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Abstract: In response to the requirement to address the global climate crisis in urban areas caused by
the logistics sector, an increasing number of governments around the world have begun aggressive
strategic actions to encourage manufacturers and consumers to adopt electric vehicle (EV) technology.
One of the most beneficial aspects of driving an EV is that it reduces pollution while also reducing
the use of fossil fuels, as well as improving public health by improving local air quality. Nevertheless,
the level of EV adoption differs significantly across markets and geographies. EV adoption barriers
slow the overall rate of electric mobility. This study ranks a list of obstacles and sub-hindrances to
the adoption of electric vehicles in Thailand using the Fuzzy Analytical Hierarchy Process (FAHP), a
Multi-Criteria Decision Making (MCDM) technique. The results showed that infrastructure policy
barrier (A), which had the highest weight of 0.6058, was the biggest barrier to EV adoption, followed
by technological barrier (B) with a weight of 0.2657, and then by market barrier with a weight of 0.1285.
Insufficient charging infrastructure network (A3), lack of proper government support/incentives and
collaboration (A1), insufficient electric power supply (A2), high capital cost (C3), and EV charging
time (B3) were key sub-barriers to EV adoption in Thailand. Decision Making Systems (DMS) have
additionally been created to assist executives in making decisions about the aforementioned barriers.
The DMS is based on the concept of computer-aided decision making in that it allows for direct user
interaction, analysis, and the ability to change circumstances and the decision-making process based
on the executives’ own experience and abilities. Thus, the findings of this study aid in the formulation
of market strategies for relevant stakeholders and shed light on potential policy responses.

Keywords: adoption; barriers; electric vehicle (EV); decision making systems (DMS); fuzzy analytical
hierarchy process (FAHP)

1. Introduction

Reportedly, energy demand in the transportation sector is increasing due to the rapid
increase in vehicle numbers, making this sector a significant emitter of global greenhouse
gas emissions from gasoline-fueled consumption. The transportation sector was responsible
for 24.6% of total global CO2 emissions [1]. Automobiles are clearly the main source of emis-
sions in this sector, which contributes to the deterioration of the ecological environment [2].
Concerns about this issue have grown around the world [3,4]. According to Samaras and
Meisterling [5] and Adhikari et al. [6], electric vehicles (EV) are among the most promising
energy vehicle technologies, with the potential to reduce energy consumption as well as
life-cycle GHG emissions in the transportation sector. Cox [7] and Romm [8] have also

Sustainability 2023, 15, 7003. https://doi.org/10.3390/su15087003 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15087003
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-7600-9752
https://orcid.org/0000-0003-1988-6588
https://orcid.org/0000-0002-4155-0688
https://doi.org/10.3390/su15087003
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15087003?type=check_update&version=2


Sustainability 2023, 15, 7003 2 of 20

asserted that EVs are one of the relatively lowest-cost solutions to the problem of CO2
emissions and air pollution.

Aware of the potential environmental benefits of EVs, a number of countries, includ-
ing Thailand, are contemplating EV adoption [6]. Since 2015, the Thai government has
launched Thailand 4.0, a new national economic strategy, and developed a roadmap and
policy to promote EV technology and support EV production, RandD, and usage in the
country. The main goal was to reduce road pollution and promote the country as one of
the world’s major production bases for zero-emission vehicles (ZEVs). Furthermore, the
Thai government has established a Twenty-Year Plan EV roadmap and countrywide en-
ergy policy (2016–2036), with ambitious targets of manufacturing 1.2 million EVs, building
690 public fast chargers, and reducing energy intensity by 30% by 2036 [9]. To encourage EV
market penetration, the Thai government has implemented a number of incentives and subsi-
dies, including tax breaks and subsidies for imported and domestically produced automobiles
and motorcycles. The excise tax on electric vehicles has been reduced from 8% to 2%, with
subsidies amounting from 2000 to 4000 USD, depending on the vehicle’s type and model.

Electric vehicle adoption has increased since 2015. Nonetheless, several impediments
to widespread purchasing activity remain. Several studies, mostly based on surveys
and questionnaires, investigated numerous barriers to the successful diffusion of EVs in
international contexts such as the United States, the United Kingdom, China, and India [10].
There is, however, very little empirical evidence specific to Thailand. Two studies on this
topic were discovered focusing on the Thai market. Kongklaew et al. [11] investigated
the relationship between barriers and personal characteristics on the consumer side of
EV adoption. Meesuwan [12] conducted a qualitative analysis to identify barriers to EVs
uptake in Thailand.

It was found that those barriers were frequently classified into several categories with both
tangible and intangible aspects. Acknowledging those barriers and prioritizing the most major
obstacles to EV acceptance would aid in the planning of strategies for tackling and extracting
top-ranked barriers, as well as enabling and accelerating consumer adoption of EVs.

Since the majority of problems encountered in practice, including barriers to EV
adoption in Thailand, are complicated and have various features, various investigations
have been carried out to discover decision-making methods that minimize errors. The
allocation of weight between the various aspects is critical to the predictive ability of
multi-criteria decision-making (MCDM), and different aspect weighting strategies may
lead to various decision outcomes [13]. Equal weights (EW) method [14], rank-order
centroid (ROC) weights are some examples of various approximation weighting methods
in scenarios where only the rank order information is available [15]. Other popular methods
include rank-sum (RS) and rank reciprocal (RR) weights, which were proposed by Einhorn
and McCoach [16] and Stillwell, Seaver and Edwards [17], respectively. These methods
rank the attributes in order of importance, then weight each one in proportion to its position
in the rank order.

Furthermore, when relative weight information is available, a ratio scale weighting
method can be used, as it not only provides weight order information but also illustrates
the magnitude difference between weights. However, true ratio weights are challenging to
determine and are especially susceptible to response error [18].

According to Ishizaka and Nemery [19] and Song and Kang [20], other approaches
for acquiring specific weights in real-world applications include the Delphi method [21],
utility theory [22], Data envelopment analysis (DEA) [23] and analytic hierarchy process
(AHP) [24]. Nevertheless, none of these techniques are completely perfect. Each has its own
set of limitations, peculiarities, hypotheses, premises, and perspectives [25]. The Delphi
method is based on multiple rounds of questionnaires distributed to an expert panel. There
are two drawbacks: (1) the response time can be long, slowing the rate of discussion; and
(2) it is also possible that the knowledge gained from the experts does not have inherent
value. Utility analysis attempts to elicit a multidimensional utility function over the relevant
attributes of the decision problem’s consequences in order to rank options. It can, however,
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be a time-consuming and difficult, if not impossible, task. This is due to difficulties in
specifying the appropriate set of attributes and how they should be measured, as well as
in comprehending the complex, obscure, and uncertain relationships that frequently exist
between decisions and their consequences. In a DEA model, each decision unit is evaluated
based on various outputs and inputs and classified as effective or ineffective. However,
depending on the identified outputs and inputs, the measurement results may be sensitive.

The AHP method, on the other hand, is widely used in many fields of life due to its
simplicity and flexibility. AHP makes decisions based on both quantitative and qualitative
criteria [26], and it is well suited for group decision making as well as being understandable
to administrators and decision-makers [27]. However, it has been claimed that AHP is
incapable of dealing with an imprecise or unbalanced scale of judgment resulting from a
pair-wise comparison process, which will affect the accuracy of the data and the results
obtained. On the basis of this, another theory, the Fuzzy Analytic Hierarchy Process method,
was developed.

Fuzzy logic is founded on the observation that people make decisions based on
inaccurate and non-numerical data. Fuzzy models and sets are mathematical tools used
to represent ambiguous and inaccurate data. These models can recognize, represent,
manipulate, interpret, and use ambiguous and uncertain data and information. The fuzzy
set theory can be used to deal with uncertainty caused by vagueness [28]. Given that
fuzzy can assist decision-makers in dealing with ambiguities in level of measurement data
evaluation, it was combined with multi-criterion decision methods to determine the best
result [29]. Consequently, Fuzzy Analytical Hierarchy Process (FAHP) method can be
thought of as a sophisticated analytical approach that evolved from the conventional AHP.

In order to help managers, investors, practitioners, and researchers come up with
potential solutions, it is necessary to use a MCDM technique to prioritize the obstacles to
EV adoption. Additionally, it is necessary to combine MCDM techniques with fuzzy logic
because the majority of decision-making issues arise in uncertain environments. As a result,
FAHP was used to rank a list of various barriers of EV adoption. Despite the fact that many
studies have identified barriers to electric vehicle adoption, very few have prioritized and
identified the primary challenges in Thailand within the framework of a decision-making
system (DMS). In this study, the FAHP is initially used to assess the barriers to EV adoption
according to systematically collected data.

To extend this knowledge, this research focuses on determining the relative importance of
the barriers to adopting EVs in Thailand using Fuzzy Analytical Hierarchy Process (FAHP) and
ranking a list of EV barriers and sub-barriers through the pairwise comparison method.

1. To begin with, FAHP is being used more and more to determine the importance of
barriers in a fuzzy environment due to its resemblance to human thoughts and coping
with unclear and ambiguous information [30].

2. The method can incorporate both quantitative and qualitative factors.
3. Finally, results obtained can be used to set the guideline for barrier prevention and

recommend ways to overcome them.

The following section presents a related study on barriers to the adoption of EV. After
that, research methodology is summarized in Section 3. Next, the findings of this research
are provided in Section 4. Finally, the conclusion and further study are highlighted.

2. Literature Review

Various governments are setting specific targets to encourage EV adoption in their
countries in order to reduce GHG emissions that cause climate change. Regardless of the
advantages of electric vehicles, numerous difficulties and limitations must be countered in
order to be fully implemented. Previous research had been conducted to investigate the
potential barriers to its adoption. According to relevant literature, barriers can be classified
into several categories. For example, Zubaryeva et al. [31] divided EV adoption barriers into
demographic criteria, environmental criteria, energy criteria, and transportation criteria.
Some classified these impediments into three categories: infrastructure, financial, and tech-
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nological obstacles [11,12,32]. These barriers were classified in this paper as infrastructure
policy, technological, and market barriers. The following are the specifics:

2.1. Infrastructure Policy Barrier

Infrastructure and policy support are examples of this barrier. Infrastructure barriers
include the availability and number of charging stations and networks [32,33] and the
accessibility of repair and maintenance centers [34]. According to Haddadianet al. [35],
because there is not enough charging infrastructure, prospective EV customers are hesitant
to invest in EVs. Another impediment to the development of EV markets is the difficulty in
installing home chargers, as some people do not have charging stations [36]. According to
Bhalla et al. [37], investment in infrastructure and networks could encourage EV adoption.
Electric vehicles use electricity as their primary energy source; however, in rural areas
of the country, electricity may not be available. Furthermore, the government can play
a significant role in encouraging EV adoption. As a result, the government should use
appropriate incentives and effective policies to boost EV production.

2.2. Technological Barrier

According to She et al. [32], technological or vehicle performance barriers are related
to consumers’ thorough evaluation of EVs, which play a crucial role in EV purchase.
Safety, drive performance, reliability, car range, the short life of batteries, and low charging
duration are all factors to consider. Consumers are concerned about safety standards and
feeling safe while driving EVs as traffic grows [38].

2.3. Market Barrier

According to Adhikari et al. [6], a variety of variables impact consumer purchasing be-
havior toward EVs, such as the role of environmental awareness and attitudes, knowledge,
and beliefs in relation to the intention to adopt EVs. According to Tsang et al. [39] and
She et al. [32], the perception of EVs as a premium option with a higher price tag may stymie
EV adoption. According to Sierzchula et al. [40], the purchase price is highly dependent
on battery costs. The replacement of such batteries can also be a deterrent to consumers
interested in purchasing EVs [41]. Furthermore, as technology evolves, the complexity
of battery materials will be substituted in the future for increased driving range. Table 1
depicts various barriers to EV adoption that are being researched further.

Table 1. Identified barriers from the literature.

Main Barriers Sub-Barriers Explanation Source

Infrastructure policy barrier (A)
Lack of proper government

support/incentives and
collaboration

Government assistance and incentives have yet to increase EV
production (A1). [42,43]

Inadequate electric power supply In rural Thai communities, an affordable and sustainable
electricity source may not be available (A2). [44,45]

Insufficient charging
infrastructure network Lack of charging stations throughout Thailand (A3). [32,46]

Battery recycling/environmental
impact battery disposal

The chemical elements of the battery environmental concern
during scraping of the battery elements (A4). [43]

Technological barriers The range on a charge Longest range of traveling on a full single charge (B1). [47,48]
(B) Battery lifespan/efficiency Battery lifespan is caused by degradation (B2). [11,47]

EV charging time The time it takes to fully charge an EV(B3). [11,34,47]

Safety requirement Safety standards as specified by state or local regulations. Feeling
safe while driving EVs (B4). [32,38,44,47]

Performance Compared to conventional vehicles, EVs are heavy (due to
batteries) and do not handle well (B5). [49]

Market (C) Poor consumer perceptions
and knowledge

Without accurate knowledge and adequate awareness, consumers
will resist purchasing EV (C1). [33,50]

Vehicle servicing Skills for technicians to rectify the troubleshoot as quickly as
possible (C2). [47]

High capital cost
High costs associated with acquisition costs, maintenance, and

running costs compared to general vehicles have a major obstacle
to the introduction of EVs (C3).

[11,47,51,52]

Raw materials for batteries Raw materials for batteries are rare, the availability of those
materials may not be available enough for battery production (C4). [47]
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3. Research Methodology
3.1. Decision Making Systems (DMS)

The way the government plays a part in encouraging investment in different kinds of
electric vehicle enterprises has an impact on how effectively and how economically people
are able to function. Preliminary data analysis, internal or external data evaluation, and
decision-making through a reliable analysis system are necessary to promote and draw
attention to sustainable energy. Therefore, expanding the usage of electric vehicles in the
future is crucial. Data must be kept in the database system so that historical data can be
used to forecast important future trends. A sizable database containing information from
multiple databases organized by government agencies and outside organizations active
in electric vehicles contains the pertinent data. To determine whether actual conditions
differ from what was anticipated, this decision support tool offers an exception report or a
criterion report. As a result, the system entails programming the processing to ascertain
what occurred and how it should be fixed in order to achieve its intended goal.

An idea to create a channel to facilitate information seeking in multiple ways in accor-
dance with users’ expectations came from the aforementioned issues. Users are also able to
select the information they want to view on their own. Information is efficiently retrieved
using the created system. Information can be received rapidly because it has already been
effectively and swiftly processed by decisions made by public sector officials. Middle man-
agement makes these tactical decisions, which include overseeing and guaranteeing that
duties are done in accordance with senior service policies, as well as resolving unexpected
concerns [53].

As a result of all the information provided above, it has been decided that a DMS be
put into place. While still being able to describe circumstances or problems for executives
to use in conjunction with data processing technology to retain data, it can recognize
scenarios, difficulties, as well as opportunities. There are delays and challenges with
handling data while looking for information in a big database. To make data management
more convenient and quicker for users, it was decided to process the data into the data
storage before presenting it to the report for use in making decisions. This should enhance
internal and external information search channels for managing electric vehicles. The
utilization of information that has been aggregated to generate the most useful in various
government agencies is another advantage that will be attained. The archive can be used to
store data that has been obtained through the use of sophisticated engineering methods.
The information obtained during processing aids in the executives’ hasty decision-making
(Figure 1).
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Decision making systems comprise sub-components of data management, mathe-
matical model management, and user interaction management [54]. Data management
sub-components include databases, database management systems, verifiability, data in-
dexes, data extraction, and information obtained from various sources, either directly from
government agencies or from the private sector. In order to retrieve or validate information
relevant to decision-making, more established DMS systems may be linked to government
databases or data warehouses. The statistical or mathematical model, the model-based
data management system, the model language definition, and the model editing process,
including model operations, are all part of mathematical model management.

The DMS in this study is focused on the management of appropriate mathematical
models. Mathematical models, also known as quantitative models, are a class of models
that can be used to investigate the barriers to the use of electric vehicles. A model base
management system, which is software that allows users to create and manage models as
well as run appropriate models, is also available. The primary function of the quantitative
model base management system is to define the DMS model quickly and easily. Capabilities
for decision makers to manipulate or use models for experimentation or analysis of how
changes in input variables affect output variables, also known as Sensitivity Analysis.

Other features include the ability to store and manage various types of models that
may become available in the future, accessing and working with other ready-made models,
and grouping and displaying model table of contents. The ability to track model usage
and properly link different models through the database allows for the management and
maintenance of public and private model bases. Optimization models and simulations can
be used as case studies to determine the optimal responses for a given conditional variable
in a set of situations of interest. The goal is to represent the state of the system to be studied
and then experiment from the model to see what happens to the system before putting it
into action (Figure 1).

3.2. Fuzzy Analytical Hierarchy Process (FAHP)

Multi-criteria decision-making (MCDM) is a well-structured and multidimensional
process that has been developed to examine a wide range of competing criteria which
address decision-making problems in various fields [55,56]. MCDM methodologies offer a
methodical process to assist decision-makers in selecting the most desirable and satisfactory
option in an uncertain situation [57]. MCDM problems are typically classified into two
types. One type of problem involves a set of alternative solutions. Another way is to
illustrate problems with an infinite number of solutions. Decision making is a challenging
problem in which organizations struggle to achieve the desired outcome. The decision-
making process is the act of selecting the best strategy for accomplishing the desired
objectives and goals [58]. Gupta [59] claims that MCDM results in logical and reasonable
decision rankings.

Without a doubt, MCDM has grown in popularity in recent years and is now widely
used in a variety of management contexts, particularly in policy strategic decision-making;
for example, sustainable energy policy [25,60], water management [61–63], location selec-
tion [64,65], software selection [66], and supply chain management [67–69], amongst others.

In practice, the judgment of a decision-maker is typically ambiguous, uncertain and
vague. Many decision-makers are unable to explain their judgments on specific attributes
using precise numbers, but they are better able to explain their views using descriptive
scales, such as high, medium, and low [70]. As a result, to negotiate with imprecise and
ambiguous information, Zadeh [28] developed the concept of fuzzy sets. A fuzzy number
is a fuzzy set in R, more specifically a mapping x: R [0,1], that could be mathematically
represented by a membership function, µM(x). A triangular fuzzy number (TFN) can be
represented by a triplet (l, m, u). The specifications l, m, u are the smallest, most likely, and
highest crisp numerical values, respectively, as displayed in Figure 2.
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The membership function (µM(x)) of a triangular fuzzy number is as follows.

µM(x) =


(x− l)/(m− l) l ≤ x ≤ m
(u− x)/(u−m) m ≤ x ≤ u

0 otherwise
(1)

Fuzzy numbers can have any value between 0 and 1. (TFN ∈ [0,1]), by fuzzy member-
ship, functions with the inclusion of upper and lower bounds, whereas crisp values refer to
the binary logic [0,1]. Fuzzy numbers can be defined with different ‘shapes’, e.g., uniform,
triangular, trapezoidal, etc., which can be used depending on the situation. However, in
many applications, TFNs are commonly employed in practical applications, due to ease of
computation [71], and thus used here to evaluate the barriers to adopting EVs.

The Analytical Hierarchy Process (AHP), a multi-criteria decision-making method, is
frequently used to address decision-making issues that involve expert judgment [72]. It
creates hierarchical solutions for unstructured problems by incorporating quantitative and
qualitative criteria. Lin [73] argued that AHP is incapable of dealing with an imprecise or
unbalanced scale of judgments resulting from a pairwise comparison process expressed by
personal opinions.

Fuzzy Analytic Hierarchy Process (FAHP), a combination of two concepts, fuzzy
logic and AHP, was then proposed to address imprecise expert opinions through fuzzy
numbers [74]. Several academics have recommended a variety of FAHP methods, includ-
ing [75,76] used TFNs to create fuzzy weights for evaluation ratios. Chang [76] proposed
an extent analysis method for calculating crisp weights from pairwise comparison matrices’
synthetic value ranges. Later, Mikhailov [77] proposed a fuzzy prioritization method based
on nonlinear optimization to achieve crisp weights from fuzzy comparison matrices.

In this study, the weights of the criteria were determined using the FAHP technique.
Fuzzy pairwise evaluations were established using Chang’s extent analysis approach [76].
The membership functions of a TFN were employed to demonstrate pairwise comparisons
of decision variables in a set of labels from “Very bad” to “Excellent. The membership
functions, Mi = (mi1, mi2, mi3), i ∈ {1,2, · · · ,n} and mi1, mi2, mi3 are the smallest possible
values, peak value and largest possible value of the fuzzy number Mi, respectively. Follow-
ing Chang’s extent analysis approach [76], each object was taken and the extent for each
goal, gi,, was evaluated. Consequently, the m extent analysis values for each object were
acquired as the following symbols:

M1
gi

, M2
gi

, · · · , Mm
gi

; i = 1, 2, · · · , n (2)

where Mj
gi(j = 1, 2, . . . , m) are triangular fuzzy numbers.
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Bozbura [78] describes a number of procedures for calculating the weight of an FAHP.
Among these procedures, the extent analysis method proposed by Chang [76] was em-
ployed in this study to incorporate fuzzy numbers into crisp numbers by utilizing the
knowledge of intersection between two fuzzy numbers and a degree of possibility. The
steps in Chang’s FAHP extent analysis method is listed below [79,80]:

Step 1: The merit of fuzzy synthetic extent in relation to the object, i, is calculated
as follows:

Si = ∑m
j=1 Mj

gi ⊗
[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
(3)

To produce ∑m
j=1 Mj

gi accomplish the fuzzy addition of m extent analysis values for a
specific matrix, such that

m

∑
j=1

Mj
gi =

(
m

∑
j=1

lj,
m

∑
j=1

mj,
m

∑
j=1

uj

)
(4)

to obtain
[
∑n

i=1 ∑m
j=1 Mj

gi

]−1
, perform the fuzzy addition of Mj

gi (j = 1, 2, . . . , m) values
such that

n

∑
i=1

m

∑
j=1

Mj
gi =

(
m

∑
j=1

lj,
m

∑
j=1

mj,
m

∑
j=1

uj

)
(5)

and then calculate the inverse of the vector in Equation (5):[
n

∑
i=1

m

∑
j=1

Mj
gi

]−1

=

(
1

∑n
i=1 ui

,
1

∑n
i=1 mi

,
1

∑n
i=1 li

)
(6)

Step 2: The degree of possibility of M2 = (l2, m2, u2) ≥ M1 = (l1, m1, u1) is defined as

V(M2 ≥ M1) = sup
[
min (µM1(x), µM2(y)

]
(7)

which can be equally defined as:

V(M2 ≥ M1) =


1
0

l1−u2
(m2−u2)−(m1−l1)

if m2 ≥ m1,
if l1 ≥ u2,
otherwise

(8)

where the plot of the greatest intersection is point, d, between µM1 and µM1 (see Figure 3).
To differentiate M1 and M2, it requires the values of V (M1 ≥ M2) and V (M2 ≥ M1).
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Step 3: The degree of the possibility for a convex fuzzy number to be better than k
convex fuzzy numbers, Mi (i = 1, 2, . . . , k), could be described as

V(M ≥ M1, M2, . . . , Mk ) = minV(M ≥ Mi) : i = 1, 2, . . . , k (9)

Step 4: Calculation of the weights vector by assuming that

d(Si) = minV(Si ≥ Sk) k = 1, 2, . . . , n; k 6= i (10)

then the weights vector, W’, is provided by

W ′ = (d(S1), d(S2), . . . , d(Sn))
T (11)

Step 5: The normalized weight vectors were calculated as follows

W = (d(A1), d(A2), . . . , d(An))
T (12)

Fuzzy linguistic terms and their TFNs and Triangular Fuzzy Reciprocal Numbers
(TFRNs) which are used for pairwise comparisons in FAHP method are displayed in
Table 2.

Table 2. Fuzzy-AHP triangular scale.

Fuzzy Number Linguistic Fuzzy Scale (Triangular Scale) TFRNs

1 Equally preferable (1, 1, 1) (1,1,1)
3 Weakly preferable (2, 3, 4) (1/4, 1/3, 1/2)
5 Fairly preferable (4, 5, 6) (1/6, 1/5, 1/4)
7 Strongly preferable (6, 7, 8) (1/8, 1/7, 1/6)
9 Absolutely preferable (9, 9, 9) (1/9, 1/9, 1/9)

2, 4, 6, 8 Intermediate values between
the two adjacent judgments (1, 2, 3), (3, 4, 5), (5, 6, 7) and (7, 8, 9) (1/3, 1/3, 1) (1/5, 1/4, 1/3),

(1/7, 1/6, 1/5) and (1/9, 1/8, 1/7)

Source: Adapted from [81].

3.3. Consistency Ratio

The AHP method relies heavily on consistency. The decision-pairwise maker’s com-
parison evaluation necessitates a certain level of matrix consistency. Saaty [82] states that
the consistency ratio (CR) is determined with Equation (13):

CR =
CI
RI

(13)

where CI = (λmax−n)
(n−1) and λmax = ∑n

i=1

[
∑n

j=1 aijWj

]
, where RI denotes the random

consistency index [82]. The CR must be within an acceptable range (i.e., 10%) depending
on the granularity of the scale being used and on which considered comparisons were
consistent, or the comparisons should be revised. The flowchart (Figure 4) below illustrates
the steps, sequences, and decisions of a process or workflow.
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4. Application of FAHP and Results

The FAHP methodology was applied to determine the most significant barriers to the
adoption of EVs. The following are the steps to prioritize those barriers and the results.

Step 1: Six experts from different representatives were selected to involve in this
study—two senior managers from auto manufacturing companies, two government officers,
one representative from dealers, and one customer.

Step 2: Clarify the main barriers and sub-barriers. Following a review of the literature
and consultation with experts, three main barriers—an infrastructure policy barrier (A), a
technological barrier (B), and a market barrier (C)—were determined with 13 sub-barriers,
as displayed in Figure 5. According to AHP’s assumptions, each barrier and its sub-
barrier is comprised of mutually related elements [83]. A structural hierarchy denotes
the relationships between complex system components, where these relationships are
understood as an arrangement in terms of structural properties. Those barriers and sub-
barriers were evaluated by six experts.
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Step 3: Calculate the local weights of the main barriers and sub-barriers by using
pairwise comparison matrices and calculate fuzzy weights. Pairwise comparisons using
a 1–9 scale were introduced with the Fuzzy AHP method within each main barrier or
sub-barriers, and then those scales were converted into linguistic scales as shown in Table 2.

Step 4: A geometric mean was applied to combine the fuzzy weights of those six
experts into final pairwise tables of main and sub barriers. After that, the linguistic
judgments were transformed into triangular fuzzy numbers. Table 3 shows geometric
values of fuzzy triangular number of main barrier and Table 4, Table 5 andTable 6 show
geometric values of fuzzy triangular number of the sub-barriers, respectively. It was also
found that CR values of all matrices were less than 0.1, hence these matrices are consistent.

Table 3. Pairwise comparison matrix of main barrier.

Main Barrier A B C

A 1, 1, 1 1.4837, 2.3051, 2.6207 4.0933, 5.3093, 6.4195
B 0.2646, 0.3612, 0.5246 1, 1, 1 1.6984, 2.5132, 3.5255
C 0.2100, 0.2539, 0.3078 0.2837, 0.3979, 0.5888 1, 1, 1

CR = 0.0663 < 0.10
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Table 4. Pairwise comparability arrangement of sub-barriers for infrastructure policy barrier.

A A1 A2 A3 A4

A1 1, 1, 1 1.8493, 2.5873, 3.3879 0.32891, 0.5529, 0.7937 1.9064, 2.9938, 4.0357
A2 0.3158, 0.3865, 0.7565 1, 1, 1 0.1895, 0.2990, 0.3240 1.5131, 2.5698, 3.5954
A3 1.0000, 1.6475, 1.8860 1.9652, 2.1070, 3.3604 1, 1, 1 3.6247, 4.6980, 5.7462
A4 0.3158, 0.3340, 0.6070 0.3340, 0.4903, 0.7937 0.1740, 0.2129, 0.2759 1, 1, 1

CR = 0.0139 < 0.10

Table 5. Pairwise comparability arrangement of sub-barriers for technological barrier.

B1 B2 B3 B4 B5

B1 1, 1, 1 0.9746, 1.2222, 1.8171 0.5210, 0.7071, 1.0177 0.5302, 0.7937, 1.3077 0.7071, 1.1776, 1.7321
B2 0.5992, 0.8182, 1.2322 1, 1, 1 1.2849, 1.7426, 2.2787 0.9005, 1.2849, 1.6984 0.8327, 1.2009, 1.8493
B3 0.9826, 1.4142, 1.9194 0.4388, 0.5739, 0.7783 1, 1, 1 1.2599, 2.2894, 3.3019 0.9806, 1.5431, 2.4019
B4 0.7647, 1.2599, 1.8860 0.5888, 0.7783, 1.1105 0.3029, 0.4368, 0.7937 1, 1, 1 0.8736, 1.4422, 2.2894
B5 0.7638, 0.8492, 1.4142 0.5407, 0.8327, 1.2009 0.4368, 0.6934, 1.1447 0.6300, 0.6934, 0.7937 1, 1, 1

CR = 0.0747 < 0.10

Table 6. Pairwise comparability arrangement of market barrier sub-barriers.

C1 C2 C3 C4

C1 1, 1, 1 1.8493, 2.5873, 3.3879 0.3891, 0.5529, 0.7937 1.6475, 2.9938, 3.1665
C2 0.2952, 0.3865, 0.5407 1, 1, 1 0.2554, 0.3483, 0.4368 1.1225, 2.0396, 2.2209
C3 1.0000, 1.6475, 1.8860 1.9652, 2.6547, 3.3604 1, 1, 1 4.5087, 4.6980, 6.5557
C4 0.3158, 0.3340, 0.6070 0.4503, 0.4903, 0.8909 0.1525, 0.2129, 0.2218 1, 1, 1

CR = 0.0093 < 0.10

Table 7. Final prioritization of EV barrier adoption.

Main Barrier Main Weight Sub Barrier CR Ratio Weight Final Weight Rank

Infrastructure 0.6058 A1 0.014 0.3072 0.1861 2
policy A2 0.1539 0.0932 3

barriers A3 0.4425 0.2681 1
A4 0.0964 0.0584 7

Techno logical 0.2657 B1 0.075 0.1901 0.0505 8
barriers B2 0.2300 0.0611 6

B3 0.2375 0.0631 5
B4 0.1800 0.0478 9
B5 0.1624 0.0432 10

Market 0.1285 C1 0.009 0.2960 0.0380 11
barriers C2 0.1497 0.0192 12

C3 0.4548 0.0585 4
C4 0.0995 0.0128 13

The final weight of those barriers was obtained and normalized weight vectors were
finally acquired following Chang’s extent analysis method on FAHP. Table 7 demonstrates
the final weight of importance for each of these main and sub-barriers. Figures 6–8 show
radar charts of the sub-barrier weights of infrastructure policy, technological barriers, and
market barriers.
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According to the findings in Table 7 and Figure 9, the most considerable impediment
to EV adoption was the infrastructure policy barrier (A), which had the highest weight at
0.6058. According to the table, the top three sub-barriers to EV deployment were charging
infrastructure network (A3), lack of proper government support and collaboration (A1),
insufficient electric power supply (A2), high capital cost (C3), and charging time (B3), in
that order. In contrast, the overall ranking results show that raw materials for batteries (C4)
were the least of a concern creating a barrier to EV adoption.
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With a weight value of 0.2681 of all sub-barriers compared, the lack of charging
infrastructure networks plays a critical role in preventing EV adoption in Thailand. These
findings are consistent with current literature, such as Azadfar et al. [84], Bakker and
Jacob [85], and Barisa et al. [86], all of which state that a lack of charging infrastructure is a
major barrier to EV adoption. Furthermore, the findings are consistent with the findings of
an October 2021 study conducted by Thananusak et al. [87]. According to 72% of survey
respondents, public charging stations in Thailand are still insufficient. According to the
study, the main impediment to Thai drivers purchasing a full-fledged EV was a lack of
comprehensive infrastructure.

The second barrier, with a weight value of 0.1861, was a lack of proper government sup-
port and collaboration. The findings were consistent with the findings of Zhang et al. [88],
who found that relevant policies and subsidies promoting the development of EVs in vari-
ous countries such as China were strictly limited due to local protectionism. Mendoza [89]
argued that there were still unclear policies or actions in place to steer Thailand in the
direction of implementing electrical vehicle technology. This could be due to the fact that
many stakeholders had different agendas for pursuing EV transformation.

A component of the management information system is the DMS. Government-
mandated executives can use decision support tools to help them make strategic judgments
in unstructured or semi-structured business activities or events. Information technology-
based decision support systems can be used to manage constantly changing information
with the goal of lowering costs, decreasing labor, and assisting with modeling analysis to
identify and solve problems.

Determining actions for the development of transmission infrastructure is the primary
strategy obtained from the decision aid system. The objective is to fortify the electrical
system so that it will be reliable and effective in supporting the rising number of electric
vehicles in the future. This includes quickening the development of facilities for testing
electric vehicles and their parts in order to create and evaluate quality and safety standards.
The outcomes of such initiatives can support the need for the country to develop its electric
car technology in order to increase its competitiveness in the sector of exporting and
manufacturing electric vehicles in the future.

The DMS manages data based on information received both internally and externally.
A DMS connects to a company’s database or data warehouse to retrieve or filter data
relevant to a decision-making situation. The DMS will screen and compile extensive infor-
mation from massive amounts of data for decision-making purposes. Following that, users
can access various models with analytical capabilities, such as financial models, mathemat-
ical models, statistical models, or quantitative models, via the model base management
system. User Interface Management is also used to connect the user to the system.

The government can strategically develop operations such as service model develop-
ment, investment promotion of charging stations along the main routes to different regions
of the nation, and investment in and promotion of charging stations. The crucial goals are
completeness and confidence. Out of concern about the driving distance of electric vehicle
users, a data center for charging stations has been established. The government must assist
in the construction of an electric car testing center that complies with worldwide standards
in order to lessen the financial burden on manufacturers. This entails operating equitably,
fostering technological competition in the sector that manufactures electricity and batteries,
and providing space for competition there.

Other activities include the creation of legislative policies to support the use of elec-
tric vehicles over the medium and long terms, as well as the improvement of pertinent
standards, guidelines, and laws to support the sustainable use of electric vehicles. Other
examples include the promotion of industrial estates, the small and medium business
electric vehicle sector procurement, and the testing of electric power-related technology.
Several institutions, including the Ministries of Transport, Finance, Industry, Energy, and
Science and Technology, are involved in developing strategies and action plans to promote
electric vehicles.
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However, based on these goals, an accountable organization, a budget, and a plan
to promote the use of electric vehicles must be appropriately implemented. As a result, a
DMS that serves as a conceptual foundation for creating such policies will be successfully
advanced, leading to exceptionally clear objectives and responsible agencies. Policies
would be decided upon by directly and formally responsible individuals. However, it is
unclear how the funds will be approved and how the policy will be altered to an action
plan. This flaw makes it possible that the policy will not be able to meet the goals and
objectives set forth by each agency. In order to achieve predetermined targets, the future
decision-making system guides a feedback plan, which leads to sustainable energy usage.

5. Conclusions and Future Works

The use of a DMS to aid in management decision making is required for effective
problem management and responsiveness to big data. Data collection and analysis, as
well as complex modeling, are computerized, interactive, and systematic processes for
quickly and easily finding solutions to structural problems with data incompatibility that
can be easily changed in a short time. Several challenges must be tackled in order for
EV adoption to be successful. Prioritizing those challenges will assist Thai government
stakeholders in selecting the most important issues to address. In this study, The Fuzzy
Analytical Hierarchy Process (FAHP) was applied into DMS to evaluate the three main
barriers and their 13 sub-barriers to EV adoption in Thailand, as identified in the literature
review. By comparing objects with multiple attributes, the FAHP can reduce the number
of comparisons, as well as ambiguous, uncertain, vague, and cognitive errors, and addi-
tionally confirm response consistency. The results demonstrate that charging infrastructure
networks is a major impediment to EV adoption in Thailand. The second major sub-barrier
pillar was a lack of appropriate government support/incentives and collaboration. Other
main challenges were determining insufficient electric power supply, high capital cost, and
EV charging time.

This study’s evidence emphasizes the importance of reducing shortcomings by provid-
ing adequate charging infrastructure and charging space for EVs in several easily accessible
locations across the country. To encourage EV adoption, it must be determined how much
public charging infrastructure is required and where it should be located. Technology-push
policies, such as consistent/sustained policy support, lowering the cost of manufacturing
advancements and providing an equitable compensation plan [87,90], as well as demand-
pull policies, such as regulations and tax credits and exemptions for consumers and lower
electricity selling prices, must be implemented by the government. These would aid in
the expansion of markets for innovations, allowing for greater investment in innovation
for EV charging time [90,91]. Furthermore, a number of existing and proposed EV-related
laws and regulations require review and revision in order to produce accurate policies
and time frames for modernization in obtaining investor sentiment and incorporating all
interested parties. According to this study, the presence of fast charging would increase EV
preferences significantly. Therefore, alternative battery materials and technologies provide
a promising solution to this constraint. Research-oriented approaches on solid-state bat-
teries and alternative cathode and anode materials, including capital and human capital
investments, are required and supported by stakeholders.

Aside from the numerous useful implications of this study, there is some room avail-
able for future investigations. To investigate the model’s performance, the proposed FAHP
model would be compared to those of other MCDM approaches, such as fuzzy outranking
methods and complex proportional assessment method (COPRAS) [92]. Another area
of improvement would be to take into account the perspectives of other stakeholders in-
cluding users, manufacturers, experts, and policymakers in order to provide more holistic
indicators for long-term improvements in EV adoption. To ensure the model’s integrity,
a sensitivity analysis should be included in the DMS. A sensitivity analysis should also
be carried out to verify the integrity of the suggested model. Furthermore, it may be
worthwhile to investigate other barriers that may arise alongside future EV campaigns.
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25. Djaković, D.D.; Gvozdenac-Urosević, D.B.; Vasić, M. Multi-criteria analysis as a support for national energy policy regarding the

use of biomass. Therm. Sci. 2016, 20, 371–380. [CrossRef]
26. Badri, M.A. A combined AHP–GP model for quality control systems. Int. J. Prod. Econ. 2001, 72, 27–40. [CrossRef]
27. Triantaphyllou, E.; Mann, S.H. Using the Analytic Hierarchy Process for Decision Making in Engineering Applica-tions: Some

Challenges. Int. J. Ind. Eng. Theory Appl. Pract. 1995, 2, 35–44.
28. Zadeh, L.A. Fuzzy logic and approximate reasoning. Synthese 1975, 30, 407–428. [CrossRef]
29. Hoseini, S.A.; Fallahpour, A.; Wong, K.Y.; Antucheviciene, J. Developing an integrated model for evaluating R&D organizations’

performance: Combination of dea-anp. Technol. Econ. Dev. Econ. 2021, 27, 970–991.
30. Dos Santos, H.H.; Marques, V.N.; Paschoali, L.F.F. The analysis of barriers for implementing circular economy practices using the

Analytic Hierarchy Process (AHP). Rev. Gestão Da Produção Operações E Sist. 2021, 16, 99–118. [CrossRef]
31. Zubaryeva, A.; Thiel, C.; Barbone, E.; Mercier, A. Assessing factors for the identification of potential lead markets for electrified

vehicles in Europe: Expert opinion elicitation. Technol. Forecast. Soc. Change 2012, 79, 1622–1637. [CrossRef]
32. She, Z.-Y.; Sun, Q.; Ma, J.-J.; Xie, B.-C. What are the barriers to widespread adoption of battery electric vehicles? A survey of

public perception in Tianjin, China. Transp. Policy 2017, 56, 29–40. [CrossRef]
33. Berkeley, N.; Jarvis, D.; Jones, A. Analyzing the take up of battery electric vehicles: An investigation of barriers amongst drivers

in the UK. Transp. Res. Part D Transp. Environ. 2018, 63, 466–481. [CrossRef]
34. Graham-Rowe, E.; Gardner, B.; Abraham, C.; Skippon, S.; Dittmar, H.; Hutchins, R.; Stannard, J. Mainstream consumers driving

plug-in battery-electric and plug-in hybrid electric cars: A qualitative analysis of responses and evaluations. Transp. Res. Part A
Policy Pract. 2012, 46, 140–153. [CrossRef]

35. Haddadian, G.; Khodayar, M.; Shahidehpour, M. Accelerating the Global Adoption of Electric Vehicles: Barriers and Drivers.
Electr. J. 2015, 28, 53–68. [CrossRef]

36. Wan, Z.; Sperling, D.; Wang, Y. China’s electric car frustrations. Transp. Res. Part D Transp. Environ. 2015, 34, 116–121. [CrossRef]
37. Bhalla, P.; Ali, I.S.; Nazneen, A. A study of consumer perception and purchase intention of electric vehicles. Eur. J. Sci. Res. 2018,

149, 362–368.
38. Weiss, M.; Patel, M.K.; Junginger, M.; Perujo, A.; Bonnel, P.; van Grootveld, G. On the electrification of road transport—Learning

rates and price forecasts for hybrid-electric and battery-electric vehicles. Energy Policy 2012, 48, 374–393. [CrossRef]
39. Tsang, F.; Pedersen, J.S.; Wooding, S.; Potoglou, D. Bringing the electric vehicle to the mass market a review of barriers, facilitators and

policy interventions; Working Paper; RAND Corporation: Santa Monica, CA, USA, 2012.
40. Sierzchula, W.; Bakker, S.; Maat, K.; van Wee, B. The influence of financial incentives and other socio-economic factors on electric

vehicle adoption. Energy Policy 2014, 68, 183–194. [CrossRef]
41. Noel, L.; de Rubens, G.Z.; Sovacool, B.K.; Kester, J. Fear and loathing of electric vehicles: The reactionary rhetoric of range anxiety.

Energy Res. Soc. Sci. 2019, 48, 96–107. [CrossRef]
42. Ruchita. Identification of potential barriers of EVsCI using EFA. Int. J. Syst. Assur. Eng. Manag. 2022, in press. [CrossRef]
43. Krupa, A. Barriers and Opportunities to Electric Vehicle Development in Nepal. In Independent Study Project (ISP) Collection; 2019;

p. 3279. Available online: https://digitalcollections.sit.edu/isp_collection/3279 (accessed on 21 February 2023).
44. Sarkar, P.K.; Jain, A.K. Intelligent Transport System; PHI Learning: Delhi, India, 2018; p. 440.
45. Biresselioglu, M.E.; Kaplan, M.D.; Yilmaza, B.K. Electric mobility in Europe: A comprehensive review of moti-vators and barriers

in decision making processes. Transp. Res. Part A Policy Pract. 2018, 109, 1–13. [CrossRef]
46. Robinson, A.; Blythe, P.; Bell, M.; Hübner, Y.; Hill, G. Analysis of electric vehicle driver recharging demand profiles and subsequent

impacts on the carbon content of electric vehicle trips. Energy Policy 2013, 61, 337–348. [CrossRef]
47. Goel, S.; Sharma, R.; Rathore, A.K. A Review on Barrier and Challenges of Electric Vehicle in India and Vehicle to Grid

Optimization. Transp. Eng. 2021, 4, 100057. [CrossRef]
48. Lim, M.K.; Mak, H.-Y.; Rong, Y. Toward Mass Adoption of Electric Vehicles: Impact of the Range and Resale Anxieties. Manuf.

Serv. Oper. Manag. 2015, 17, 101–119. [CrossRef]
49. Krishna, G. Understanding and identifying barriers to electric vehicle adoption through thematic analysis. Transp. Res. Interdiscip.

Perspect. 2021, 10, 100364. [CrossRef]
50. Rezvani, Z.; Jansson, J.; Bodin, J. Advances in consumer electric vehicle adoption research: A review and research agenda. Transp.

Res. Part D Transp. Environ. 2015, 34, 122–136. [CrossRef]
51. Jabbari, P.; Chernicoff, W.; MacKenzie, D. Analysis of Electric Vehicle Purchaser Satisfaction and Rejection Reasons. Transp. Res.

Rec. J. Transp. Res. Board 2017, 2628, 110–119. [CrossRef]
52. Krause, R.M.; Carley, S.R.; Lane, B.W.; Graham, J.D. Perception and reality: Public knowledge of plug-in electric vehicles in 21

U.S. cities. Energy Policy 2013, 63, 433–440. [CrossRef]

https://doi.org/10.1016/S0377-2217(03)00174-7
https://doi.org/10.2298/TSCI150602190D
https://doi.org/10.1016/S0925-5273(00)00077-3
https://doi.org/10.1007/BF00485052
https://doi.org/10.15675/gepros.v16i3.2793
https://doi.org/10.1016/j.techfore.2012.06.004
https://doi.org/10.1016/j.tranpol.2017.03.001
https://doi.org/10.1016/j.trd.2018.06.016
https://doi.org/10.1016/j.tra.2011.09.008
https://doi.org/10.1016/j.tej.2015.11.011
https://doi.org/10.1016/j.trd.2014.10.014
https://doi.org/10.1016/j.enpol.2012.05.038
https://doi.org/10.1016/j.enpol.2014.01.043
https://doi.org/10.1016/j.erss.2018.10.001
https://doi.org/10.1007/s13198-021-01587-w
https://digitalcollections.sit.edu/isp_collection/3279
https://doi.org/10.1016/j.tra.2018.01.017
https://doi.org/10.1016/j.enpol.2013.05.074
https://doi.org/10.1016/j.treng.2021.100057
https://doi.org/10.1287/msom.2014.0504
https://doi.org/10.1016/j.trip.2021.100364
https://doi.org/10.1016/j.trd.2014.10.010
https://doi.org/10.3141/2628-12
https://doi.org/10.1016/j.enpol.2013.09.018


Sustainability 2023, 15, 7003 19 of 20

53. Kabir, G.; Hasin, M.A.A. Framework for benchmarking online retailing performance using fuzzy AHP and TOPSIS method. Int. J.
Ind. Eng. Comput. 2012, 3, 561–576. [CrossRef]

54. Luangpaiboon, P.; Aungkulanon, P.; Montemanni, R. A decision support tool for intelligent manufacturing systems via an elevator
kinematic optimisation based method. Expert Syst. Appl. 2022, 203, 117576. [CrossRef]

55. Tamosaitiene, J.; Bartkiene, L.; Vilutiene, T. The New Development Trend of Operational Research in Civil Engineering and
Sustainable Development as a result of collaboration between German–Lithuanian–Polish Scientific Triangle. J. Bus. Econ. Manag.
2010, 11, 316–340. [CrossRef]
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