts and Ventilation Efficiency. Energy Proc. 2017, 105, 4531–4536. [CrossRef]
5. Hsu, S.-L.; Lin, S.-L. Factors underlying college students’ choice homestay accommodation while travelling. World Trans. Eng.

Technol. Educ. 2018, 9, 156–165.
6. Kayat, K. Customer Orientation among Rural Home Stay Operators in Malaysia. Asean J. Hosp. Tour. 2017, 6, 65. [CrossRef]
7. Hu, S.; Yan, D.; Guo, S.; Cui, Y.; Dong, B. A survey on energy consumption and energy usage behavior of households and

residential building in urban China. Energy Build. 2017, 148, 366–378. [CrossRef]
8. Kontogeorgopoulos, N.; Churyen, A.; Duangsaeng, V. Homestay Tourism and the Commercialization of the Rural Home in

Thailand. Asia Pac. J. Tour. Res. 2013, 20, 29–50. [CrossRef]
9. Gimenez, L.; Hippolyte, J.-L.; Robert, S.; Suard, F.; Zreik, K. Review: Reconstruction of 3D building information models from 2D

scanned plans. J. Build. Eng. 2015, 2, 24–35. [CrossRef]
10. Peng, X.; Liu, P.; Jin, Y. The Age of Intelligence: Urban Design Thinking, Method Turning and Exploration. In Proceedings of the

2019 DigitalFUTURES, Shanghai, China, 7–8 July 2020; pp. 275–284.
11. Mitchell, W.J. The theoretical foundation of computer-aided architectural design. Comput. Aided Des. 1976, 8, 285. [CrossRef]
12. Chokwitthaya, C.; Zhu, Y.; Mukhopadhyay, S.; Collier, E. Augmenting building performance predictions during design using

generative adversarial networks and immersive virtual environments. Autom. Constr. 2020, 119, 103350. [CrossRef]
13. Lawson, B. Towards a computer-aided architectural design process: A journey of several mirages. Comput. Ind. 1998, 35, 47–57.

[CrossRef]
14. Rampini, L.; Cecconi, F.R. Artificial intelligence in construction asset management: A review of present status, challenges and

future opportunities. J. Inf. Technol. Constr. 2022, 27, 884–913. [CrossRef]
15. Liang, L.; Ye, H.; Li, G.Y. Multi—Agent Reinforcement Learning for Spectrum Sharing in Vehicular Networks. In Proceedings

of the 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Cannes,
France, 2–5 July 2019; pp. 224–235.

16. Nadimi-Shahraki, M.H.; Taghian, S.; Mirjalili, S.; Faris, H. MTDE: An effective multi-trial vector-based differential evolution
algorithm and its applications for engineering design problems. Appl. Soft Comput. 2020, 97, 106761. [CrossRef]

17. Yu, X.; Li, C.; Zhou, J. A constrained differential evolution algorithm to solve UAV path planning in disaster scenarios. Knowl.
Based Syst. 2020, 204, 106209. [CrossRef]

18. Lachhwani, K. Application of neural network models for mathematical programming problems: A state of art review. Arch.
Comput. Methods Eng. 2020, 27, 171–182. [CrossRef]

https://doi.org/10.1177/1420326X12469533
https://doi.org/10.3390/ijerph20054058
https://doi.org/10.1016/j.egypro.2017.03.972
https://doi.org/10.5614/ajht.2007.6.2.01
https://doi.org/10.1016/j.enbuild.2017.03.064
https://doi.org/10.1080/10941665.2013.852119
https://doi.org/10.1016/j.jobe.2015.04.002
https://doi.org/10.1068/b020127
https://doi.org/10.1016/j.autcon.2020.103350
https://doi.org/10.1016/S0166-3615(97)00083-3
https://doi.org/10.36680/j.itcon.2022.043
https://doi.org/10.1016/j.asoc.2020.106761
https://doi.org/10.1016/j.knosys.2020.106209
https://doi.org/10.1007/s11831-018-09309-5


Sustainability 2023, 15, 7126 18 of 19

19. Veloso, P.; Celani, G.; Scheeren, R. From the generation of layouts to the production of construction documents: An application in
the customization of apartment plans. Autom. Constr. 2018, 96, 224–235. [CrossRef]

20. Merrell, P.; Schkufza, E.; Koltun, V. Computer-generated residential building layouts. In Proceedings of the ACM SIGGRAPH
Asia 2010 Papers on—SIGGRAPH ASIA’10, Seoul, Republic of Korea, 15–18 December 2010; pp. 1–12.

21. Laignel, G.; Pozin, N.; Geffrier, X.; Delevaux, L.; Brun, F.; Dolla, B. Floor plan generation through a mixed constraint programming-
genetic optimization approach. Autom. Constr. 2021, 123, 103491. [CrossRef]

22. Inoue, M.; Takagi, H. Layout algorithm for an EC-based room layout planning support system. In Proceedings of the 2008 IEEE
Conference on Soft Computing in Industrial Applications, Muroran, Japan, 25–27 June 2008; pp. 165–170.

23. Gimenez, L.; Robert, S.; Suard, F.; Zreik, K. Automatic reconstruction of 3D building models from scanned 2D floor plans. Autom.
Constr. 2016, 63, 48–56. [CrossRef]

24. Sun, C.; Cong, X.; Han, Y. CGAN-Based Generative Design Method for Residential Areas’ Strong Drainage Scheme. J. Harbin Inst.
Technol. 2021, 53, 111–121.

25. Singaravel, S.; Suykens, J.; Geyer, P. Deep-learning neural-network architectures and methods: Using component-based models
in building-design energy prediction. Adv. Eng. Inform. 2018, 38, 81–90. [CrossRef]

26. Chaillou, S. AI and architecture: An experimental perspective. In The Routledge Companion to Artificial Intelligence in Architecture,
1st ed.; Routledge: London, UK, 2021; Volume 38, pp. 420–441.

27. Ghosh, S.; Das, N.; Das, I.; Maulik, U. Understanding deep learning techniques for image segmentation. ACM Comput. Surv. 2019,
52, 73. [CrossRef]

28. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

29. Yang, Z.; Gan, Z.; Wang, J.; Hu, X.; Ahmed, F.; Liu, Z.; Lu, Y.; Wang, L. UniTAB: Unifying Text and Box Outputs for Grounded
Vision-Language Modeling. In Proceedings of the Computer Vision—ECCV, Tel Aviv, Israel, 23–27 October 2022.

30. Deng, M.; Tan, Y.; Singh, J.; Joneja, A.; Cheng, J.C. A BIM-based framework for automated generation of fabrication drawings for
façade panels. Comput. Ind. 2021, 126, 103395. [CrossRef]

31. Liu, Y.; Stouffs, R. Urban design process with conditional generative adversarial networks. Archit. J. 2018, 9, 108–111.
32. Zheng, H. Drawing with Bots: Human-Computer Col-Laborative Drawing Experiments. In Proceedings of the 23rd International

Conference on Computer-Aided Architectural Design Research in Asia: Learning, Prototyping and Adapting, Beijing, China,
17–19 May 2018; pp. 156–165.

33. Shen, J.; Liu, C.; Ren, Y.; Zheng, H. Machine learning assisted urban filling. In Proceedings of the 25th CAADRIA Conference,
Bangkok, Thailand, 5–6 August 2020; pp. 5–6.

34. Cho, D.; Kim, J.; Shin, E.; Choi, J.; Lee, J.K. Recognizing architectural objects in floor-plan drawings using deep-learning style-
transfer algorithms. In Proceedings of the 25th International Conference on Computer-Aided Architectural Design Research in
Asia, Bangkok, Thailand, 5–6 August 2020; pp. 719–727.

35. Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134.

36. Peters, N. Enabling Alternative Architectures: Collaborative Frameworks for Participatory Design. Ph.D. Thesis, Harvard
University Graduate School of Design, Cambridge, MA, USA, 2022.

37. Liu, Y.; Luo, Y.; Deng, Q.; Zhou, X. Exploration of Campus Layout Based on Generative Adversarial Network: Discussing the
Significance of Small Amount Sample Learning for Architecture. In Proceedings of the 2020 DigitalFUTURES: The 2nd International
Conference on Computational Design and Robotic Fabrication (CDRF 2020), Shanghai, China, 5–6 July 2020; pp. 169–178.

38. Zhao, P.; Liao, W.; Huang, Y.; Lu, X. Intelligent design of shear wall layout based on graph neural networks. Adv. Eng. Inform.
2023, 55, 101886. [CrossRef]

39. Yang, D.; Li, Q.; Fang, H.; Liu, Z. One day ahead prediction of global TEC using Pix2pixhd. Adv. Space Res. 2022, 70, 402–410.
[CrossRef]

40. Wang, T.C.; Liu, M.Y.; Zhu, J.Y.; Tao, A.; Kautz, J.; Catanzaro, B. High-resolution image synthesis and semantic manipulation with
conditional gans. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 8798–8807.

41. Qu, Y.; Chen, Y.; Huang, J.; Xie, Y. Enhanced pix2pix dehazing network. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019.

42. Mokhtar, S.; Sojka, A.; Davila, C.C. Conditional generative adversarial networks for pedestrian wind flow approximation. In
Proceedings of the 11th Annual Symposium on Simulation for Architecture and Urban Design, Vienna, Austria, 25–27 May 2020.

43. Wu, W.; Fu, X.M.; Tang, R.; Wang, Y.; Qi, Y.H.; Liu, L. Data-driven interior plan generation for residential buildings. ACM Trans.
Graph. 2019, 38, 234. [CrossRef]

44. ZHENG, H.; Keyao, A.N.; Jingxuan, W.E.I.; Yue, R.E.N. Apartment floor plans generation via generative adversarial networks. In
Proceedings of the 25th International Conference of the Association for Computer-Aided Architectural Design Research in Asia
(CAADRIA 2020): RE: Anthropocene, Design in the Age of Humans, Bangkok, Thailand, 5–6 August 2020.

45. Anderson, C.; Bailey, C.; Heumann, A.; Davis, D. Augmented space planning: Using procedural generation to automate desk
layouts. Int. J. Archit. Comput. 2018, 16, 164–177. [CrossRef]

https://doi.org/10.1016/j.autcon.2018.09.013
https://doi.org/10.1016/j.autcon.2020.103491
https://doi.org/10.1016/j.autcon.2015.12.008
https://doi.org/10.1016/j.aei.2018.06.004
https://doi.org/10.1145/3329784
https://doi.org/10.1145/3422622
https://doi.org/10.1016/j.compind.2021.103395
https://doi.org/10.1016/j.aei.2023.101886
https://doi.org/10.1016/j.asr.2022.03.038
https://doi.org/10.1145/3355089.3356556
https://doi.org/10.1177/1478077118778586


Sustainability 2023, 15, 7126 19 of 19

46. Tafraout, S.; Bourahla, N.; Bourahla, Y.; Mebarki, A. Automatic structural design of RC wall-slab buildings using a genetic
algorithm with application in BIM environment. Autom. Constr. 2019, 106, 102901. [CrossRef]

47. Nauata, N.; Chang, K.H.; Cheng, C.Y.; Mori, G.; Furukawa, Y. House-gan: Relational generative adversarial networks for
graph-constrained house layout generation. In Proceedings of the Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, 23–28 August 2020.

48. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015.

49. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to structural similarity. IEEE
Trans. Image Process. 2004, 13, 25–34. [CrossRef]

50. Prasad, P.M.K.; Telagarapu, P.; Madhuri, G.U. Image compression using orthogonal wavelets viewed from peak signal to noise
ratio and computation time. Int. J. Comput. Appl. 2012, 47, 25–34.

51. Lu, L.; Neale, N.; Line, N.D.; Bonn, M. Improving data quality using Amazon mechanical Turk through platform setup. Cornell
Hosp. Q. 2022, 63, 231–246. [CrossRef]

52. Suebsuk, N.; Nakagawa, O. Sustainable Infrastructure and Conservation Ideas on Homestay Modification; Owners’ Motivation
and Tourists’ Satisfaction in Amphawa, Thailand. Int. J. Eng. Technol. 2014, 41, 414. [CrossRef]

53. Getz, D.; Carlsen, J. Characteristics and goals of family and owner-operated businesses in the rural tourism and hospitality
sectors. Tour. Manag. 2000, 21, 547–560. [CrossRef]

54. Chaves, M.S.; Gomes, R.; Pedron, C. Analysing reviews in the Web 2.0: Small and medium hotels in Portugal. Tour. Manag. 2012,
33, 1286–1287. [CrossRef]

55. Demolingo, R.H.; Moniaga, N.E.P.; Karyatun, S.; Wiweka, K. Homestay Development Strategies in Cibodas Village. Int. J. Soc. Sci.
Hum. Res. 2021, 4, 447–461. [CrossRef]

56. Chen, J.; Su, Y.; Zong, D. Notes on the Construction of Manan House Langqing. Archit. J. 2016, 09, 90–95.
57. Tian, J. Research on the renovation and design of traditional residential buildings. Design 2017, 19, 152–153.
58. Dong, K. Research on the Design of Residential Renovation Homestay under the Background of Rural Tourism. Hous. Real Estate

2018, 31, 69–145.
59. Mao, W.; Xie, D. Analysis of B&B Design Strategy Based on Low-Carbon Concept—Taking Moganshan Naked Heart Valley B&B

as an Example. Build. Energy Conserv. 2019, 47, 86–89.
60. Xu, X.; Yin, C.; Wu, Y. Preliminary Exploration to the Mountainous Architectural Design of the Mode of Container—The Case of

the Sports Homestay in Jubao Mountain, Nanjing. Chin. Overseas Archit. 2018, 5, 124–126.
61. Sufianto, H.; Baskara, M.; Sugiarto, B.; Citraningrum, A.; Adhitama, M.S. Architectural Concept for Homestay in Rural Area-A

Case Study of Homestay Design in Sumbersari Village-Malang. IOP Conf. Ser. Earth Environ. Sci. 2019, 328, 012042. [CrossRef]
62. Wan, D.; Zhao, R.; Zhang, S.; Liu, H.; Guo, L.; Li, P.; Ding, L. A Deep Learning-Based Approach to Generating Comprehensive

Building Façades for Low-Rise Housing. Sustainability 2023, 15, 1816. [CrossRef]
63. Sofiana, Y. Designing for behavioral change: Transforming of rural home into tourism facilities. In Proceedings of the IOP

Conference Series: Earth and Environmental Science, Malang City, Indonesia, 12–13 March 2019.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.autcon.2019.102901
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1177/19389655211025475
https://doi.org/10.7763/IJET.2014.V6.734
https://doi.org/10.1016/S0261-5177(00)00004-2
https://doi.org/10.1016/j.tourman.2011.11.007
https://doi.org/10.47191/ijsshr/v4-i3-27
https://doi.org/10.1088/1755-1315/328/1/012042
https://doi.org/10.3390/su15031816

	Introduction 
	Literature Review 
	M-StruGAN Method 
	Implementation of M-StruGAN 
	Mixed Structural Element Extraction 
	Dataset Production 
	M-StruGAN Training and Results 

	Result Evaluation 
	Image Synthesis Quality Assessment 
	Plan Rationality Assessment 
	Design Quality Assessment 

	Human–Computer Interaction Application 
	Conclusions and Discussion 
	References

