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Abstract: In this study, a new algorithm for predicting vehicle turning at intersections is proposed.
The method is based on the Markov chain and can predict vehicle trajectories using GPS location
sequences. Unlike traditional Markov models, which use preset weights, we created the Markov
model using a data-driven weight selection method. The proposed model can dynamically adjust
the weights of each intersection’s influence on current trajectories based on the data, in contrast to
the fixed weights in traditional models. The study also details how to process trajectory data to
identify whether a vehicle has passed through an intersection and how to determine the adjacency
relationship of intersections, thus providing a reference for implementing a model of the classification
problem. The data-driven algorithm was applied and compared to the fixed-weight algorithm on
the same trajectory dataset, and the superiority of the weight selection algorithm was proven. The
prediction accuracy of the traditional method was 49.61%, while the proposed method achieved
a prediction accuracy of 60.66% for 100,000 trajectory datasets, nearly an 11% increase. Volunteer
participation in the second dataset collected on the university campus showed that the accuracy of
the proposed method could be further improved to 79.31% as the GPS sampling frequency increased.
Simulation results show that the algorithm provides accurate prediction and that the prediction
effect is improved with the expansion of the trajectory data set and the increase in GPS sampling
frequency. The proposed algorithm has the potential to provide a location-based optimization of
network resource allocation.

Keywords: internet of things; cyber–physical systems; intersection prediction; Markov chain

1. Introduction

The vigorous development of communication technology and the Internet of Things
(IoT) has brought us opportunities and challenges [1]. With the development of the Internet
of Things, more and more vehicles begin to connect to the Internet, forming a huge network
of car networking systems [2,3]. This technology facilitates the monitoring of environmental
data, enabling extensive analysis, optimization, and control. Now we live in the era of car
networking, thousands of connected computing devices surround us, which makes these
devices more convenient and smarter [4,5]. The present rapid advancement of IoT owes
much to its capacity to bolster diverse areas, including transportation and agriculture [6,7].

In the era of Industry 4.0, technological advancements have spurred the widespread
adoption of IoT technology within the intelligence industry [8]. By enabling the integration
of virtual computing systems with the physical environment of industry, IoT technology
has engendered a paradigm shift and a novel technological paradigm, characterized by
cyber–physical systems (CPSs) [9]. The realm of CPSs harbors numerous novel function-
alities that can be actualized. For instance, in the transportation system, we stand to
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gain considerably from enhanced embedded intelligence within automobiles [10]. Net-
worked autonomous vehicles hold immense potential to elevate traffic efficiency, safety,
and efficacy [11].

Presently, the quantity of connected vehicles situated at the Smart Connection Level
is on the rise, and this trend shows no signs of abating. Concomitantly, the magnitude of
trajectory data produced is also escalating [12,13]. In recent years, how to mine meaningful
information from massive amounts of trajectory data has drawn the attention of scholars
around the world [14]. In this study, we focus on one type of trajectory data, which is
urban vehicle trajectory data. By urban vehicle trajectory data we mean the trajectory
car data describing vehicle motion in an urban traffic network. In many applications of
trajectory data mining, this study mainly focuses on the location prediction problem based
on historical trajectory data, that is, analyzing a large number of vehicle trajectories moving
in the city to predict the next location that they will arrive at. Vehicle trajectory prediction is
an important branch of trajectory data mining; it aims to predict the next destination based
on the initial trajectory segment [15]. This work is of great significance for trajectory-based
user services and changing user lifestyles [16].

The task of vehicle trajectory prediction has been addressed in the literature from differ-
ent perspectives. Therefore, a considerable number of vehicle trajectory prediction methods
have recently been proposed. Here, we give an overview of the methods. In [17], the author
proposed a new trajectory prediction method which combines trajectory prediction based
on the Constant Yaw Rate and Acceleration motion model and a trajectory prediction based
on maneuver recognition. In [18], a method which combines road recognition and the
hypothesis of steady preview and dynamic correction for trajectory prediction has been
proposed. In this algorithm, both methods of Kalman Filter and Recursive Least-Square
work well to estimate the road slope and road friction coefficient. In [19], a vehicle trajectory
prediction method based on motion model and maneuver model fusion with Interactive
Multiple Model (IMM) was proposed. In the whole prediction range, this method not only
has good prediction accuracy, but also has appropriate prediction uncertainty. In [20], the
authors built the train control security state transition probability model under jamming
attacks and proposed a cross layer defense scheme. Convolutional Neural Network (CNN)
is used in [21], it proposed a new prediction algorithm, which models the trajectory as
a two-dimensional image, and then feeds it into CNN architecture to extract multi-scale
patterns for accurate destination prediction. In [22], the article presents a new collabora-
tive approach for predicting vehicle trajectories. This approach incorporates a bivariate
Gaussian model and a specially designed Kalman filter, leading to improved short- and
long-term predictive performance.

The work in [23] considers a lane crossing and final points generation model-based
trajectory prediction approach for preceding target vehicles, in which the key influence
factors, such as the driver’s intention and the mixed driving style, are included. The authors
in [24] introduce and analyze trajectory prediction methods based on how they model
the vehicles interactions. Inspired by human reasoning, they use an attention mechanism
that explicitly highlights the importance of neighboring vehicles with respect to their
future states. Wang in [25] states that we can extract valuable user behavior information
through the trajectory data mining and use a trajectory prediction algorithm based on
deep learning that fuses the convolution neural network and deep bidirectional long-term
memory network to learn the local and global information of vehicle trajectory, so that we
can accurately analyze the vehicle motion law and predict the vehicle motion trajectory in
the future.

The prediction method proposed in other papers is based on Markov Chain (MC).
The Markov-Based methods are based on the Markov property, which states that the proba-
bility of traveling to a future position depends only on the current one. In [26], the work
proposed a Long Short-Term Spatio-Temporal Aggregation (LSSTA) network for human
trajectory prediction. Compared to recurrent neural networks or convolutional neural
networks, the model in the article has excellent scalability for long sequences, considering
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not only fixed features but also dynamic interactions between pedestrians. Targeting on
sparse historical trajectory data, an Individual Trajectory–Group Trajectory (ITGT) loca-
tion prediction model by utilizing the pattern of group travels is proposed in [27]. It has
achieved good prediction accuracy and good performance improvement. In [28], this paper
proposed a real-time trajectory prediction method for ICV based on vehicle to object (V2X)
communication, which considers more dynamic spatial environments and improves the
accuracy of trajectory prediction. Ref. [29] proposed a Spatio-Temporal Multigraph Con-
volutional Network (STMGCN)-based trajectory prediction framework using the Mobile
Edge computing (MEC) paradigm and it achieves excellent prediction performance.

In recent years, a methodology based on MC with weight algorithm, called Markov
model-based Trajectory Prediction, which predicts the next location of a vehicle has been
proposed [30], the scale of trajectory data involved is 100,000. It makes full use of historical
trajectory information, the average prediction time is short and the accuracy is high. How-
ever, the weight is determined artificially and the data scale is small, which leads to the loss
of prediction accuracy. In addition, ref. [30] does not describe the specific implementation
methods, including how to judge whether the vehicle passes through an intersection and
how to obtain the adjacent relationship of the intersection.

To summarize, our contributions are as follows: compared with the tradition Markov
model with preset model, a data-driven weight selection method is used in this paper to
create Markov model, which effectively improves the prediction accuracy and shortens the
prediction time. In addition, we describes the specific implementation methods, including
how to judge whether a vehicle passes through an intersection and how to obtain the
adjacent relationship of the intersection. The trajectory prediction of the vehicle based
on a huge trajectory dataset on the intersection will help the planning framework of the
intersection, which will help alleviate traffic congestion problems and improve cross-
intersection efficiency.

The rest of the paper is organized as follows. In Section 2, we introduce the MC and
create the vehicle trajectory prediction model according to real vehicle data. Section 3
evaluates the performance of the model. The last section concludes the paper.

2. Methods
2.1. Markov Chain

MC can be applied to Monte Carlo method to form MC Monte Carlo. It can also be
used for mathematical modeling of dynamic system, chemical reaction, queuing theory,
market behavior, and information retrieval. MC or Markov process is a stochastic model
that describes a series of possible events in which the probability of any event depends only
on the state reached in the previous event. In math, it can be expressed as the following:

p(Xtn+k = x | Xt1 = x1, Xt2 = x2, . . . , Xtn = xn) = p(Xtn+k = x | Xtn = xn) (1)

In the above formula, {Xtn , n = 0, 1, 2, · · · } is a sequence of random variables, x
belongs to the discrete state space of the random sequence {Xtn , n = 0, 1, 2, · · · }, k is any
natural number. If {Xtn , n = 0, 1, 2, · · · } satisfies the expression above, we call it MC.

If tn represents the current,t1, t2, t3 . . . , tn−1 represent the past and tn+k represents the
future in the Formula (1), that indicates that the state x at time tn+k in the future only
depends on the current state xn at time tn, and has no relation to the past state at time
t1, t2, t3 . . . tn−1, we call this feature Markov property or non-after-effect property.

There are two commonly used Markov chains: one is called a homogeneous Markov
Chain (HMC) and the other is called a non-homogeneous Markov chain (NMC). The main
difference between them is that the former has the same k-step transition probability matrix
at any time, while the latter’s k-step transition probability matrix changes with time. This
paper mainly discusses HMC.

In MC theory, p(Xtn+k = x | Xtn = xn) is called k-step transition probability at time
tn. The transition probability represents the probability of being in state x at time tn and
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transferring to the state xn at time xn after k time units. If the MC does not depend on n and
is only related to the initial state x, the final state xn and the step k, the MC is called a HMC
and the k-step transition probability can be regarded as pxnx(k). It can be expressed as:

pxnx(k) = pxnx(n, n + k) = p(Xtn+k = x | Xtn = xn), k > 0 (2)

In Formula (2), 0 ≤ pxnx(k) ≤ 1, ∑x∈E pxnx(k) = 1.
According to the operational definition of the transition matrix of the homogeneous

MC, there is the following formula:

P =


p11 p21 · · · pn1
p12 p22 · · · pn2

...
...

...
p1n p2n · · · pnn

 k times→ P(k) =


pk

11 pk
21 · · · pk

n1
pk

12 pk
22 · · · pk

n2
...

...
...

pk
1n pk

2n · · · pk
nn

 (3)

2.2. Data-Driven Weight Selection Markov Model
2.2.1. MC in Model

The goal of this part is to predict the next target intersection when the vehicle turns at
the intersection, based on its past trajectories and the past trajectories of other vehicles here.
Intersection prediction implies forecasting the movement of objects between intersections.
The intersection of the predicted object is the present state of the predicted object in MC.
Of course, the predicted intersection can also be some iconic edifices or abstract destinations,
such as the transition between administrative regions, which are also the transmutation of
object state.

Vehicle trajectory composed of m number of data points of longitude(x) and latitude(y)
is expressed as l = [(x1, y1), (x2, y2), . . . , (xm, ym)].In urban traffic network, trajectory pre-
diction is actually only needed at intersections. At this time, the vehicle trajectory composed
of longitude and latitude can be transformed into a directed sequence composed of k num-
ber of junctions, represented as l = [j1, j2 . . . , jk], as shown in the Figures 1 and 2.

The vehicle trajectory is defined as ordered sequence of intersections, so the junction
transfer problem can be regarded as the state transfer problem. In this paper, it is assumed
that the turning probability of each intersection is the same at any time, The vehicle
trajectory sequence satisfies the Markov property and it is a HMC.

Figure 1. Schematic diagram of original trajectory data.



Sustainability 2023, 15, 6943 5 of 18

Junction 1

Junction 2

Figure 2. Schematic diagram of converted trajectory data.

The vehicle trajectory prediction at the intersection is jointly determined by the his-
torical records of the current vehicle and other vehicles before. In this model, the one-step
transition probability is the probability of vehicles transferring from the current intersection
to other intersections. If we suppose there are currently n intersections, numbered from 1
to n, the one-step transition probability can be calculated by the following formula:

pij =
Sij

∑n
j=1 Sij

(1 ≤ i, j ≤ n) (4)

In the above formula, pij is the the probability of vehicles transferring from the
intersection i to intersection j. Sij the number of times the vehicle is transferred from
intersection i to intersection j.

Obviously, the closer to the current state, the greater the impact on the decision-making
of the next transfer intersection, so the historical trajectory of k steps can be retained, and the
impact of historical states other than k steps on the decision-making can be ignored. Based
on MC, the predicted next intersection can be obtained by weighting. The formula for
calculation is as follows:

A(t) = w1 I(t− 1)P + w2 I(t− 2)P(2) + · · ·+ wk I(t− k)P(k) (5)

In Formula (5), t presents the moment of the next junction, t− 1 is the moment of the
previous junction of the next junction, and so on. I(t− i) is the state of the first i intersection
of the next intersection at time t. a1, a2..ak stand for the weight values. The weight values
indicate that the degree of influence of the previous three intersections on the current
decision-making countermeasures. w1 ≥ w2 ≥ w3 ≥ ... ≥ wk. A(t) is a matrix with one
row and N columns of the the predicted value of the current junction turning to each
junction. If An is the column n in A(t), Anrepresents the predicted value of the current
intersection transferred to intersection n.

2.2.2. Weight Selection Algorithm and Associated Algorithms

In the previous research work, w in Formula (5) is determined by experience, and it is
the empirical value. In this paper, a weight determination method based on trajectory big
data is proposed. We use the historical vehicle movement trajectory in the previous area,
constantly adjust the weight parameters, record the training prediction results, and take a
group of weights with excellent training results for the prediction of the test set.

In the original algorithm, the matrix weighting used to predict trajectories is fixed and
determined by experience. Obviously, this has its shortcomings. When facing different
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movement trajectory models in different regions, using a fixed weighting will inevitably
lead to a decrease in prediction accuracy. The trajectory prediction formula used is shown
as Formula (6).

A(t) = 4I(t− 1)P + I(t− 2)P(2) + 0.25I(t− k)P(3) (6)

According to the historical trajectory and life experience, when k is greater than 3,
the historical intersection choice has little impact on the current intersection choice, k in
Formula (3) is set to 3 in this paper. According to previous studies, The best interval
of w1, w2, w3 can be obtained, 1 ≤ w1 ≤ 10, 1 ≤ w2 ≤ 5, 0.1 ≤ w3 ≤ 1. Since keeping
the weight value to two decimal places does not improve the prediction accuracy and
actually increases the operating cost, the weight values for w1, w2, w3 are discrete values.
w1 = 1,2,...,10, w2 = 1, 2, ..., 5, w3 = 0.1, 0.2, ..., 1.0. The size of the search space is 500.
Therefore, the initial value of the weight is set, w1 = 1, w2 = 1, w3 = 0.1. Supported by the
huge historical trajectory data, the selected weight will make the prediction accuracy high.
The specific process is shown in the Figure 3.

Begin
Initialization

weight matrix

The weight  is out 

of range?

Predict the 

trajectory of 

the training set

Record the

results and

caculate the error

Enlarge the 

weight matrix

Select a group of 

weights with

excellent training

results and the

Smallest error

Y

N

Figure 3. Main framework of data-driven weight selection method.

In accordance with A(t), we set the corresponding items that are not adjacent to the
intersection where the vehicle is currently situated to 0, then the next intersection predicted
is the one with the highest predicted value among the adjacent intersections.

Therefore, using the existing historical trajectory statistics, the k-step transfer matrix
can be obtained, as shown in Algorithm 1. Therefore, using the existing historical trajectory
statistics, the k-step transfer matrix can be obtained, as shown in Algorithm 1.
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Algorithm 1 Get P(k)

Require: Transaction Database L; Intersection Database I, contains historical trajectory
data and involves the longitude and latitude coordinates of the intersection; number of
the intersection SN.

Ensure: the k-step transfer matrixP(k)
1: Scan database L once;
2: Get the Number of trajectory sequences TN
3: for i← 1 to SN do
4: for j← 1 to SN do
5: for n← 1 to TN do
6: if the vehicle passes through two intersections i and j in sequence in ln then
7: Sij ++;
8: Sum+ = Sij;
9: end if

10: end for
11: end for
12: end for
13: Calculate the one-step transition probability p using (4);
14: Calculate the k-step transition probability matrix P(k) using (3);

In Algorithm 1, transaction database L should include the timestamp, GPS latitude
and longitude coordinates, and license plate number. The intersection database I consists
of the latitude and longitude coordinates of all intersections within the area.

In Algorithm 2, firstly, by arranging the trajectory data according to the timestamp,
the trajectory sequence is obtained. If one of the trajectory points is within distance d of an
intersection, the vehicle is judged to have passed through the intersection.

Algorithm 2 Judge whether the vehicle passes the intersection

Require: The current intersection of the vehicle J; Transaction Database L; Intersection
Database I, contains historical trajectory data and involves the longitude and latitude
coordinates of the intersection,the number of the intersection SN.

Ensure: Whether the vehicle passes the intersection
1: Scan Transaction database L and Intersection Database I once
2: for i← 1 to SN do
3: Filter out the data points near the intersection according to the distance d between

the vehicle and the intersection i
4: if The filtered vehicle data points belong to the current vehicle then
5: Vehicles passing through the current intersection i
6: end if
7: end for

In Algorithm 3, to derive the predicted turning intersection J, we assign a zero to the
matrix element that is not adjacent to the current intersection, select the matrix’s maximum
element, and identify the intersection related to the maximum element’s position in the matrix.

Algorithm 3 Function Get_predicted intersection

Require: The current intersection of the vehicle J; Transaction Database L; number of the
intersection SN

Ensure: the predicted turning intersection J′

1: Scan database L once, and determine I(t), the matrix of the state of the vehicle;
2: Calculate A(t) using (5);
3: Select the maximum element A_max from the A(t);
4: A_max → J′;
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In Algorithm 4, according to the dense data points and the known intersection lon-
gitude and latitude information, create an intersection relationship matrix. According to
the timestamp information in the vehicle trajectory, combined with Algorithm 2, it can be
concluded that the intersections that pass successively must be adjacent, the corresponding
value of adjacent intersections in the matrix is set to 1, and the non-adjacent value is set
to 0.

Algorithm 4 Get the intersection relation matrix

Require: Transaction Database L,Intersection Database I, the number of the vehicle VN
Ensure: the Intersection relation matrix R

1: Scan Transaction database L and Intersection Database I once
2: for i← 1 to VN do
3: Using the time stamp in L and algorithm 2, sort the intersections in time order
4: With the obtained sequence, assign values to adjacent intersection values correspond-

ing to the matrix
5: end for

3. System Architecture of Prediction Platform

The trajectory big data prediction platform is established through Cloudera’s Distri-
bution Including Apache Hadoop (CDH). The platform will adopt a lambda architecture.
Lambda architecture integrates offline computing frameworks and real-time computing
frameworks. The immutable model is used to store data, so that the task becomes traceable,
which is convenient for independent analysis of trajectory data in different time stages.
In massive stream data processing. Recalculation is the main factor affecting the system
performance. For example, when the code changes, you can only recalculate all the data.
The incremental calculation of lambda architecture can well avoid the recalculation of a
large amount of stream data to improve system performance. In addition, lambda archi-
tecture adopts the basic principle of read-write separation to separate the read and write
functions, so as to isolate the complexity of system design and simplify the system. In order
to meet the calculation and analysis requirements of trajectory traffic data, the components
adopted include

(1) Mysql, a relational database management system developed by Mysql AB company
in Sweden.

(2) Hadoop Distributed File System (HDFS) [31], a distributed file system designed to
run on common hardware.

(3) Spark [32], a distributed open source processing system for big data workloads.
(4) Yarn [33], a resource coordination management system provides a trajectory data

analysis, processing, and development environment.
(5) ZooKeeper [34], a centralized service for maintaining configuration information,

naming, providing distributed synchronization, and providing group services.

The platform data link is shown in Figure 4. In Figure 4, the traffic trajectory data of
Shenzhen is temporarily stored in Mysql. Since Mysql is very slow in transmitting data to
spark, the traffic trajectory data are first written into HDFS from Mysql and distributed to
each datanode through the copy mechanism of HDFS. When the trajectory is predicted,
spark obtains the trajectory data from HDFS for parallel calculation, and the calculation
results are written back to HDFS.
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Custom gateway Custom gateway

Mysql

Hadoop Distributed

File System(HDFS)

Mysql

Figure 4. The trajectory big data prediction platform data link.

4. Trajectory Prediction of Shenzhen Traffic Data
4.1. Experimental Environment and Dataset

This platform uses VMware ESXi to build three virtual machine clusters. The specific
server configuration is shown in the Table 1 below. Through this server, three nodes are
virtualized, and big data components are built through CDH. The versions of big data
components used by the platform are shown in Table 2. Our programs are written in
Python. The dataset was downloaded from the Shenzhen Municipal Government Data
Open Platform. The dataset contains various items of vehicle data, such as plate number,
map latitude and longitude, GPS time, speed, and so on. It covers the three-month driving
trajectories of operating vehicles in Shenzhen in 2018, with a total of 2,133,696 trajectories.

Table 1. Server configuration information.

Type Specific Model

CPU Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz
Memory DRAM DDR-4 2933MHz

Hard Disk Dell Express Fla
Network Card Broadcom Adv. Dual 10Gb Ethernet

Operating System CentOs Linux release 7.9.2009(Core)

Table 2. Big data component version.

Name Version

Hadoop 3.0.0-cdh6.3.2
Zookper 3.4.5-cdh6.3.2–1

Spark 2.4.0-cdh6.3.2

The trajectory dataset used in this study is obtained from the Shenzhen Transportation
Bureau and comprises raw GPS data from up to five types of urban operating vehicles.
The dataset spans one week, from 00:00 a.m. on 8 October 2018 to 11:59 p.m. on 14
October 2018 in the local time. In total, the dataset contains 113,503 entries, representing
29,218 vehicles. Each trajectory in the dataset is characterized by an extensive number of raw
GPS coordinates, with one typical trajectory containing 295,966,347 data points. The data
includes attributes such as license plate number, map longitude, latitude, timestamp,
altitude, and GPS speed.
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The document contains the trajectory data of vehicles, where each row represents a set
of trajectory data. In each set of data, fields are separated by colons. As an example, a single
set of trajectory data is listed as 68,269,849:13,839,354:20,230,301/68,266,747:13,840,980.
The data can be interpreted as follows: (0) Map longitude, which is the longitude after
correction, is divided by 60,000 to obtain the longitude in the WGS 84 coordinate system;
(1) Map latitude, which is the latitude after correction, is divided by 60,000 to obtain
the latitude in the WGS 84 coordinate system; (2) GPS time; (3) GPS longitude; and (4)
GPS latitude.

4.2. Data Preprocessing

Trajectory preprocessing plays a vital role in numerous trajectory data mining tasks.
This step involves solving various problems, including filtering out noise, compressing
trajectories, segmenting them, detecting vehicles, and matching them to maps. Filtering
out noise is a crucial step to eliminate imprecise points that arise from less than optimal
signal quality in location positioning systems. This step guarantees that the trajectory data
are dependable and precise. Another approach is trajectory compression, which decreases
the size of a trajectory while retaining its usefulness, facilitating effective storage and
processing of extensive trajectory datasets. Stay point detection can detect positions where
a moving object has remained for an extended period, carrying semantic meaning, such as
stopovers or points of interest.

Vehicle detection technology involves systems or methods applied to identify the posi-
tion, orientation, or movement of vehicles within a specific area or environment. Tracking
technology, such as vehicle kinematics and multi-sensor fusion, can be utilized to estimate
parameters, such as sideslip angle [35], velocity error, and yaw misalignment [36], resulting
in the improvement of the raw trajectory data’s accuracy. Trajectory segmentation divides
the trajectory into smaller fragments based on time interval, spatial shape, or semantic
meanings, which can aid in extracting meaningful patterns or insights from the data. Map
matching is sometimes used in track preprocessing, which aims to accurately project track
points onto corresponding road sections, so that track data can be accurately analyzed
under the background of road network [37].

In this article, the trajectory dataset was processed as follows.

1. Detection and removal of zero values in the data, where continuous zero values in a
trajectory were deleted, and discrete zero values were interpolated using the average
of the nearest k data points.

2. Detection and removal of duplicate data points in the trajectory data based on distance
or time matching.

3. Filtering of trajectories outside the Guangdong province region based on latitude and
longitude, identifying them as abnormal trajectory points and removing them.

4. Detection of noise points caused by stationary drift in the trajectory, based on Eu-
clidean distance and time interval between consecutive points. If the average speed
between two points exceeded 150 km/h, it was considered as an abnormal trajectory
point. Similarly, for a few scattered noise points, we applied averaging and fitting
correction based on neighboring points. For a large number of continuous noise
points, the entire trajectory was discarded.

4.3. Results

In this section, we analyze the performance of the model from three aspects: (1) the
amount of track data involved in training; (2) the distance d to judge whether the vehicle
passes the intersection; (3) the order of the transfer matrix, that is, the total number of
intersections involved in the calculation. In this simulation, we split the dataset into a train
(90%) set and a test (10%) set.

Through the model calculation, the turning prediction of vehicles at the current
intersection can be obtained. By comparing the prediction results with the actual results, we
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can obtain the prediction accuracy, and use this as the standard to compare the performance
of algorithms. The accuracy of the model is defined as follows:

Acc =
Sumc

∑n
i=1 Si

(1 ≤ i ≤ n) (7)

In the Formula (7), Sumc represents the same sum of predicted turning intersections
and actual turning intersections. ∑n

i=1 Si is the total number of predictions.
Figure 5 shows that with the increase in the amount of trajectory data involved in

training, the prediction accuracy of the model has increased significantly, showing a steady
upward trend. In Figure 5, the data involved in model calculation is split into a train
(90%) set and a test (10%) set. The order of the transfer matrix are both 5700. The specific
parameters of the model are shown in the Table 3. As the amount of trajectory data are
related to the calculation of transition probability, the more the amount of trajectory data,
the closer the first-order transition probability will be to the real probability of turning to
each intersection, so the accuracy of trajectory prediction will increase with the increase in
the amount of trajectory data.

Figure 5. Influence of trajectory number on prediction accuracy.

The algorithm used in [30], adopts fixed weights, which is based on people’s experi-
ence. The weight array in [30] is {4, 1, 0.25}. It can be seen that the weights obtained in this
paper are basically different from those in [30], and the prediction accuracy is higher than
that of the algorithm used in the first article. In addition, the first article involves at most
300 intersections, and the dataset of this article contains at most 5700 intersections, which is
much larger than the first article. As shown in the Figure 6 and 7, it is a map of Shenzhen
marked with the number of different intersections. From Figure 6 and 7, it can be seen
that there is a broad area covered by 300 and 5000 cross intersections. When 300 crossings
cover only one district in Shenzhen city, about the whole Shenzhen city can be covered by
5000 crossings.

In Figure 8, with the increase in d, the prediction accuracy fluctuates between 33% and
38%, and the upper and lower ranges are only 5%. The specific parameters of the model
are shown in the Table 4. It can be seen from Table 4 that the value of d has affected the
training of weight array, so it is necessary to select a reasonable value of d. If the value of d
is too small, it will lead to vehicles passing through the intersection without being recorded,
which will distort the transition probability and reduce the prediction accuracy. If the value
of d is too large, it may be greater than the distance between intersections, which will also
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lead to inaccurate transfer probability and reduce the accuracy of prediction. According to
the characteristics of the dataset and the sampling interval of the trajectory dataset, it is
reasonable to select 20 m as the value of d.

Table 3. The specific parameters of model.

Amount of Data The Order of the Transfer Matrix k Optimal Weight {w1, w2.w3} The Distance d (m)

1000 5700 {6, 2, 0.1} 20
5000 5700 {3, 1, 0.3} 20

10,000 5700 {9, 1, 0.1} 20
50,000 5700 {9, 1, 0.3} 20
100,000 5700 {7, 2, 0.1} 20

Figure 6. A map of Shenzhen marked with 300 intersections.

Figure 7. A map of Shenzhen marked with 5000 intersections.
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Figure 8. Influence of the distance on prediction accuracy.

Table 4. The specific parameters of model.

Amount of Data The Order of the Transfer Matrix k Optimal Weight {w1, w2.w3} The Distance d (m)

50,000 5700 {9, 1, 0.1} 5
50,000 5700 {8, 1, 0.6} 10
50,000 5700 {9, 1, 0.1} 15
50,000 5700 {9, 1, 0.3} 20
50,000 5700 {8, 3, 0.4} 25
50,000 5700 {7, 2, 0.1} 30

In Figure 9, with the increase in transfer matrix order, the prediction accuracy does not
change linearly. The minimum prediction accuracy is 49.12% when the order is 3000. When
the order is 4000, the maximum prediction accuracy is 53.21%. The specific parameters
of the model are shown in the Table 5. When the amount of trajectory data is constant,
the order of transfer matrix will not significantly affect the prediction accuracy, and the order
of transfer matrix will significantly affect the calculation time of prediction. Because the
calculation involves the multiplication of higher—order matrices. As the amount of track
data increases, the total number of intersections involved will also increase, so the order of
the transfer matrix will also increase.

Figure 9. Influence of order of the transfer matrix on prediction accuracy.
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Table 5. The specific parameters of model.

Amount of Data The Order of the Transfer Matrix k Optimal Weight {w1, w2.w3} The Distance d (m)

100,000 1000 {6, 1, 0.1} 20
100,000 2000 {6, 1, 0.2} 20
100,000 3000 {7, 1, 0.4} 20
100,000 4000 {7, 1, 0.1} 20
100,000 5700 {7, 2, 0.3} 20

4.4. Discussion and Summary

The above experimental results demonstrate that the extent of prediction accuracy is
contingent upon the size of the dataset, achieving up to 60.66%. This is due to the fact that
the sampling frequency of open traffic data in Shenzhen is relatively low, with the average
GPS sampling rate being only once per minute, resulting in a track that is too coarse,
with an average speed of 60 km per hour and a distance between consecutive points that is
too great, thus impeding the stability of the model’s prediction. In the following section,
we will utilize the track data of college students’ daily commuting to make predictions.
The average GPS sampling frequency is once every one seconds.

5. Trajectory Prediction of Commuting of College Students
5.1. Experimental Environment and Dataset

The experimental environment is consistent with the previous part. The dataset
comprises the daily activities of the volunteers on campus and the GPS coordinates gathered
through the mobile GPS collection application. There are approximately 10,000 entries in
the dataset.

5.2. Results

In this section, we analyze the performance of the model from The amount of track
data involved in training. In this simulation, we split the dataset into a train (90%) set and
a test (10%) set. Randomly partition five training and test sets to calculate the prediction
accuracy rate, taking the mean value as the prediction accuracy.

Figure 10 illustrates that, as the amount of track data incorporated into the training
increases, the prediction accuracy of the model is significantly enhanced, exhibiting a steady
upward trend. The maximum prediction accuracy reaches 79.31%. The specific parameters
of the model are outlined in Table 6. In comparison to Figure 5, the prediction accuracy
of the same data volume is only 38.7%, indicating that the higher the sampling frequency,
the more consistent the trajectory, the more continuous the state transition, and the better
the model stability.

Table 6. Big data component version.

Amount of Data Optimal Weight {w1, w2.w3} The Distance d (m)

1000 {2, 1, 0.1} 20
5000 {6, 2, 0.1} 20

10,000 {7, 3, 0.3} 20
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Figure 10. Influence of trajectory number on prediction accuracy.

5.3. Discussion and Summary

The results demonstrate that when the dataset size is increased, GPS sampling frequency
can render the trajectory consistent, with the highest prediction accuracy reaching 79.31%.

Going forward, we will amalgamate the predicted track position information with the
predicted signal strength, infer the current user’s mobile phone signal strength by predicting
the user’s position information, and enhance the network retransmission algorithm. When
the user’s signal is about to enter a substandard environment, adjust the network packet
retransmission mechanism, optimize the network allocation algorithm, and thereby attain
more efficient network resource allocation.

6. Conclusions

A novel vehicle turning prediction at intersection algorithm is proposed. The algorithm
utilizes the historical information and massive data in the trajectory dataset, uses a new
weight selection algorithm, and compares the weight selection algorithm and the fixed
weight algorithm in the same trajectory dataset. The prediction results show that the weight
selection algorithm performs better. For 100,000 trajectory data, the prediction accuracy of
proposed method is 60.66%, while the original method is only 49.61%.

Then, we re-selected the dataset for prediction, and recruited volunteers to collect
the trajectory of volunteers in the university campus. The GPS sampling frequency was
once every two seconds. The results demonstrate that when the dataset size is increased,
GPS sampling frequency can render the trajectory consistent, with the highest prediction
accuracy reaching 79.31%.

The simulation results demonstrate that the algorithm has a good prediction accuracy
which increases with the expansion of the trajectory dataset. The results indicate that the
prediction accuracy of the proposed algorithm is higher than the traditional one.

7. Further Research

Future work could combine signal prediction to conduct research. By modeling the
moving objects, it is possible to predict the trajectory while also predicting the network
signal. This will enable knowledge of the future network environment for the moving
objects. With advanced knowledge of the network environment, the transmission mech-
anism can be adjusted at the network level to save network resources and achieve lower
power consumption in the IoT system. However, future work should take into account the
potential impact on computing resources and the amount of data. This could be achieved by
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combining federated learning methodology to perform trajectory prediction. Furthermore,
future research could improve the trajectory prediction model by considering two aspects:
adopting more efficient trajectory preprocessing methods and adding more variables affect-
ing prediction through machine learning. These improvements can enhance the accuracy
of predictions.

In future research, it is recommended to explore the possibility of combining advanced
optimization algorithms, such as hybrid heuristic and meta-heuristic adaptive algorithms,
to optimize decision-making in this study. This will enable researchers to compare the
efficiency and effectiveness of these algorithms with that of heuristic and meta-heuristic algo-
rithms. Advanced optimization algorithms have proven useful in a variety of fields, including
online learning, scheduling, multi-objective optimization, transportation, medicine, and data
classification. In [38], The article proposes a universal island-based meta-heuristic algorithm
that utilizes multiple types of meta-heuristic algorithms to address the container scheduling
problem in maritime transportation. Ref. [39] proposed a learning-based algorithm that can
adjust strategies to match problem features. The experimental results demonstrate that the
proposed algorithm achieves satisfactory performance.The proposed algorithm outperforms
several single-solution-based meta-heuristic algorithms in terms of solution quality, as it
covers different regions of the search space with its diverse algorithms.
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