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Abstract: The remote sensing inversion of the water quality parameters of a complex river network
in the absence of historical ground data is a difficult problem in the field of remote sensing. In
this paper, a sub-regional inversion method for typical water quality parameters is presented for a
complex river network using Gaofen-1 satellite data. Qidong’s rivers were selected as the survey
region, and different band combination models and datasets on different river sub-regions were used
to perform the remote sensing inversion, which realized the inversion of the permanganate index
(CODMn), ammonia nitrogen (NH3-N), total phosphorus (TP), and total nitrogen (TN) in the rivers.
The results show that all the coefficients of determination (Rˆ2) of the inversion models are larger
than 0.5, indicating an increase of about 0.4 when compared with the inversion method of the whole
region, indicating good relevance. Water quality data and satellite data collected at different times
were used for validation, which showed good results. On the basis of the water quality inversion, the
key polluted areas were extracted in combination with on-site surveys to find the pollution source
in order to verify the results of the inversion. The sub-region inversion method proposed in this
paper can be used for the remote sensing inversion of the water quality parameters of complex river
networks in the absence of historical ground data.

Keywords: water quality parameters; remote sensing; water quality inversion; Gaofen-1

1. Introduction

As an important part of surface water monitoring, the quality monitoring of water in
rivers can provide data and information for water environment management and can form
the basis for evaluating the water quality of rivers [1,2]. Thus, it is of important practical
significance to conduct studies on water quality monitoring. Complex river networks are
an important part of rivers in plain areas. Water quality monitoring and pollution tracing
of complex river networks have always been one of the most important aspects in water
environment monitoring [3,4].

Traditional artificial monitoring methods are laborious and cannot reflect the overall
situation of a region’s water environment. Remote sensing technology is advantageous in
terms of its synchronous large-area monitoring, multi-temporal nature, comprehensiveness,
comparability, and economic benefits, which can offset the shortcomings of the traditional
monitoring methods [5–8].

The optical characteristics of river networks are complex and are not only affected
by phytoplankton but also inanimate suspended matter and yellow materials [9]. For
shallow waters, the influence of underwater materials on the water’s optical characteristics
should also be taken into account [10]. Field detection, analysis, and measurement are
required to obtain the physical and chemical parameters of a water body, which are tedious
and difficult to keep synchronized with the satellite data’s time. Additionally, there is the
possibility of large differences in the optical characteristics between different rivers.
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There is some research on satellite data with different spatial resolutions: (1) Low
spatial resolution satellite data such as Landsat and Modis are commonly used for the
inversion of oceans, lakes, and wide rivers. For example, a remote sensing method was
used to obtain the optical attenuation distribution characteristics of Lake Daye [11]. Based
on Landsat 8 images, remote sensing inversion models for total suspended matter (TSM)
and colored dissolved organic matter (CDOM) in West Lake were compared, and the
best ones were determined using exponential functions and green/red band ratios [12].
Hyperspectral data from EO-1 were used to monitor chlorophyll a (chl-a) and suspended
sediment (ss) over Lake Taihu in East China [13]. Using Landsat 5 Thematic Mapper
(TM) data, water quality retrieval models were established in Guanting Reservoir and
analyzed for eight common water quality variables, including algae content, turbidity,
and concentrations of chemical oxygen demand, total nitrogen, ammonia nitrogen, nitrate
nitrogen, total phosphorus, and dissolved phosphorus [14]. In China, remote sensing
technologies have been applied to monitor the Pearl River, Lake Taihu, the Yangtze River,
Hangzhou Bay, and the Yellow River Estuary [15–19], and the water surface types in
these study areas were uniform. (2) When remote sensing inversion is performed on
a river network with a narrow width (less than 20 m), satellite data with a low spatial
resolution cannot be used and only satellite data with a high spatial resolution of 10 m or
less (Gaofen-1, Gaofen-2, Sentinel-2, etc.) can be used. When using high spatial resolution
satellite data for the inversion of a river network, optical parameters (such as suspended
particulate matter concentration, chlorophyll a, colored dissolved organic matter, total
dissolved solids, etc.) and black and odorous water bodies are usually analyzed [20–23],
and the chemical parameters of water quality (such as the permanganate index, ammonia
nitrogen, total phosphorus, and total nitrogen) are rarely analyzed. One of the reasons is
that the surface water quality monitoring data of complex river networks are seriously
insufficient, and it is difficult to complete the remote sensing inversion of the water quality
chemical indexes of complex river networks only through remote sensing data.

In fitting models for the remote sensing inversion of water quality, existing studies
have mainly conducted the evaluation and classification based on the physical and chemical
parameters of water bodies, i.e., from the perspective of water quality [24]. The commonly
used model-building methods include empirical models, semi-empirical models, and
biological optical models [25,26], and some papers use satellite data from multiple time
periods for analysis [27]. Empirical and semi-empirical models are built via statistical
analysis of sample data. They are easy to operate but tend to overfit. Machine learning
and deep learning are usually used to obtain higher accuracy and adaptability. However,
for a new research area, there may be a lack of sufficient ground samples to support
machine learning and deep learning. There is little research on applying remote sensing
technologies to analyze and monitor the chemical parameters of water quality for complex
river networks in the absence of historical ground data. Therefore, the study of the inversion
of Qidong’s complex river network in this paper is meaningful.

This paper takes Qidong’s rivers as the survey region and adopts the sub-region
remote sensing inversion method, which creates multiple sub-regions according to the
waterway orientation and applies different inversion models to carry out the inversion of
the water quality parameters from Gaofen-1 satellite data for the major rivers in the area.
The parameters include the permanganate index (CODMn), ammonia nitrogen (NH3-N),
total phosphorus (TP), and total nitrogen (TN). Compared with other water pollution
parameters such as dissolved oxygen, the concentrations of heavy metals, the degree of
salinity, and conductivity, the data on the four parameters selected in this paper are easier
to obtain in China with reference to the Environmental Quality Standards for Surface
Water (EQSSW) [28,29] and can better reflect the overall pollution level of the region. The
validation data include water quality data from automatic water quality monitoring stations
and satellite data from Qidong. Additionally, the obvious abnormalities in the inversion
results were verified on site. Through field verification, it was found that the inversion
method in this paper is effective at identifying pollution sources.
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2. Survey Region and Data Acquisition

The survey region is located at 121◦39′27′′ east longitude and 31◦48′29′′ north latitude
in Qidong city, Jiangsu Province, China. Qidong is a coastal city that is peninsula-shaped.
The city has high-density, crisscrossing inland water systems. The region is part of a
plain river network, and all the rivers are connected to each other. The water system is
developed, and there are multiple rivers. Most of these rivers are between 15 m and 30 m
wide (approximately 2–4 pixels in the Gaofen-1 satellite data) and are deep and turbid
enough for the satellite sensor not to see the bottom. Most of these rivers are not located in
urban areas and are free of buildings’ shadows. In recent years, the water quality in this
region has become worse. The survey region is shown in Figure 1.
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Figure 1. Schematic diagram of the water quality monitoring scope in Qidong.

The remote sensing data are from the Gaofen-1 satellite. This satellite is equipped
with panchromatic multispectral spectroradiometer (PMS) sensors and includes four multi-
spectral channels of blue, green, red, and near-infrared, as well as one panchromatic
channel [30]. The spatial resolution of its multi-spectral data is 8 m, with one scene covering
60 km × 60 km [31]. The Gaofen-1 satellite’s revisiting period is 4 days. However, it does
not acquire data on every visit due to its limited storage capacity. All satellite data used in
this paper for inversion were obtained from the Gaofen-1 satellite on 26 August 2021.

Meanwhile, ground observation data were collected at the same time as the Gaofen-1
data. In total, 20 locations are selected to cover the main rivers within the territory of Qidong
(including Lianxing Port, Gaiyao River, Zhongyang River, Touxing Port, Tongqi Canal,
Nanyin River, Sanhe Port, Daoan River, etc.). The samples were taken at 0.5 m underwater
according to the technical specification requirements for the monitoring of surface water
and wastewater within 2 h of the Gaofen-1 satellite data capture time. The assay parameters
include CODMn, NH3-N, TP, and TN. The assay results of the water quality parameters
from various sites are shown in Table 1 and were used for inversion. These water quality
data are the result of a single measurement, and there may be a maximum random error of
5% in the measurement according to China’s water quality standards.

The validation data include water quality data from 12 automatic water quality mon-
itoring stations in Qidong and satellite data of Qidong from the Gaofen-1 satellite on
17 June 2022.
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Table 1. Ground observation data.

S/N Name of Site CODMn
(mg/L)

NH3-N
(mg/L)

TP
(mg/L)

TN
(mg/L)

Longitude
(◦)

Latitude
(◦)

1 Dayanggang Bridge 5.21 0.78 0.36 3.257 121.5688 32.0581
2 Junan Bridge 6.68 0.104 0.15 2.36 121.5365 31.9432
3 Denggan Port brakes 4.6 0.174 0.097 1.012 121.467753 31.836043
4 Xinsanhe Port brake 3.925 0.308 0.139 1.045 121.516339 31.813615
5 Santiao Bridge east 4.827 0.254 0.149 2.415 121.579278 31.80375
6 Hongyang Port brake 3.842 0.357 0.148 1.846 121.555193 31.786667
7 Xin Port brake 7.925 0.786 0.429 2.944 121.683931 32.034495
8 Haozhi Port brake 5.166 0.21 0.261 2.956 121.715314 32.011633
9 Yaochanglu Bridge west 6.259 0.4456 0.2698 4.756 121.727226 31.962334

10 Baotian central road east 4.771 0.329 0.203 2.907 121.656226 31.934956
11 Huilong water plant 3.61 0.56 0.119 1.89 121.661503 31.844019
12 Santiao Bridge east 3.526 0.092 0.185 2.575 121.579278 31.80375
13 Touxing Port brake 4.269 0.388 0.191 1.174 121.615787 31.782348
14 Tanglu Port brake 4.97 0.44 0.285 3.21 121.8179 31.9352
15 Sanxie Bridge west 4.723 0.378 0.1703 2.496 121.771119 31.859433
16 Xiexing Port brake 8.461 0.394 0.278 5.729 121.842439 31.849673
17 Siyao Estuary Bridge east 4.58 0.373 0.141 2.309 121.794025 31.786339
18 Wuyao Port brake 3.791 0.116 0.096 1.058 121.759064 31.71878
19 Lianxing Port brake 5.154 0.301 0.121 1.1 121.873899 31.706693
20 Gaiyao Port brake 4.984 0.396 0.139 1.455 121.820287 31.703542

3. Methods

The methodology in this paper mainly includes data pre-processing, modeling, and
validation (see Figure 2). Firstly, the radiation correction and geometric rectification of
the original PMS data are carried out to obtain multi-spectral reflectivity data. Then, the
multi-spectral reflectivity data and water quality parameters were divided into three sub-
regions according to the river connectivity, and the data for each sub-region were modeled
separately. The spectral data corresponding to the ground sampling sites were extracted in
combination with the laboratory numerical assay result to build the water quality parameter
inversion models of CODMn, NH3-N, TP, and TN by means of an empirical statistical
method so as to obtain the water quality parameter distribution map of each sub-region.
Finally, water quality data and satellite data collected at different times and a comparison
with the inversion of the whole region were used for validation.
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3.1. Data Pre-Processing

The data pre-processing of the satellite data includes radiation correction, geometric
rectification, and panchromatic and multi-spectral image fusion.

Radiation correction includes radiometric calibration and atmospheric correction.
Radiometric calibration is the process of converting the image digital number (DN) value
to the atmosphere’s outer surface reflectivity L (also referred to as the radiance value).
The calculation formula is L = gain ∗ DN + Bias, where gain and bias are the radiometric
calibration parameters and are usually saved in the metadata file.

The atmospheric correction method adopted in the paper is based on the 6S atmo-
spheric radiation transferring model [32], and the model inputs include geometric condition
parameters such as the solar altitude, solar azimuth, satellite elevation, satellite observation
angle, and image acquisition date (month and day), as well as the sensor spectral response
function. These parameters are obtained from the metadata file. The model output is a
raster file indicating the actual ground surface reflectivity.

Geometric rectification is used to correct the geometric distortions caused by systematic
and non-systematic factors, including geometric coarse correction and geometric fine
correction [33].

Geometric rectification is conducted in the Environment for Visualizing Images (ENVI)
software (from Exelis Visual Information Solutions), where the raster images containing
the rational polynomial coefficients (RPC) metadata information are input to perform the
terrain correction for every pixel in an image through standard procedures and to output
the images conforming to the requirements of the orthographic projection.

3.2. Building of the Sub-Region Water Quality Parameter Inversion Model

Qidong’s rivers are crisscrossed. Through a field investigation of the rivers in Qidong,
we found that the rivers are mainly north–south oriented and are connected by a few
east–west rivers. The different rivers in different sub-regions are polluted due to different
reasons and show different optical characteristics. The relation between the water quality
parameters (CODMn, NH3-N, TP, TN) and the spectral reflectivity is affected by the water
environment. Before model building, it is necessary to divide different datasets according
to the waterway orientation, assay values, and spectral values. As is shown in Figure 3,
these rivers are divided into three classes. The sites in the figure indicate the water quality
sampling site, and different colors indicate different sub-regions: west, middle, and east,
corresponding to three datasets (see Figure 3), where dataset 1 (No. 1–6) represents the
western sub-region, dataset 2 (No. 7–13) represents the middle sub-region, and dataset 3
(No. 14–20) represents the eastern sub-region.

Several studies have confirmed that multispectral data can improve the estimation
of water’s inherent optical properties (IOP) [34–37]. For a specific small watershed over a
certain period of time, due to the relatively fixed type of pollution source, there is a specific
correlation between IOP and water quality parameters such as CODMn, NH3-N, TP, and
TN. The literature shows that spectral bands, their differences, and their logarithms can be
used for water quality inversion in a pixel-by-pixel manner. For each dataset, the single
band or two bands are combined into different forms, including single band (1), two-band
subtraction (2), two-band division (3), the ratio of two-band reflectivity difference to two-band
reflectivity sum (4), and the ratio of the logarithm of one band to another band (5):

C = X, (1)

C = X − Y, (2)

C = X/Y, (3)

C = (X − Y)/(X + Y), (4)
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C = ln(X)/Y, (5)

X and Y are different bands and may be blue bands (B), green bands (G), red bands
(R), or near infrared bands (NIR). C is the band combination.
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We calculated the correlation between various band combinations and water quality
parameters and selected the optimal band combination with the highest correlation for
each dataset.

In this paper, the correlation between the band combination and the manual assay
result is used to evaluate the results of the water quality parameter inversion. The optimal
band combination is incorporated into different models, including a first-order equation,
a second-order equation, an exponential model, and a logarithmic model, to build a
regression statistics equation using the water quality parameters. Finally, the coefficients
and average relative error are determined after comprehensive consideration to confirm
the final models of each dataset.

The correlation between the band combination and water quality parameters is calculated
for three datasets, and then the band combination with the optimal correlation is selected.

First, the most relevant band combination is selected for each water quality parameter
in each dataset.

Then, they are fitted with different fitting types such as polynomial fitting (6), second
order polynomial fitting (7), exponential fitting (8), or power fitting (9).

y = a·x + b, (6)

y = a·x2 + b·x + c, (7)

y = a·eb·x, (8)

y = a·xb, (9)
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The correlation results include Rˆ2, root mean square error (RMSE), relative root mean
square error (RRMSE) [38], and mean relative error (MRE).

3.3. Validation of the Sub-Region Water Quality Parameter Inversion Model

The validation method involved performing the remote sensing inversion at different
times using the model established in this paper and using the inversion results and water
quality monitoring data to calculate the relative error (10) and the Nash–Sutcliffe model
efficiency coefficient (NSE) (11).

r = |I −M|/M, (10)

r is the relative error, I is the inversion result, and M is the water quality monitoring data.

E = 1− ∑T
t=1

(
Qt

0 −Qt
m
)2

∑T
t=1(Q

t
0 −Q0)2

(11)

Q0 is the observed value, Qm is the simulated value, Qt is the value at time t, and Q0
is the total average of the observed values.

In addition, the inversion model of the whole region was built, and the results are
compared with the results of the sub-region inversion in this paper.

For the inversion model of the whole region, all rivers in Qidong are taken as a whole
dataset. By virtue of the optimal band combination and fitted equation described above, the
inversion model for Qidong’s rivers was built for the whole dataset, and the corresponding
parameters were used to invert the region’s water quality.

4. Results
4.1. Model Results for Different Datasets

The correlation of band combinations for each dataset is shown in Figures A1–A3,
Appendix A and these show that rivers in different sub-regions have different optical
characteristics. The fitted equations and correlation results of CODMn, NH3-N, TP, and TN
are shown in Table 2.

Table 2. Results of the fitting models with different fitting types for the CODMn, NH3-N, TP, and TN.

Dataset Water Quality
Parameter

Band
Combination Fitted Equation Rˆ2 RMSE RRMSE (%) MRE (%)

Dataset 1 CODMn NIR/G

y = 2.25x + 3.13 0.5338 0.6486 13.3796 12.6178

y = 8.09x2 − 12.16x + 8.65 0.7188 0.5037 10.3912 10.0433

y = 3.38e0.46x 0.5573 0.632 13.0373 12.3355

y = 5.45x0.37 0.4981 0.6729 13.8818 12.843

Dataset 2 CODMn log(NIR)/B

y = 2076.00x − 8.59 0.8971 0.4667 9.1964 9.1592

y = −6.7 × 105x2 + 1.1 × 104x
− 41.80

0.9247 0.3994 7.8688 6.4409

y = 0.54e336.56x 0.8631 0.5384 10.608 10.7443

y = 8.7× 105x2.40 0.8777 0.5088 10.0259 10.1702

Dataset 3 CODMn B-G

y = −0.01x + 3.13 0.6057 0.8664 16.5411 13.1014

y = 6.5 × 10−5x2 + 0.01x + 4.52 0.7542 0.684 13.0593 12.5902

y = ex −14.4129 5.4162 103.4109 100

Cannot fit - - - -

Dataset 1 NH3-N B

y = 0.0013x − 0.64 0.5996 0.1379 41.8491 34.0995

y = 4.1 × 10−6x2 − 0.0044x + 1.32 0.6661 0.1259 38.2123 29.707

Cannot fit - - - -

y = 1.3 × 10−12x3.96 0.6622 0.1267 38.4382 31.814
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Table 2. Cont.

Dataset Water Quality
Parameter

Band
Combination Fitted Equation Rˆ2 RMSE RRMSE (%) MRE (%)

Dataset 2 NH3-N log(NIR)/B

y = 235.79x − 1.15 0.5483 0.1421 35.3848 48.6194

y = 1.2 × 105x2 − 1538.18x + 5.03 0.5936 0.1348 33.5653 53.1124

y = 0.015e490.12x 0.5765 0.1376 34.2615 48.2822

y = 1.5 × 107x3.49 0.5717 0.1383 34.4545 47.7283

Dataset 3 NH3-N B/G

y = −1.64x + 1.75 0.8521 0.0385 11.2458 11.8931

y = −10.38x2 + 16.69x − 6.31 0.9651 0.0187 5.4607 4.2441

y = 17.52e−4.61x 0.7499 0.0501 14.6219 17.7158

y = 0.18x−3.91 0.7244 0.0526 15.3507 18.8409

Dataset 1 TP B

y = 3.8 × 10−4x − 0.10 0.3192 0.0704 40.4744 35.4081

y = 3.2 × 10−6x2 − 4.1 × 10−3x
+ 1.42

0.5841 0.055 31.6335 21.2066

Cannot fit - - - -

y = 1.6 × 10−7x2.10 0.3597 0.0682 39.2528 33.4138

Dataset 2 TP log(NIR)/B

y = 129.14 x − 0.61 0.8808 0.0315 13.3181 11.9813

y = −7.0E3 x2 + 227.59 x − 0.96 0.8815 0.0314 13.2764 12.2521

y = 0.01e437.95x 0.8657 0.0335 14.1359 12.6933

y = 1.5 × 106x3.12 0.8716 0.0327 13.8202 12.2235

Dataset 3 TP G-R

y = −6.4 × 10−4x + 0.26 0.9061 0.0215 12.2087 11.2841

y = 2.0 × 10−6x2 − 1.1 × 10−3x
+ 0.27

0.9293 0.0186 10.5923 10.7287

y = 1.5 × 10−14ex −1 × 10183 2.68 × 1090 1.52 × 1093 8.37 × 1092

Cannot fit - - - -

Dataset 1 TN G/R

y = −2.14x + 4.57 0.052 0.7741 38.9177 44.3533

y = −194.29x2 + 476.54x − 288.75 0.5325 0.5436 27.3304 21.7147

y = 6.56e−0.99x 0.0467 0.7763 39.0274 44.5332

y = 2.46x−1.16 0.0427 0.778 39.1096 44.6431

Dataset 2 TN NIR

y = 3.4 × 10−3x − 1.17 0.6419 0.6146 22.4039 25.95

y = 4.4 × 10−6x2 − 0.0077x + 5.48 0.6884 0.5733 20.8986 23.8922

Cannot fit - - - -

y = 1.1 × 10−4x1.44 0.6531 0.6048 22.0495 25.1983

Dataset 3 TN B-R

y = −0.0074x + 2.23 0.8225 0.6389 25.7665 24.6155

y = 1.8 × 10−5x2 − 0.005x + 1.67 0.9086 0.4584 18.4884 17.7789

y = 3.9 × 10−16ex −1 × 10145 5.85 × 1072 2.36 × 1074 2.09 × 1074

Cannot fit - - - -

The fitted equations with the highest Rˆ2 and the lowest error for each dataset in Table 2
are selected as the optimal model. The results of the optimal model for all parameters of all
datasets are shown in Table 3, which corresponds to the second-order polynomial fitting
results in Table 2.

It can be seen that the optimal model for each sub-region is second-order polynomial
fitting, which has the highest Rˆ2, the lowest RMSE, RRMSE, and MRE, and the results
obtained from the sub-region inversion all show Rˆ2 values higher than 0.5 and RRMSE
values lower than 40%, indicating good correlation. The results of polynomial fitting, expo-
nential fitting, and power fitting are poor, which indicates that the water quality inversion
of CODMn, NH3-N, TP, and TN in Qidong is suitable for second-order polynomial fitting.
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Table 3. Results of the optimal model for datasets.

Dataset Water Quality
Parameter

Band
Combination Fitted Equation Rˆ2 RMSE RRMSE (%) MRE (%)

Dataset 1

CODMn NIR/G y = 8.09x2 − 12.16x + 8.65 0.7188 0.5037 10.3912 10.0433

NH3-N B y = 4.1 × 10−6 x2 − 0.0044x + 1.32 0.6661 0.1259 38.2123 29.707

TP B y = 3.2 × 10−6x2 − 4.1 × 10−3x + 1.42 0.5841 0.055 31.6335 21.2066

TN G/R y = −194.29x2 + 476.54x − 288.75 0.5325 0.5436 27.3304 21.7147

Dataset 2

CODMn log(NIR)/B y = −6.7 × 105x2 + 1.1 × 104x − 41.80 0.9247 0.3994 7.8688 6.4409

NH3-N log(NIR)/B y = 1.2 × 105x2 − 1538.18x + 5.03 0.5936 0.1348 33.5653 53.1124

TP log(NIR)/B y = −7.0 × 103x2 + 227.59x − 0.96 0.8815 0.0314 13.2764 12.2521

TN NIR y = 4.4 × 10−6x2 − 0.0077x + 5.48 0.6884 0.5733 20.8986 23.8922

Dataset 3

CODMn B-G y = 6.5 × 10−5x2 + 0.01x + 4.52 0.7542 0.684 13.0593 12.5902

NH3-N B/G y = −10.38x2 + 16.69x − 6.31 0.9651 0.0187 5.4607 4.2441

TP G-R y = 2.0 × 10−6x2 − 1.1 × 10−3x + 0.27 0.9293 0.0186 10.5923 10.7287

TN B-R y = 1.8 × 10−5x2 − 0.005x + 1.67 0.9086 0.4584 18.4884 17.7789

Compared to the Rˆ2 values of the fitted equation in datasets 2 and 3, the Rˆ2 values
of the fitted equation in dataset 1 are lower, which may be due to the different optical
characteristics between the rivers in the corresponding sub-region.

4.2. Inversion Results for Qidong’s Rivers Based on an Optimal Inversion Model

The inversion results for Qidong’s rivers are shown in Figure 4. The overall water
quality of all-region rivers in Qidong is relatively good. The inversion results show that the
parameters CODMn, NH3-N, and TP show strong correlations and that the main pollution
area for these parameters is in the middle of the southern part of Qidong City, including
Touxing Port, Zhongyang River, etc. On the other hand, the correlation between TN and the
other three parameters is poor, and the main pollution area of TN is in the northeast of Qidong
City, where the water quality reaches Class VI (the standard requirement is Class III or lower,
and the corresponding pollution level exceeds the standard) according to the EQSSW.

4.3. Model Validation
4.3.1. Validation of the Sub-Region Water Quality Parameter Inversion Model at
Different Times

Water quality data from automatic water quality monitoring stations and satellite data
of Qidong were selected to verify the effect of the optimization model.

The relative errors of the validation data are shown in Table 4.
It can be seen from Figure A1 that most of the temporal data have good accuracy,

while the inversion results of a few water quality sites are quite different from the water
quality values. The NSE of CODMn and TN is not so good. There is still room for further
optimization of the model.

4.3.2. Comparison with the Inversion Method for the Whole Region

The results of the optimal model of the inversion method for the whole region are
shown in Table 5. The band combination with the best correlation with the water quality
data changes as the regional range increases. Due to the different pollution and optical
characteristics of each region of the river network, it is difficult to form a unified inversion
model, and the results are poor, with Rˆ2 values being between 0.1 and 0.6.

Compared with the results of the inversion method for the whole region in Table 5,
the results of the sub-region inversion method in this paper are better, with the Rˆ2 values
being increased by about 0.4.
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Table 4. Relative error of the validation data.

Satellite
Data Time Name of Site Error CODMn NH3-N TP TN Longitude (◦) Latitude (◦)

17 June 2022

Dayanggang Bridge

Relative
Error (%)

1063.395 211.7222 71.1924 6.9761 121.5565 32.0584

Xin Port brake 59.7316 43.9091 24.4588 32.9845 121.6839 32.0345

Haozhi Port brake 12.983 1003.889 19.0292 7.5693 121.7153 32.01163

Junan Bridge 65.9319 655.4407 12.8005 139.1415 121.541 31.93904

Tanglu Port brake 4.0127 474.3824 20.9584 9.7677 121.8176 31.9329

Denggan Port brakes 8.3382 69.0581 97.3305 205.8181 121.4678 31.83604

Xinsanhe Port brake 330.4049 604.0909 18.6528 100.1179 121.5163 31.81362

Touxing Port brake 15.3916 0.3046 0.5455 9.0814 121.6158 31.78235

Santiao Bridge east 31.8068 878.449 66.1143 95.4444 121.7029 31.74347

Wuyao Port brake 67.0915 35.1996 61.938 36.4323 121.7591 31.71878

Lianxing Port brake 2.9992 1270.128 82.2396 188.6476 121.8739 31.70669

Gaiyao Port brake 21.178 1100.522 86.2734 213.9723 121.8203 31.70354

NSE −13.67 0.06 0.12 −1.33
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Table 5. Results of the optimal model for the inversion method of the whole region.

Water Quality
Parameter

Band
Combination Fitted Equation Rˆ2 RMSE RRMSE (%) MRE (%)

CODMn G/B y = 38.78x2 − 80.96x + 45.74 0.143498 1.715425 39.35256 59.83129
NH3-N B-G y = −2.72 × 10−6x2 − 1.91 × 10−3x + 0.10 0.102651 0.175986 52.76869 56.51925

TP G/R y = −0.21x2 + 0.11x + 0.35 0.237375 0.070387 35.74346 23.08188
TN B-R y = 1.97 × 10−5x2 − 3.39 × 10−3x + 1.77 0.547346 0.790012 35.1435 45.35502

5. Discussion
5.1. Performance of the Sub-Region Water Quality Parameter Inversion Model

The chemical parameters of water quality (CODMn, NH3-N, TP, TN) have no spectral
characteristics, but for a fixed area in a fixed period, the source of sewage is relatively fixed,
so it may show specific spectral characteristics. Therefore, the models established in the
same area of Qidong show good accuracy at different times, with the exception of a few
individual sites.

Compared with other papers [39–43], the RRMSE in this paper is a little high and
the Rˆ2 is a little low, except for the TN parameter. This is because the region selected in
this paper lacks ground historical data, and it is not possible to use multi-period Gaofen-1
satellite data to achieve remote sensing inversion. Additionally, the rivers are relatively
narrow and only suitable for high-spatial-resolution satellites (multispectral data from four
bands). Compared to hyperspectral data with low spatial resolution, the retrieval accuracy
will also decrease. This paper hopes to achieve a preliminary assessment of regional water
quality in regions that also lack ground historical data.

5.2. Field Investigation of the Key Polluted Regions

From the inversion results of various parameters, the regions suffering relatively heavy
pollution are selected as the key polluted regions. The field investigation method was
applied to perform an adequate investigation into regions to find the surrounding ground
object sources influencing water quality, which proves the accuracy of the inversion of
water quality parameters from Gaofen-1 satellite data.

The pollution mainly appears in the middle and southern regions. The main pollution
parameters are TP and TN. The TP of some rivers in the middle and southern regions
exceeds the standard limit of 0.2 mg/L, according to the EQSSW [29], which indicates that
the water quality in this region has deteriorated significantly.

According to our inversion results, the main parameters influencing water quality in
Qidong are TP, TN, and CODMn. Thus, the regions showing high pollution parameters
were selected (the red color of the river means a higher pollution level). As shown in
Figures 5 and 6, the regions include the Daoan River, Touxing Port, Zhongyang River,
Sanhe Port, etc.

The field survey method was adopted to conduct an adequate investigation into the
key regions and find the surrounding pollution sources. Figure 7 shows the main pollution
sources found during the investigation.

The inversion results show that the values of CODMn, NH3-N, and TN in the Daoan
River are all relatively high and have some influence on the water quality in the downstream
main streams. The field investigation shows that there are dwellings and drains near the
river, causing the problem of sanitary sewage.

The inversion results reveal that Touxing Port is a region of high CODMn and TP. The
field investigation found that the water in Xingtou Port is relatively turbid and that the
water quality there is poor (results not shown).

The inversion results reveal that the Zhongyang River has CODMn with an obvious and
abrupt change, where it is suspected that there is a pollution afflux. The field investigation
found that there are construction sites, dwellings, farmland, pre-cast concrete plants, and
some vegetable fields along the Zhongyang River, and there is possible pollution afflux here.
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Figure 6. Key polluted regions: (a) Daoan River; (b) Sanhe Port.

The satellite inversion results reveal that Sanhe Port has multiple locations suffer-
ing from abnormally high TN. The field investigation found that there are yards and
sand/broken concrete pilings on the bankside of Sanhe Port, as well as ships. There is a PVC
sewage drainage outlet from a food processing plant and yards near the river, which means
that traces of lime water flow into the river. There are fish ponds, dwellings, poultry yards,
and yellow sand yards near the riverbank, which cause heavy pollution to the water body.
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By means of a field investigation into the polluted regions we found from the inversion
result, this paper traces multiple pollution sources influencing the water quality and verifies
the relation between the inversion of water quality parameters from the Gaofen-1 satellite
data and the actual water quality, which proves the feasibility of the method.

Remote sensing water quality inversion has high requirements in terms of the ground
monitoring water sampling time. Due to the large collection area in this inversion, there was a
time interval of as much as 6 h between the water sampling time and the satellite data taking
time, and some water samples were collected at times inconsistent with the satellite data
measuring time, thus influencing the analytical precision. Moreover, the methods of artificial
inspection and taking photos were mainly used in the field verification, and only a qualitative
analysis can be performed between these findings and the spectrum result of the satellite
remote sensing. No quantitative calculation can be performed to identify correlations.

6. Conclusions

This paper establishes a sub-region remote sensing water quality spectrum inversion
method for a flat river network that can be used for the remotely sensed water quality
inversion of complex river networks in the absence of historical ground data. In this study,
the sub-region inversion models of the river network for four indexes, including CODMn,
NH3-N, TP, and TN, were built based on Gaofen-1 satellite data. The inversion of the water
quality parameters from Gaofen-1 satellite data on Qidong’s rivers was realized with a
RRMSE value lower than 40%, and all the Rˆ2 values were higher than 0.5, exhibiting an
increase of about 0.4 compared with the inversion method involving the whole region,
which indicates a good inversion result correlation.

The experimental results implied that the sub-region inversion model built in this
paper can be applied to other complex river networks in China. In the future, we plan
to investigate other water quality inversion parameters, such as chlorophyll a, dissolved
oxygen, etc. Additionally, we plan to use devices such as ground object spectrometers and
multi-spectral UAVs to enhance on-site ground spectrum verification.
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