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Abstract: Tunnel surrounding rock deformation is a significant issue in tunnel construction and
maintenance and has garnered attention from both domestic and international scholars. Traditional
methods of predicting tunnel surrounding rock deformation involve fitting monitoring and measuring
data, which is a laborious and resource-intensive process with low accuracy when predicting data
with significant fluctuations. A deep learning approach can improve monitoring efficiency and
accuracy while reducing labor costs. In this study, taking an actual tunnel project as an example,
a long short-term memory (LSTM) network model was constructed based on the recurrent neural
network algorithm with deep learning to model and analyze the tunnel monitoring and measurement
data, and the model was used to analyze and predict the vault settlement of the tunnel. LSTM is a
type of artificial neural network architecture that is commonly used in deep learning applications for
sequence prediction tasks, such as natural language processing, speech recognition, and time-series
forecasting. In predicting data with smaller fluctuations, the maximum error is 4.76 mm, the minimum
error is 0.03 mm, the root mean square error is 2.64, and the coefficient of determination is 0.98. In
predicting data with larger fluctuations, the maximum error is 8.32 mm, the minimum error is 0.13 mm,
the root mean square error is 4.42, and the coefficient of determination is 0.88. The average error of
the LSTM network model is 2.16 mm. With the growth of the prediction period, the prediction results
become more and more stable and closer to the actual vault settlement, which provides a reliable
reference for introducing the LSTM prediction method with deep learning to tunnel construction and
promoting tunnel construction safety.

Keywords: tunnel engineering; deformation prediction; deep learning; long short-term memory
(LSTM)

1. Introduction

In recent times, China has formulated and advanced its “new infrastructure” strategy,
which includes the development of 5G networks, big data centers, artificial intelligence, and
the industrial Internet, all of which are considered novel forms of infrastructure. China is
the world’s largest tunnel construction country [1] and more and more tunnels pass through
its complex terrain. In the process of highway tunnel construction, challenges include the
poor regional geological conditions of the tunnel, improper choice of blasting parameters,
and changes in surrounding rock conditions. To overcome these challenges, artificial intelli-
gence (AI) technologies have been increasingly utilized in tunnel engineering construction,
specifically in the area of deep learning for tunnel stability assessment and disaster risk
evaluation [2,3]. In order to ensure the safety of tunnel excavation, it is necessary to monitor
the surrounding rock of the tunnel and accurately predict the change trend of the tunnel. In
1984, H.H. Instein of the Massachusetts Institute of Technology put forward a paper on the
application of artificial intelligence in rock mechanics [4]. In 1985, Fairhurst proposed to use
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fuzzy mathematics combined with an expert system to solve the tunnel support problem [5].
In 2006, G.E. Hamilton published deep learning research on reducing data dimensions [6].
In China, Zhang et al. [7] took the lead in introducing artificial intelligence theory into rock
mechanics and geotechnical engineering and predicted the mechanical properties of rocks.
Song et al. [8] proposed the observation and research method of underground rock strata
dynamics, the prediction and control mechanical model, and roof prediction and control
technology. Feng et al. [9] put forward the concept of intelligent rock mechanics, found out
the internal relations contained in engineering instance data, used these relations to make a
reasonable judgment on tunnel stability, and established an intelligent system for rockburst
risk estimation. Chen et al. [10] pointed out that modern information technology such as
big data should be used to strengthen the construction of the tunnel database and establish
intelligent data monitoring. Chen et al. [11] summarized the main research progress of
stability analysis, slope intelligent monitoring, and slope intelligent prediction of artificial
intelligence technology in geotechnical engineering, and put forward prospects for solving
slope stability problems with artificial intelligence technology. Wang et al. [12] carried out
the physical and mechanical test research of soft rock, and combined with finite element
numerical simulation, analyzed and predicted the deformation of tunnel surrounding
rock. Jiang [13] used artificial intelligence technology to predict rock mechanical behavior
and proposed the particle swarm optimization support vector machine model for rock
mechanical behavior prediction.

Experts have conducted a lot of research on tunnel deformation prediction methods,
including theoretical research [14–19], such as constitutive models, plasticity, and damage
and viscoplasticity theory. Huang et al. [20] derived a plastic damage scheme for the
expansion of undrained spherical cavities in rock media. Plastic damage was considered
and the Cam-Clay (MCC) model was modified. Numerical simulation research [21–24]
includes DLSM, DEM, FEM, and the peri-dynamic model. Ma et al. [25] conducted a
numerical study of the effect of karst caves on tunnel stability using the apparent lattice
spring model (DLSM). Huang et al. [26] adopted a stabilization method including surface
grouting and internal tunnel grouting. The mechanism of interval lining damage and the
effect of stabilization were studied by numerical simulation and analysis of field monitoring
data. In terms of machine learning prediction research [27–33], Hu et al. [34], based on
the LSTM network, built the Seq2Seq model and proposed the application method of
pretreatment of measured settlement data. Early prediction models for tunnel deformation
were primarily based on the theory of continuum mechanics. However, the uncertain
nature of boundary conditions has led some scholars to employ numerical simulation
predictions using finite element software. Nevertheless, the anisotropic nature of rock,
faults, and fragmentation can result in deviations between predicted and actual tunnel
deformation and groundwater conditions. In light of these challenges, deep learning
techniques have been developed to predict tunnel surrounding rock deformation. However,
prior studies that utilized multiple tunnel data samples obtained from the literature lack
specificity for individual tunnels. To address this issue, this study focuses on a particular
tunnel construction project and collects monitoring data during construction. Using LSTM
networks, a targeted prediction model is constructed and validated through comparisons
with existing models. This model is then applied to the tunnel, providing a new method
and technical reference for monitoring tunnel surrounding rock deformation.

The available research results have made a significant contribution to our understand-
ing of tunnel deformation prediction methods. In this paper, we construct LSTM network
models based on recurrent neural network algorithms in deep learning to study their
effectiveness in predicting the deformation of the Yuanbaoshan Tunnel of Yunnan Li-Xiang
Railway. By combining the existing literature and the research of this group, the prediction
and analysis of the vault settlement in two different sections of this tunnel are carried out.
This study shows that the LSTM prediction model is able to predict the vault settlement
during the tunnel construction, and by comparisons with traditional prediction curves, we
find that the accuracy and stability of the prediction are more consistent with the actual
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measured data in the field, both for data with smaller and larger fluctuations. Predicting
tunnel deformation problems with the LSTM network model can promote the practical
application of artificial intelligence in tunnel engineering, as well as reduce labor costs and
improve monitoring accuracy. It provides a new method and new technology reference for
monitoring tunnel deformation.

2. Materials and Methods
2.1. Recurrent Neural Network

Deep learning is a methodology that involves the transformation of original data
features through multiple steps to acquire a feature representation, which is then input into
the prediction function to obtain the final output [35]. Figure 1 illustrates that deep learning
models primarily comprise neural network models, including recurrent neural networks
that possess short-term memory capabilities. In a recurrent neural network, neurons can
receive both the information of other neurons as well as their own information, forming a
network structure with a loop. The network structure typically consists of an input layer, a
hidden layer, and an output layer.
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Figure 1. Deep learning structure.

Suppose that given an input value, xt = (x1, x2, · · ·xt), the recurrent neural network
can extract features through the hidden layer ht. ht is calculated as follows:

ht = f (s0, st) (1)

where h0 = 0, f (·) is a nonlinear function. As shown in Figure 2, the output layer biases
the output results according to different hidden layer weights and itself.
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2.2. LSTM Prediction Model

Due to the problems of vanishing gradients and exploding gradients in traditional
recurrent neural networks, it is difficult to learn the data parameters of remote nodes.



Sustainability 2023, 15, 6877 4 of 12

Therefore, this study adopts its improved long short-term memory (LSTM) model. As
shown in Figure 3, LSTM has a memory function, which can associate the information on
time series, find out the features, and carry out long-term learning. It was proposed by
Hochreiter and Schmidhuber [36].
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All recurrent neural networks have the form of a chain of repeating modules. In a
traditional recurrent neural network, the structure of repeating modules is very simple,
while in LSTM, the structure of repeating modules is very complex, with four neural
network layers, and they interact in a special way. The calculation of a single neuron in the
LSTM repeat module includes two parts: neural network state update and output value
calculation. There are three gate functions in the neuron, which are the input gate, the
forgetting gate, and the output gate. The input value, memory value, and output value are
controlled by the gate function.

The forgetting gate controls the amount of information discarded by the neural net-
work state at the current moment. The calculation process of forgetting gate is as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(2)

where ft is the output of the forgetting gate, ht−1 is the hidden state at the last moment,
and the proportion of information forgotten is controlled by the information fusion W f , b f ,
and sigmoid function of σ.

The input gate is divided into two parts, which are the input value of the input gate it
and the new input:

it = σ(Wi · [ht−1, xt] + bi) (3)

C̃t = tanh(Wc · [ht−1, xt] + bc) (4)

where the output value of the tanh function is between −1 and 1, the input gate filters
input layer information, and the calculation process of the input gate is as follows:

Ct = ft · Ct−1 + it · C̃t (5)

where Ct is the neural network status updated at the current time. The calculation process
of the output gate and hidden state is as follows:

ot = σ(Wo · [ht−1, xt] + bo) (6)

ht = ot · tanh(Ct) (7)
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2.3. Tunnel Surrounding Rock Deformation Prediction Model

Tunnel surrounding rock deformation prediction is a complex nonlinear problem.
Considering that tunnel surrounding rock deformation data are time-series data, the LSTM
model is more suitable for tunnel surrounding rock deformation prediction with high
timeliness requirements than other models. As shown in Figure 4, combined with the
monitoring data of the tunnel surrounding the rock deformation vault settlement, the pa-
rameters of the prediction model were analyzed, and we proposed the tunnel surrounding
rock deformation prediction model of the LSTM network. Where x0, x1 · · · xt is the input
vault settlement data, y0, y1 · · · yt is the predicted result of the LSTM model, s0, s1 · · · st is
the t LSTM neuron of the hiding layer, Ct−1 is the state of the hiding layer at the previous
time, and ht−1 is the state of the hiding layer at the previous time.
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3. Model Establishment and Parameter Selection
3.1. Model Establishment and Optimization

The pytorch framework has the advantage of being open source, with simple modules,
flexible code, and multiple resources and development. The tunnel surrounding rock
deformation prediction model of the LSTM network is selected to run under the pytorch3.6
framework with the CPU version built under the Windows operating system. The Adam
optimization algorithm is used in network training. The Adam algorithm can optimize
the learning rate of the loss function. Based on 110 sets of engineering data, the tunnel
surrounding rock deformation prediction model of the LSTM network is used to train and
test the data. A total of 78 sets of data were used for training and 32 sets were used for
testing. The learning rate in the training process of the model is set to 0.001, and the total
number of sample data used in each training is 21, including 20 training samples and 1
label sample. For example, take the vault settlement value from 1 August to 19 August,
(x0, x1, · · · x19) as 20 training samples, and the arch settlement x20 on 20 August is the
label sample. After the training samples were imported into the LSTM model for forward
reasoning, the current output value was calculated, and the MSE was calculated for the
output value and x20. According to MSE, the weight of neurons in LSTM was adjusted by a
backpropagation algorithm. The above process is repeated constantly, and the model with
the lowest loss moment is taken as the final LSTM prediction model.

3.2. Data Sets and Evaluation Indicators

Before building the database of the training and testing network, the arch settlement
of the tunnel surrounding rock deformation monitoring data is preprocessed. Pretreatment
can speed up the training of neural network models and prevent the gradient explosion in
the training process. The surrounding rock deformation monitoring data during tunnel
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construction are normalized so that their value domain is distributed within [0, 1]. The Min-
MaxScaler function in Python’s machine learning library scikit-learn is used for normalized
preprocessing of input data; the calculation process is as follows:

x̃ =
x − min(x)

max(x)− min(x)
(8)

During the normalization process, the maximum and minimum values of the samples
in the training set should be recorded. After the completion of the model training, the
output value of the model should be de-normalized to restore the output to the measured
predicted value.

In order to find out suitable model calculation parameters, this paper constructs a
tunnel surrounding rock deformation prediction database containing 110 groups of tunnel
engineering instances based on the pre-treated surrounding rock deformation monitoring
data during tunnel construction. The settlement position of the vault is on the wall of the
tunnel after excavation, and monitoring measurement is completed after each excavation
and before the next cycle according to the code requirements.

To evaluate the accuracy of the LSTM network model in predicting the arch settlement,
the root mean square error (RMSE) and determination coefficient (R2) were used to evaluate
the accuracy of the prediction model.

RMSE =

√
1
m

m

∑
i=1

(h(xi)−yi)
2 (9)

R2 = 1 −

m
∑

i=1
(yi−h(xi))

2

m
∑

i=1
(yi− y)2

(10)

4. Engineering Application and Prediction Results Analysis
4.1. Engineering Overview

To determine suitable model calculation parameters, the Yuanbaoshan Tunnel of the
Yunnan Li-Xiang Railway was selected as the case study. The tunnel’s depth of burial is
mostly over 300 m, and it passes through a mainly layered carbonitic SLATE stratum. The
strata strike is primarily parallel to the tunnel’s direction, and the dip angle ranges from 75◦

to 90◦. Due to regional structural factors, the rock mass is susceptible to deformation and
exhibits significant joint development, moderate weathering, and fissure water. As a result
of the deformation of the tunnel surrounding rock, the supporting structure of the tunnel
also undergoes significant deformation. Table 1 presents the relevant tunnel parameters.

Table 1. Tunnel parameters.

The Surrounding
Rock Grade

Tunnel Length
(km)

Excavation
Section Area

(m2)

Maximum
Vault Subsidence

(mm)

Maximum
Buried Depth

(m)

Strata Inclination
(◦)

V 10.6 60.8 190 687 75~90

To verify the prediction effect of the established model algorithm on the settlement
data of the tunnel vault, typical sections (a) and (b) were selected for testing, as shown in
Figures 5 and 6.
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Figure 6. Comparison of prediction results (b).

Figure 5 shows the cumulative subsidence deformation of the vault’s surrounding rock
from 5 August 2020, to 28 September 2020, comprising a total of 55 data sets, out of which
39 were used for training. The data exhibits minimal fluctuations, and the surrounding
rock deformation value has converged after 40 days of excavation. The model achieved
convergence after about 200 training iterations, and there was no significant reduction in
training loss. The optimal model obtained after model adjustment was then used to predict
the remaining 16 groups of data. Similarly, Figure 6 represents the cumulative subsidence
deformation of the vault’s surrounding rock from 17 April 2020 to 10 June 2020, comprising
a total of 55 data sets, out of which 39 were used for training. The data exhibit significant
fluctuations, and the surrounding rock deformation value changes significantly from 10 to
30 days after excavation and eventually stabilizes around 50 days after excavation. The
model achieved convergence after about 200 training iterations, and there was no significant
reduction in training loss. The optimal model obtained after model adjustment was then
used to predict the remaining 16 groups of data.

4.2. Prediction Model

After the model is established, the traditional curve prediction is carried out on the
data of the two sections, respectively, and the prediction results are compared with those of
the LSTM network model. Traditional curve prediction can select the appropriate curve
type to predict the observed data and understand the trend of change in the data. Microsoft
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Excel provides the ability of traditional curve prediction, and a nonlinear prediction model
of tunnel vault settlement can be established in Microsoft Excel. Through comparison, it
is found that the regression correlation coefficient of the logarithmic function is higher
than other regression functions in predicting vault settlement. Therefore, this paper uses
a logarithmic function and observed data for prediction. The comparison between the
accumulated surrounding rock deformation value and the predicted value of (a) is shown in
Table 2, and the comparison of the predicted results is shown in Figure 5. The comparison
between the accumulated surrounding rock deformation value and the predicted value of
(b) is shown in Table 3, and the comparison of the predicted results is shown in Figure 6.

Table 2. Measured data and predicted data (a).

Monitoring
Time

/d

Measured
Value
/mm

Logarithmic Curve LSTM Model

Estimate
/mm

Error
/mm

Estimate
/mm

Error
/mm

40 174.80 181.31 6.51 178.42 3.62
41 175.70 182.48 6.78 180.46 4.76
42 176.70 183.62 6.92 181.39 4.69
43 177.80 184.74 6.94 181.87 4.07
44 178.00 185.83 7.83 182.15 4.15
45 180.10 186.89 6.79 182.30 2.20
46 180.60 187.93 7.33 182.40 1.80
47 181.60 188.95 7.35 182.46 0.86
48 180.50 189.95 9.45 182.50 2.00
49 181.70 190.93 9.23 182.53 0.83
50 182.70 191.89 9.19 182.55 0.15
51 182.60 192.83 10.23 182.57 0.03
52 182.10 193.75 11.65 182.58 0.48
53 182.00 194.65 12.65 183.59 1.59
54 180.60 195.54 14.94 182.60 2.00
55 181.20 196.41 15.21 182.60 1.40

evaluation
index

RMSE 9.7258 2.6412
R2 0.9312 0.9791

Table 3. Measured data and predicted data (b).

Monitoring
Time

/d

Measured
Value
/mm

Logarithmic Curve LSTM Model

Estimate
/mm

Error
/mm

Estimate
/mm

Error
/mm

40 264.80 249.65 15.15 259.52 5.28
41 266.60 251.22 15.38 260.29 6.31
42 269.20 252.75 16.45 260.88 8.32
43 265.20 254.25 10.95 261.49 3.71
44 261.30 255.71 5.59 262.07 0.77
45 260.60 257.14 3.46 262.57 1.97
46 258.50 258.54 0.04 262.99 4.49
47 258.80 259.91 1.11 263.23 4.43
48 260.30 261.25 0.95 263.45 3.15
49 263.40 262.56 0.84 263.53 0.13
50 265.50 263.85 1.65 263.52 1.98
51 267.70 265.11 2.59 263.41 4.29
52 270.80 266.34 4.46 266.24 4.56
53 271.30 267.55 3.75 267.02 4.28
54 272.20 268.74 3.46 267.77 4.43
55 273.80 269.91 3.89 268.53 5.27

evaluation
index

RMSE 7.7986 4.4238
R2 0.7674 0.8754
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5. Discussion

Based on the tunnel surrounding rock deformation data of 110 tunnel surrounding
rock deformation engineering examples, this paper uses the tunnel surrounding rock
deformation prediction model of the LSTM network to train and test the data. A total of
78 sets of data were used for training and 32 sets were used for testing. In order to verify
the prediction effect of the established model algorithm on the measured tunnel vault
settlement data, this paper selects the traditional curve prediction method and the deep
learning prediction method to simulate data with two different degrees of fluctuation.

Based on the information presented in Table 2 and Figure 5, the traditional curve
prediction method exhibits a maximum error of 15.21 mm, a minimum error of 6.51 mm,
a root mean square error of 9.7258, and a determination coefficient of 0.9312. In contrast,
the LSTM network model used in the deep learning prediction method shows a maximum
error of 4.76 mm, a minimum error of 0.03 mm, a root mean square error of 2.6412, and
a determination coefficient of 0.9791. The LSTM network model is significantly more
effective than the traditional curve prediction method. Both the traditional and deep
learning prediction methods can roughly predict the variation regularity of tunnel vault
subsidence for small fluctuation data curves. However, the average error of the traditional
curve prediction method is 8.85 mm, and as the forecasting period grows, the predicted
results gradually tend towards a stable value. On the other hand, the LSTM network
model has an average error of 2.16 mm and becomes increasingly stable and closer to the
actual vault settlement as the forecasting period increases. The conventional function curve
prediction method for tunnel vault subsidence is insufficient in accuracy when dealing
with complex conditions. It is limited by its simplicity and a lack of parameters, making
it difficult to provide precise estimates. To address this challenge, the LSTM network
model is employed to predict tunnel vault subsidence based on actual training sample data.
This approach is able to repair complex function relations and correct network models to
enable nonlinear mapping of changes in tunnel vault subsidence. While the traditional
curve prediction method can provide an approximate estimation of tunnel vault settlement
data with small fluctuations, the LSTM network model in the deep learning prediction
method can offer highly accurate predictions when precise tunnel vault settlement data
are required.

According to the findings presented in Table 3 and Figure 6, the traditional curve
prediction method exhibits a maximum error of 16.45 mm, a minimum error of 0.04 mm,
a root mean square error of 7.7986, and a determination coefficient of 0.7674. In contrast,
the LSTM network model used in the deep learning prediction method has a maximum
error of 8.32 mm, a minimum error of 0.13 mm, a root mean square error of 4.4238, and
a determination coefficient of 0.8754. The LSTM network model is significantly more
accurate than the traditional curve prediction method, except for the minimum error.
The traditional curve prediction method is 10.8% less accurate in predicting tunnel vault
settlement data with large fluctuation ranges compared to the LSTM network model.
Although the minimum error of the traditional curve prediction method is small, it fails to
capture the fluctuation of the data. On the other hand, the LSTM network model captures
time-series data information, detects different features during changes, and facilitates long-
term learning. This model considers influencing factors as the input layer and improves
prediction accuracy through backpropagation of training input and LSTM output to the
hidden layer, resulting in an average prediction error of only 3.95 mm. While the traditional
curve prediction method may be more accurate at specific moments when predicting tunnel
vault settlement data with large fluctuations, the LSTM network model exhibits overall
superior performance in comprehensive prediction.
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6. Conclusions

During tunnel construction and operation, the deformation of the surrounding rock
poses a great challenge to tunneling, and accurate prediction of changes in the tunnel
structure is essential to ensure tunnel safety. For this reason, it is necessary to monitor
the state of the tunnel envelope and predict its change trend. In this study, a recurrent
neural network algorithm in deep learning is used to model and analyze the monitoring
and measurement data of the tunnel, and an LSTM network model is established to predict
the settlement of the tunnel vault. By comparison with traditional prediction methods, this
study found that the LSTM model provided better prediction accuracy. The main findings
are summarized as follows:

(1) The LSTM network model with deep learning is an effective method for predicting
tunnel vault settlement data, offering high accuracy and stability. It outperforms tradi-
tional curve prediction methods for both data with large and small fluctuation ranges.

(2) After applying the LSTM network model to the project, the average error for small
and large fluctuation data sets are 2.16 mm and 3.95 mm, respectively. The prediction
model reflects the surrounding rock deformation of tunnel vault settlement well.
Introducing the LSTM network model in deep learning to monitor tunnel surrounding
rock deformation during construction can provide valuable insights for ensuring
tunnel construction safety.

(3) Traditional prediction methods, with their limited function and parameters, are unable
to accurately predict tunnel vault subsidence. The LSTM network forecasting method
in deep learning overcomes this limitation through gate function control of input,
memory, and output values, and backpropagation training of LSTM inputs and
outputs to hidden layers, allowing it to learn and correlate time-series information for
more accurate predictions of tunnel vault settlement.

(4) Traditional methods for monitoring surrounding rock deformation in tunnels are
inefficient, imprecise, and require significant manpower and resources. The future of
tunnel engineering demands accurate and fast forecasting of surrounding rock defor-
mation, and the application of artificial intelligence in tunnel engineering, particularly
deep learning algorithms, can play a significant role in ensuring tunnel safety. The
prediction results obtained through deep learning algorithms can provide feedback
for tunnel construction, optimize construction parameters, and facilitate proactive
protective measures.
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