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Abstract: Commercial buildings can take up one-third of the energy related carbon emissions. There
is limited research on forecasting cooling demands to evaluate sustainable air conditioning systems
under climate change. This paper develops a simplified cooling demand model based on the time
series of climatic and architectural variables to analyze carbon reduction by a sustainable chiller
system. EnergyPlus is used to simulate hourly cooling demands of a hypothesized high-rise office
building in Hong Kong under a change of architectural parameters and future climate conditions.
An hourly cooling demand model with R2 above 0.9 is developed with inputs of the window-to-
wall ratio, outdoor air enthalpy, global solar radiation, wind speed and their two steps ahead. The
validated model is then used to analyze carbon reduction potentials by free cooling and a full variable
speed chiller system. The low carbon technologies reduce carbon emissions by over 20% with but
the reduction shrinks to 2.51–4.93% under future climate conditions. The novelty of this study is the
simplified cooling demand model based on the time series of climatic and architectural variables.
The significances of this study are to quantify carbon reduction by a sustainable chiller system under
climate change and to appeal for more carbon reduction technologies for carbon neutrality.
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1. Introduction

One third of the energy related carbon emissions can be caused by commercial build-
ings [1]. To achieve carbon neutrality in the coming decades, it is important to implement
low to zero carbon technologies in building envelopes, lighting systems and heating, ven-
tilation and air conditioning (HVAC) systems [2]. HVAC systems generally take up the
highest proportion of energy consumption in the buildings and, hence, offer high opportu-
nity for carbon reduction. Chiller systems within HVAC systems produce cooling energy
with significant energy use. The energy performance of chiller systems depends on how
they operate with optimal settings to meet varying cooling demands [3]. When building
management systems are installed, extensive operating and energy data can be logged
at 15-min to 1-h intervals to evaluate energy saving opportunities for building services
systems. On the other hand, simulation data generated from common building energy
simulation tools such as EnergyPlus [4], TRNSYS [5] and DOE-2 [6] can be used to analyze
cooling demand profiles and system performance under optimal design alternatives [7].

It is difficult and even challenging to use physical models for thermal and energy
analyses based on numerous parameters in architectural and building system designs.
Alternatively, data-driven models are increasingly used to forecast cooling demands and
optimize system operation. Table 1 summarizes previous research problems with data-
driven models and the optimization algorithms.
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Table 1. Some existing data-driven models and optimization algorithms.

Reference Research Problem Variables Optimized Optimization Algorithm

Huang et al. [8]
Cooling demand forecast;

Min. system energy
consumption

Temperatures of chilled water
and cooling water

Support vector regression for
demand forecast

Torres et al. [9]
Chiller system energy

prediction and min. life
cycle cost

Chiller combination; cooling
capacity distribution Parametric study

Olszewski [10] Energy saving by variable
speed drive

Coefficient of
performance (COP) Parametric study

Xue et al. [11] Min. chiller power is a function
of part-load ratio (PLR) PLR Improved sparrow

search algorithm

Cai et al. [12] Min. chiller power is a function
of PLR PLR Improved imperialist

competitive algorithm

Lain et al. [13] Min. chiller power is a function
of PLR PLR Backward

modelling approach

Gao et al. [14] Min. chiller power is a function
of PLR PLR

Improved parallel
particle swarm

optimization algorithm

Yu et al. [15] Min. chiller power is a function
of PLR PLR Distributed framework

Sohrabi et al. [16] Min. chiller power is a function
of PLR PLR Exchange market algorithm

Zheng and Li [17] Min. chiller power is a function
of PLR PLR Improved invasive weed

optimization algorithm

Saeedi et al. [18] Min. chiller power is a function
of PLR PLR General algebraic modelling

system optimization

Nedjah et al. [19] Min. chiller power and cooling
tower power

COP and tower heat
exchange efficiency

Swarm intelligence-based
multi-objective optimization

Huang et al. [8] used support vector regression to develop a cooling-demand model
with an R2 of around 0.9 and quantified an energy saving of 12.4% based on an optimal
control strategy for the chiller system. Variables at each time point were assumed to be
independent and the part-load performance of the chillers were not illustrated. Indeed,
operating conditions of a real system depend on controlled variables in previous time
points and their set points. Torres et al. [9] performed statistical analyses to ascertain the
correlation of the total energy consumption and life-cycle cost with system parameters in
terms of the number of chillers, the total capacity installed and load distribution among
chillers. Yet, the full variable speed control for chillers, pumps and cooling towers was not
considered. Olszewski [10] ascertained the superior performance of variable speed chillers
to handle part-load conditions compared with common on/off controlled chillers. Some
recent studies in references [11–18] focus on the optimum loading of multiple chillers with
various optimization algorithms. The chiller coefficient of performance (COP)—cooling
capacity output in kW over chiller electric power input in kW—was expressed as a function
of part-load ratio (PLR), only without considering the temperatures of chilled water and
condenser water. The power of chilled water pumps, condenser water pumps and cooling
tower fans were disregarded in the optimization problems. Furthermore, the interaction
between the system load and climatic variables was ignored, which imposes uncertainty
in simulating the actual system performance under the constraint of ambient conditions.
Nedjah et al. [19] used swarm intelligence with multi-objective optimization for cooling
towers and chillers to achieve power savings of 9.48%. The optimum problem did not
consider the power trade-off of condenser pumps and the variation of chiller loads with
the outdoor wet bulb temperatures.

Overall, past studies do not explore a simplified model which can predict hourly
cooling demands for building energy simulation under future climate conditions. The
interdependence of cooling demands in successive time points is ignored. Most past chiller
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system models do not comprehensively consider the power components of chillers, chilled
water pumps, condenser water pumps and cooling tower fans and their optimum settings
to minimize electricity use.

There is limited comprehensive analysis on three related research problems: (1) fore-
casting cooling demands based on architectural parameters and weather data and their
time steps ahead; (2) developing a simplified model to predict cooling demand profiles
under climate change; (3) investigating carbon reduction potentials of free cooling and
a full variable speed chiller system operating for cooling demands under future climate
conditions. To address these research problems in one go, the aim of this study is to
develop a time series cooling-demand model to evaluate a sustainable chiller system for
an office building under climate change. EnergyPlus [4] will be used to simulate hourly
cooling demand profiles of a reference office building and its HVAC system in Hong Kong.
A simplified cooling-demand model will be developed based on time series of weather
data and architectural parameters. The accuracy of the model will be examined for cooling
demands under future climate conditions. An estimation will be made on how free cooling
and a full variable speed chiller system reduce carbon emissions based on cooling-demand
profiles under climate change. The novelty of this study is the simplified cooling-demand
model based on the time series of climatic and architectural variables. The significances of
this study are to quantify carbon reduction by a sustainable chiller system under climate
change and to appeal for more carbon reduction technologies for carbon neutrality.

2. Materials and Methods
2.1. Descriptions of the Building and Its HVAC System

The studied building is a hypothesized high-rise office building with 40 floors, a height
of 128 m and a gross floor area of 51,840 m2. Each floor has dimensions of 36 m × 36 m
with a non-air-conditioned core area of 225 m2. Such a building configuration is considered
as a stereotype to benchmark the energy performance of typical office buildings in Hong
Kong [20]. Bao et al. [21] used this configuration to develop an integrated part load
value for chillers serving office buildings. A similar configuration with slightly different
floor dimensions was considered to examine the accuracy of modelling the energy use of
office buildings in Hong Kong [22]. The curtain wall system is applied with U-values of
0.735 W/m2 ◦C for the roof and 2.326 W/m2 ◦C for opaque walls. There is no external
shading and the glass shading coefficient is 0.35. Based on a survey on existing office
buildings in Hong Kong [23], the common window-to-wall ratio (WWR) range is 0.4 to
0.8 and 0.4 is considered as the baseline. Regarding indoor environmental parameters,
the indoor temperature and relative humidity are set at 24 ◦C and 50%, respectively. The
ventilation rate is based on 10 L/s per person and an occupancy density of 9 m2 per person.
The lighting power density is 15 W/m2 and the equipment power density is 25 W/m2 in the
calculation of internal heat gains. All the parameters are inputted into building description
modules in EnergyPlus to simulate hourly cooling demands throughout the year.

The HVAC system operates 8 a.m.–7 p.m. on Mondays to Fridays and 8 a.m.–1 p.m. on
Saturdays. Table 2 summarizes key specifications used in system modules in EnergyPlus.
The COP and IPLV of the two types of chillers are based on a study report on the application
of high-efficiency chillers [24].

2.2. Simulation of Chiller System

Chiller modelling equations used in EnergyPlus are presented by Equations (1)–(6) [25].
The electric power input (PE) in Equation (1) is calculated based on three calibrated variables
for full-load capacity (CAPFL), full-load electric power input (EIRFT) and part-load electric
power input (EIRPLR). The Qr and COPr are the rated cooling capacity in kW and COP
at full load, respectively. Instead of considering only the part-load ratio (PLR), the chilled
water supply temperature (Tchs) and the condenser water leaving temperature (Tcdl) are
included in the calibration. This helps capture the variation of part-load performance
when optimizing Tchs and Tcdl under variable speed control. For a given cooling capacity
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(QE) at part-load operation in Equation (5), the COP is given by Equation (6). Table 3
summarizes the parameters and coefficients used to model chillers with constant speed
and variable speed controls. The coefficients are not from default models in EnergyPlus.
The performance characteristics of the constant speed chiller belong to a commercial chiller
fitted and validated by Monfet and Zemeureanu [25]. The coefficients in EIRPLR of the
variable speed chiller were fitted based on performance data reported by Beitelmal and
Patel [26].

Table 2. Key specifications of the HVAC systems at the baseline and low carbon design.

Parameter Conventional Design (Baseline) Low Carbon Design

Chiller system

Chiller type and capacity control Constant speed centrifugal chiller with
inlet guide vane Variable speed centrifugal chiller

Number of chiller and pump sets 4 4
Full load COP 5.6 6.5
Integrated part-load value (IPLV) 6.25 11.5
Chilled water design set point (◦C) 7 7

Primary-loop pump Constant speed
(rated 65.04 kg/s and 15 kW)

Variable speed
(rated 65.04 kg/s and 30 kW)

Secondary-loop pump Variable speed
(rated at 65.04 kg/s and 15 kW) Not applicable

Cooling tower fan High/low speed
(rated at 24.91 m3/s and 3 kW)

Variable speed
(rated at 24.91 m3/s and 3 kW)

Condenser water pump Constant speed
(rated at 76.66 kg/s and 19.53 kW)

Variable speed
(rated at 75.05 kg/s and 76.49 kW)

Air side system Constant air volume (CAV) Constant air volume (CAV)
Total airflow and power 142.56 m3/s and 203.66 kW 142.56 m3/s and 203.66 kW
Minimum airflow fraction 0.5 0.5
Fan motor efficiency 0.9 0.9

PE = Qr(CAPFL)(
1

COPr
)(EIRFL)(EIRPLR) (1)

CAPFL = a0 + a1Tchs + a2T2
chs + a3Tcdl + a4T2

cdl + a5Tchs·Tcdl (2)

EIRFL = b0 + b1Tchs + b2T2
chs + b3Tcdl + b4T2

cdl + b5Tchs·Tcdl (3)

EIRPLR = c0 + c1Tcdl + c2T2
cdl + c3PLR + c4PLR2 + c5Tcdl ·PLR (4)

QE = PLR·Qr(CAPFL) (5)

COP = QE/PE (6)

Figure 1 shows the modelled COP at different combinations of PLR and Tcdl under
constant speed and variable speed controls. The constant speed chiller has the maximum
COP at a PLR of 0.8, while the maximum COP of the variable speed chiller is shifted to a
PLR of 0.6.
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Table 3. Parameters and coefficients in chiller models.

Parameter or Coefficient Constant Speed Variable Speed

Qr (kW) (nominal capacity) 1526 1526
COPr (nominal full-load COP) 5.6 6.5

a0 −0.2176 −0.2176
a1 −0.0494 −0.0494
a2 8.70 × 10−5 8.70 × 10−5

a3 0.09612 0.09612
a4 −0.00203 −0.00203
a5 0.00254 0.00254
b0 −0.0199 −0.0199
b1 −0.07848 −0.07848
b2 0.00194 0.00194
b3 0.07123 0.07123
b4 −9.17380 × 10−4 −9.17380 × 10−4

b5 −0.00058 −0.00058
c0 0.35161 0.70911
c1 0.00921 −0.03101
c2 −2.382325 × 10−5 8.06574 × 10−4

c3 0.12232 −0.39730
c4 −0.18201 1.23732
c5 −0.00784 −0.01426
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Figure 1. Part-load COP curves at different leaving condenser water temperatures: (a) constant speed
chiller; (b) variable speed chiller.

Based on the optimal PLRs with the maximum COPs, Figure 2 shows how one to four
chillers are staged to match different system cooling demands. When the PLR of constant
speed chillers exceeds one, one more chiller should be switched on to meet the increasing
cooling demand, while prolonging a high PLR with a high COP. The number of chillers
operating will be kept minimal at different system cooling demands to minimize the total
power of chillers, pumps and cooling tower fans. On the other hand, more variable speed
chillers operate frequently near a PLR of 0.6 to achieve the highest efficiency of the chillers,
pumps and cooling tower fans at lower speed. All the four variable speed chillers are
staged when the cooling demand increases from 2900 kW.

In the sub-tropical climate, if the outdoor air enthalpy (ho) is below the required indoor
air enthalpy, the airside system can supply more outdoor air to reduce the cooling demand
handled by the chiller system. Given the total supply airflow rate of 142.56 m3/s and the
indoor air enthalpy of 47.9 kJ/kg to maintain 24 ◦C and 50% relative humidity, free cooling
can compensate for one chiller capacity rated at 1526 kW when ho drops to 39 kJ/kg. It
is possible that no chiller needs to operate in winter months with ho below 39 kJ/kg. The
reduction of cooling demand (CDr) in kW on the chiller system is given by Equation (7),



Sustainability 2023, 15, 6793 6 of 18

where Vs is the total supply airflow rate in m3/s, ρa is the air density of 1.2 kg/m3 and hi is
the indoor air enthalpy of 47.9 kJ/kg:

CDr = Vs·ρa(hi − ho) (7)
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2.3. Simulation Scenarios for Architectural Parameters and Weather Data

The architectural parameter change is the window-to-wall ratio (WWR) as it strongly
influences the solar heat gain and, hence, the thermal performance of the building envelope.
The WWR values of 0.4 (baseline), 0.5, 0.6, 0.7 and 0.8 are considered in the cooling demand
simulation. To simulate the baseline of building electricity use, the typical meteorological
year (TMY) for Hong Kong is considered [27]. Yet, the typical months used to compile the
TMY weather data are based on 1979–2003, which cannot reflect weather conditions under
climate change. The weather generator program CCWorldWeatherGen [28] was used to
produce weather data in 2020 (representing 2010–2039), 2050 (representing 2040–2069) and
2080 (representing 2070–2099). The weather data files were generated in the epw format for
simulation in EnergyPlus. The future weather data were used to investigate the impacts of
carbon emissions by the studied building. The weather generation involves shifting and
stretching the TMY data based on general circulation models (GCMs) [29] used for global
climate projection. The assumptions involve medium-high emissions scenarios (A2) with
business-as-usual development by human emissions [30]. The morphed hourly outdoor
temperature shifts by 0.62–0.68 ◦C with stretching of −0.01–0.01 in 2020, 1.40–2.16 ◦C with
stretching of −0.08–0.00 in 2050, and 2.38–3.69 ◦C with stretching of −0.12–0.02 in 2080, in
relation to that in TMY. More explanation on the weather generation process can be found
at Yu et al. [31]. The morphed hourly weather data can be considered as an interim and
feasible source to predict building energy consumption while the TMY data are not yet
revamped to adapt to climate change scenarios.

Figures 3–6 show the modelled data of major climatic variables in 2020, 2050 and 2080
against the TMY. They are compiled in the epw format required in EnergyPlus to perform
cooling demand simulation. Under climate change, the hourly outdoor temperature rises
by an average of 0.4–2.3 ◦C over the three future periods. This is attributed to the impact of
global warming. The hourly outdoor air enthalpy increases by an average of 0.88–6.96 kJ/kg
over three future climate conditions. The increase of the outdoor temperature and enthalpy
will cause more heat gains transmitted from ventilation and building envelope and, hence,
will increase the hourly cooling demands. The hourly global horizontal radiation tends to
increase in winter months and decrease in summer months in future climate conditions.
This will bring a drop of the solar heat gain at the peak cooling demand, but will increase
the moderate cooling demands in mild seasons. The variation of hourly wind speeds in
2020, 2050 and 2080 follows roughly the same pattern as shown in the TMY.
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2.4. Descriptions on Simulation Outputs and Carbon Emissions with Low Carbon Chiller System

Parameters of the building, its systems and weather data were compiled and put in
simulation modules in EnergyPlus. The outputs involve hourly data of cooling demands
and electricity uses of the HVAC system, lighting system and other electrical systems. Since
EnergyPlus does not contain default modules to simulate a free cooling and full variable
speed chiller system, the associated energy consumption was computed separately based
on the cooling demand profiles under three future climate conditions. To facilitate this
computation by the chiller model, a simplified time series cooling-demand model was
developed, which includes essential climatic variables and the WWR as the input variables.

Two power companies in Hong Kong have different carbon emission patterns in
electricity generation. An average carbon emission factor of 0.6 kgCO2-e per kWh [32]
was used to convert the electric use in kWh into carbon emissions in kgCO2-e. The annual
electricity uses of the chiller system with constant speed and variable speed controls
were compared to assess whether the carbon reduction facilitates a drop of 50% in the
decarbonazation strategy in Hong Kong’s climate action plan 2050 [33].

3. Development of a Times Series Cooling-Demand Model
3.1. Data Sources for Model Development

In building description modules in EnergyPlus, the change of architectural parameters
involves five values of WWRs: 0.4, 0.5, 0.6, 0.7 and 0.8. There are four weather files: TMY,
2020, 2050 and 2080. Data of hourly cooling demands with the TMY were used as the
training set. The testing sets involve the associated data simulated with weather files in
2020, 2050 and 2080. The mathematical expression of the time series regression model is
given by Equation (8), where at each hourly time point t, yt is the output, βo is the constant,
βi,t is the coefficient of the input variable xi,t and et is the error term. Different from the
typical regression model, one step ahead (xi,t−1) and two steps ahead (xi,t−2) of xi,t are
considered to improve the prediction accuracy. According to Wan et al. [34], the cooling
demand forecast can be 1-h step ahead due to the thermal storage effect of the building
envelope when converting external heat gains into cooling demands in indoor spaces. The
2-h step ahead is considered here because the successive change of chiller operating status
can likely last for 2 h [35].

yt = βo + ∑(βi,tx i,t + βi,t−1xi,t−1 + βi,t−2xi,t−2

)
+ et (8)

The output yt is the hourly cooling demand (CD) in kW in the time series model.
The input variables xi,t involve one architectural variable (WWR) and four hourly climatic
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variables: outdoor dry bulb temperature (to) in deg. C; outdoor air enthalpy (ho) in kJ/kg;
global horizontal radiation (GHR) in W/m2; and wind speed (v) in m/s. Descriptive
statistics of the climatic variables are shown in Table 4. These climatic variables are found
to be essential in the cooling demand calculation [3]. To ensure model’s reliability, Pearson
correlation coefficients among the input variables and variance inflection factors (VIFs) were
calculated to detect multicollinearity. One variable was selected among highly correlated
variables to maintain a high model accuracy while keeping all the VIFs below 5.

Table 4. Descriptive statistics of climate variables.

Variable Minimum Maximum Mean Std. Deviation

to (◦C) 10.10 32.80 23.7600 5.37159
ho (kJ/kg) 17.98 90.38 60.7305 17.79912

GHR (W/m2) 0.00 972.00 3.0401E2 251.20434
v (m/s) 0.50 10.00 3.3069 1.67185

The coefficient of determination (R2) given by Equation (9) was used to measure how

well the model predicts the observations of yi. ŷi is the predicted yi and
−
y is the mean of yi

for a sample size n. A R2 of 1 means the model can predict all observations accurately. An
R2 of 0.8 indicates a model with very high accuracy as 80% of the variation of the predicted
values can be explained by the change of observations.

R2 =
∑n

i=1 (ŷi −
−
y)

2

∑n
i=1 (yi −

−
y)

2 (9)

4. Results and Discussion
4.1. Cooling Demand Profiles at Various Combinations of WWR and Weather Data

Simulation results from EnergyPlus were processed with changes of WWRs of 0.4,
0.5, 0.6, 0.7 and 0.8 and four sets of weather data in TMY, 2020, 2050 and 2080. Figure 7
shows the hourly cooling-demand profile in the base case with a WWR of 0.4 and TMY.
There are 3380 time points based on operating hours of the HVAC system in the year.
The lowest cooling demand occurs in January and the peak cooling demand occurs in
July. The cooling demand is non-zero in winter months with outdoor temperatures below
20 ◦C because there are solar heat gains from windows and internal loads from occupants
and equipment. The seasonal variation of the profile generally follows the profiles of the
outdoor temperature and outdoor air enthalpy given in Figures 3 and 4.
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Figure 8 gives the percentage changes of hourly cooling demands in January and
July from the base case with higher WWRs from 0.5 to 0.8. For the bottom tier of cooling
demands in January, the higher WWRs result in higher percentage increases of the cooling
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demand. For the top pier of cooling demands in July, the percentage increase is up to 12.8%
in the hourly cooling demands with higher fluctuation in successive hours.

Sustainability 2023, 15, x FOR PEER REVIEW 10 of 18 
 

Figure 8 gives the percentage changes of hourly cooling demands in January and July 
from the base case with higher WWRs from 0.5 to 0.8. For the bottom tier of cooling de-
mands in January, the higher WWRs result in higher percentage increases of the cooling 
demand. For the top pier of cooling demands in July, the percentage increase is up to 
12.8% in the hourly cooling demands with higher fluctuation in successive hours. 

  
(a) (b) 

Figure 8. Percentage change of hourly cooling demands from the base case at different WWRs: (a) 
January; (b) July. 

Figure 9 shows the increase of hourly cooling demands with a WWR of 0.4 in 2020, 
2050 and 2080 in relation to the TMY. Light cooling demands in winter months can in-
crease by 17.9–102.8% with time points 1–544 and 2820–3380. On the other hand, the upper 
cooling demands increase slightly by 9.0–21.6% in summer months with time points 1106–
2258. When considering the extension of cooling demands in the future climate, the chiller 
system capacity should not be oversized by more than one-fourth of the peak cooling de-
mand to avoid operating chillers at low PLRs under light cooling demands.  

 
Figure 9. Moving averages of time series of hourly cooling demands under different climate condi-
tions. 

Overall, simulation results of cooling demand profiles show various daily variations 
under five WWRs and four weather conditions. The data sets are comprehensive to train 
and test the time series cooling-demand model for further analysis of carbon reduction by 
free cooling and a full variable speed chiller system. 

4.2. Time Series Cooling-Demand Model and Its Validation 
Pearson correlation coefficients are presented in Table 5 for input variables of WWR, 

to, ho, GHR and v described in Section 3.1. The variables to and ho are found to be highly 
correlated with a correlation coefficient of 0.95224. Based on the warm-humid climate in 
Hong Kong with a minor variation in relative humidity, the correlation between to and ho 
follows generally the psychrometric properties of air. Their selection in the final model is 

Figure 8. Percentage change of hourly cooling demands from the base case at different WWRs:
(a) January; (b) July.

Figure 9 shows the increase of hourly cooling demands with a WWR of 0.4 in 2020,
2050 and 2080 in relation to the TMY. Light cooling demands in winter months can increase
by 17.9–102.8% with time points 1–544 and 2820–3380. On the other hand, the upper cooling
demands increase slightly by 9.0–21.6% in summer months with time points 1106–2258.
When considering the extension of cooling demands in the future climate, the chiller system
capacity should not be oversized by more than one-fourth of the peak cooling demand to
avoid operating chillers at low PLRs under light cooling demands.
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Overall, simulation results of cooling demand profiles show various daily variations
under five WWRs and four weather conditions. The data sets are comprehensive to train
and test the time series cooling-demand model for further analysis of carbon reduction by
free cooling and a full variable speed chiller system.

4.2. Time Series Cooling-Demand Model and Its Validation

Pearson correlation coefficients are presented in Table 5 for input variables of WWR,
to, ho, GHR and v described in Section 3.1. The variables to and ho are found to be highly
correlated with a correlation coefficient of 0.95224. Based on the warm-humid climate in
Hong Kong with a minor variation in relative humidity, the correlation between to and ho
follows generally the psychrometric properties of air. Their selection in the final model
is based on the variance inflation factors (VIFs) and the change of R2 when dropping out
either to or ho.
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Table 5. Pearson correlation coefficients of input variables.

Variable WWR to (◦C) ho (kJ/kg) GHR (W/m2) v (m/s)

WWR 1 0.00000 0.00000 0.00000 0.00000
to (◦C) 0.00000 1 0.95224 0.35697 0.06113

ho (kJ/kg) 0.00000 0.95224 1 0.19702 0.03265
GHR

(W/m2) 0.00000 0.35697 0.19702 1 0.18360

v (m/s) 0.00000 0.06113 0.03265 0.18360 1

Table 6 shows the statistical results of a general regression model without one or two
steps ahead. The model has an R2 of 0.901, which indicates 90.1% of the change of cooling
demand can be explained by the variation of input variables. Yet, the VIFs of above 10
are observed in to and ho, which confirms their high correlation in the model. Dropping
out to and ho individually from the model gives an R2 of 0.891 and 0.881, respectively.
The preference of including ho and excluding to in the model is also supported by a high
standardized coefficient of 0.533 for ho compared with 0.395 for to. The VIFs vary between
1.000–1.182, which are well below 5 when excluding to from the five input variables. The
time series regression model will be developed based on the input variables of WWR, ho,
GHR and v. Most building management systems monitor only the outdoor temperature
and no other properties of outdoor air. While to can be measured and logged directly,
the higher priority of ho ascertains a need of monitoring the outdoor air enthalpy by two
climatic variables (e.g., to and relative humidity) to predict the change of cooling demands.
Indeed, relative humidity itself has a very low correlation with the cooling demand. It is
more preferable to use ho, which captures the heat gained from the water vapor of outdoor
air compared with using to solely. When free cooling is applied, the outdoor air enthalpy is
highly correlated with the indoor air enthalpy, which has a stronger impact on the thermal
acceptability than other thermal parameters [36].

Table 6. Statistical results of regression model.

Variable
Unstandardized Coefficients Standardized

Coefficients T Sig. Collinearity Statistics

B Std. Error Beta Tolerance VIF

(Constant) −4549.6914 35.0864 −129.6710 0.0000
WWR 333.1573 34.1988 0.0236 9.7418 0.0000 1.0000 1.0000

to 146.9705 3.5759 0.3952 41.1000 0.0000 0.0634 15.7727
ho 59.7808 1.0282 0.5327 58.1398 0.0000 0.0698 14.3184

GHR 0.8210 0.0241 0.1032 34.0536 0.0000 0.6384 1.5665
v −20.83078 2.9430 −0.0174 −7.0780 0.0000 0.9663 1.0349

Tables 7 and 8 show statistical results of the time series models with only one step
ahead (i.e., the t − 1 term) and two steps ahead (i.e., the t − 1 and t − 2 terms). The R2 can
be improved from 0.891 to 0.914 with one step ahead and further, to 0.919 with two steps
ahead. The ho and GHR are the most significant variables to model the cooling demand
because they are important variables to calculate the ventilation load and solar heat gain
from windows. Based on standardized coefficients in Table 8, ho,t−1 has a heavier weighting
than ho,t and ho,t−2. GHRt−2 has the highest weighting compared with GHRt and GHRt−1.
This corroborates the delayed effect of converting the solar heat gain through the building
envelope into the cooling demand. On the other hand, vt has the highest weighting, but
the inclusion of vt−1 and vt−1 has no significant effect. Overall, the time series model has
improved accuracy with two steps ahead for ho and GHR. This model development shows
the advancement of including previous time steps of explanatory variables.
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Table 7. Statistical results of time series regression model with one step ahead.

Variable
Unstandardized Coefficients Standardized

Coefficients t Sig.
B Std. Error Beta

(Constant) −3657.3869 26.4992 −138.0189 0.0000
WWR 333.1573 31.8950 0.0236 10.4454 0.0000

ho,t 24.2267 3.1887 0.2159 7.5977 0.0000
GHRt −0.2352 0.0358 −0.0296 −6.5717 0.0000

vt −32.3596 4.5714 −0.0271 −7.0787 0.0000
ho,t−1 74.5720 3.1724 0.6670 23.5063 0.0000

GHRt−1 2.0356 0.0358 0.2537 56.8044 0.0000
vt−1 −0.2924 4.5045 −0.0002 −0.0649 0.9483

Table 8. Statistical results of time series regression model with two steps ahead.

Variable
Unstandardized Coefficients Standardized

Coefficients t Sig.
B Std. Error Beta

(Constant) −3670.4868 25.7575 −142.5017 0.0000
WWR 333.1573 30.8957 0.0236 10.7833 0.0000

ho,t 22.0839 3.1313 0.1968 7.0526 0.0000
GHRt 0.4153 0.0404 0.0522 10.2836 0.0000

vt −19.5087 4.6202 −0.0163 −4.2224 0.0000
ho,t−1 38.2536 4.0880 0.3421 9.3575 0.0000

GHRt−1 0.4886 0.0630 0.0609 7.7513 0.0000
vt−1 −10.3853 5.1242 −0.0088 −2.0267 0.0427
ho,t−2 37.7826 3.1646 0.3388 11.9392 0.0000

GHRt−2 1.1898 0.0409 0.1510 29.1070 0.0000
vt−2 −7.2308 4.5021 −0.0062 −1.6061 0.1083

Equation (10) is established to model the cooling demand (CDt) at time t with an R2

of 0.919 based on the training set. Its validity was further examined by three testing sets
under climate conditions in 2020, 2050 and 2080. Table 9 shows that the values of R2 in
the testing sets are even higher than 0.919 in the training set. This ascertains the model
accuracy under climate change conditions and supports the use of predicted hourly cooling
demands to evaluate carbon reduction by the low carbon chiller system using full variable
speed control and free cooling.

CDt = −3681.1705 + 333.1573WWR + 20.7758ho,t + 0.4345GHRt − 33.3504vt + 40.0640ho,t−1
+0.481GHRt−1 + 37.2928ho,t−2 + 1.1725GHRt−2

(10)

Table 9. R2 of the testing sets with weather data in 2020, 2050 and 2080.

Testing Sets with Climate Conditions 2020 2050 2080

R2 0.929 0.933 0.929

This simplified model is a viable tool when a complete set of weather data in the epw
format is not available to perform simulation in EnergyPlus. The sensitivity of cooling de-
mands at different WWRs and climatic variables can be assessed directly without changing
the building modules in EnergyPlus. Furthermore, the hourly cooling demand profile can
be easily generated to evaluate alternative low carbon technologies for HVAC systems that
are not yet covered or developed in EnergyPlus system modules.
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4.3. Electricity Uses and Carbon Emissions of Chiller System with Conventional and Low
Carbon Design

Having found the cooling demand profiles under future climate conditions, the elec-
tricity use and carbon emissions are predicted for the chiller system under constant speed
control and full variable speed control with free cooling. Other electricity use components
for the airside system, lighting system and electrical appliances are skipped in this analysis
because they are considered the same at different cooling demand profiles. Table 10 sum-
marizes the annual cooling demands in kWh under all combinations of WWRs and climate
conditions. The annual cooling demand in 2080 can increase by 30.28–32.70% from the
base case of TMY. This suggests that improving the energy performance of HVAC systems
should be strengthened to reduce electricity use to a large extent and, hence, to attain a
downward trend in carbon emissions.

Table 10. Annual cooling demands at different combinations of WWRs and climate conditions.

Climate TMY 2020 2050 2080
WWR kWh kWh % Change kWh % Change kWh % Change

0.4 9,750,690 10,721,292 9.95 11,598,922 18.95 12,703,046 30.28
0.5 9,873,563 10,866,886 10.06 11,778,949 19.30 12,943,122 31.09
0.6 9,988,159 10,999,101 10.12 11,938,513 19.53 13,160,115 31.76
0.7 10,096,678 11,120,225 10.14 12,083,561 19.68 13,357,118 32.29
0.8 10,202,169 11,234,407 10.12 12,217,879 19.76 13,537,945 32.70

Table 11 shows the annual electricity uses in kWh of the chiller system at different
WWRs and climate conditions. The system involves the conventional design with proper
staging of constant speed chillers to match different cooling demands. The percentage
increase of the annual electricity use follows roughly with the annual cooling demand. To
temper the increasing electricity use under future climate conditions, it is important to
increase the COP of the chillers, enhance the energy efficiency of the pumps and cooling
tower fans and to use free cooling to compensate for the cooling demand as far as possible.

Table 11. Annual electricity use in kWh with conventional chiller system at different combinations of
WWRs and climate conditions.

Climate TMY 2020 2050 2080
WWR kWh kWh % Change kWh % Change kWh % Change

0.4 2,192,072 2,380,612 8.60 2,543,443 16.03 2,755,053 25.68
0.5 2,212,804 2,407,564 8.80 2,581,075 16.64 2,808,490 26.92
0.6 2,234,430 2,433,488 8.91 2,616,870 17.12 2,860,063 28.00
0.7 2,255,259 2,457,312 8.96 2,648,859 17.45 2,908,865 28.98
0.8 2,272,703 2,480,152 9.13 2,681,208 17.97 2,955,204 30.03

The annual cooling demand data in Table 10 form the base cases without applying
free cooling (FC). Table 12 shows the percentage change of annual cooling demands after
applying FC from the base cases. Under the TMY, FC enables the annual cooling demand
to drop by 4.96–5.76%, depending on the WWRs. In addition, the chiller system can be
switched off for 22.99–24.11% of the total operating hours. Under future climate conditions,
the potential of applying FC is tempered significantly. In 2080, the percentage reduction
of annual cooling demand is limited to 3.21–3.52% in relation to 4.96–5.76% in the TMY.
The percentage of time to switch off the chiller system shrinks to 9.05–9.91% in relation to
22.99–24.11% in the TMY.
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Table 12. Annual cooling demands after applying free cooling at different combinations of WWRs
and climate conditions.

Climate TMY 2020 2050 2080

WWR % Change
from Base

% of Time
without

CD

% Change
from Base

% of Time
without

CD

% Change
from Base

% of Time
without

CD

% Change
from Base

% of Time
without

CD

0.4 −4.96 24.11 5.10 21.15 14.62 16.24 27.07 9.91
0.5 −5.18 23.82 5.02 20.83 14.82 15.92 27.80 9.56
0.6 −5.38 23.40 4.90 20.47 14.90 15.77 28.39 9.32
0.7 −5.58 23.22 4.74 20.30 14.92 15.44 28.85 9.05
0.8 −5.76 22.99 4.56 20.00 14.88 15.15 29.18 8.82

Table 13 shows how the annual electricity use drops when applying the full variable
speed chiller and system in relation to the conventional system. Compared with results
in Table 11, the full variable speed chiller system can reduce the annual electricity use by
16.76–17.13% in the TMY and further, by 20.8–22.55% in 2080. The percentage electricity
savings are associated with higher equipment efficiency at part-load operation. This
suggests that improving the energy performance of the chiller system helps suppress the
rising electricity use under future climate conditions. Yet, the percentage drop needs to
complement with other low to zero carbon technologies in achieving a proposed energy
reduction target of 30–40% in commercial buildings for carbon neutrality in Hong Kong’s
climate action plan 2050 [33].

Table 13. Annual electricity use in kWh with full variable speed chiller system at different combina-
tions of WWRs and climate conditions.

Climate TMY 2020 2050 2080
WWR kWh % Change kWh % Change kWh % Change kWh % Change

0.4 1,816,666 −17.13 1,990,142 −9.21 2,136,866 −2.52 2,299,172 4.89
0.5 1,837,612 −16.96 2,015,407 −8.92 2,168,973 −1.98 2,341,001 5.79
0.6 1,856,355 −16.92 2,038,695 −8.76 2,197,033 −1.67 2,378,271 6.44
0.7 1,874,096 −16.90 2,059,381 −8.69 2,222,237 −1.46 2,411,818 6.94
0.8 1,891,737 −16.76 2,079,210 −8.51 2,244,768 −1.23 2,442,744 7.48

Table 14 shows how free cooling can further decrease the annual electricity use with
the full variable speed chiller system. Comparing results of percentage changes in Table 13
with Table 14, free cooling brings additional annual electricity savings of 3.66–4.03% in the
TMY and 2.38–2.55% in 2080. The shrinkage of electricity savings under future climate
conditions is associated with the tempering of reduction in the annual cooling demands
as shown in Table 12. These percentage energy savings are much lower than 27% found
in a study on the cooling performance of an existing commercial building in Canada [37].
Considering that the percentage changes of the annual electricity use can contribute partly
to a proposed energy saving target of 30–40% in commercial buildings, low to zero carbon
technologies should be strengthened to the building envelope, other HVAC components, a
lighting system, lift and escalator system and photovoltaic system [38,39]. This calls for
future research work on simulating various energy saving scenarios for different engineer-
ing systems to develop a stereotype of high-rise office buildings in Hong Kong to meet
carbon neutrality.

The simplified cooling demand model considers only the basic architectural variable,
i.e., the WWR. There are other variables influencing the thermal performance of building
envelopes, such as the thermal resistance of envelope materials, the water vapor perme-
ability coefficient, the sealing property, etc. These architectural variables will vary with
the building age and the technological advancement of envelope components will interact
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with the cooling demand profile in the long run. It is worth introducing more architectural
variables to enhance the robustness of the cooling demand prediction.

Table 14. Annual electricity use in kWh with full variable speed chiller system and free cooling at
different combinations of WWRs and climate conditions.

Climate TMY 2020 2050 2080
WWR kWh % Change kWh % Change kWh % Change kWh % Change

0.4 1,736,387 −20.79 1,912,969 −12.73 2,067,834 −5.67 2,246,990 2.51
0.5 1,754,387 −20.72 1,935,336 −12.54 2,097,166 −5.23 2,287,469 3.37
0.6 1,770,701 −20.75 1,955,142 −12.50 2,122,462 −5.01 2,323,204 3.97
0.7 1,785,404 −20.83 1,972,876 −12.52 2,145,787 −4.85 2,355,307 4.44
0.8 1,800,084 −20.80 1,989,873 −12.44 2,166,646 −4.67 2,384,841 4.93

Table 15 gives a summary on the reductions of carbon emissions in kgCO2-e by using
free cooling and full variable speed chiller system at different WWRs and climate conditions.
The studied building with a WWR of 0.4 under the TMY has a total electricity consumption
is 9,671,391.667 kWh, an energy use intensity of 186.56 kWh/m2 and carbon emissions of
5,802,835 kgCO2-e. The carbon reduction due to the low carbon chiller system operation
accounts for 4.84–5.07% in 2020, 4.92–5.32% in 2050 and 5.25–5.90% in 2080. This indicates
a need for exploring energy saving opportunities for other building systems, so that the
aggregate carbon reduction meets a proposed target of 50% before 2035 in Hong Kong’s
climate action plan 2050 [28]. Renewable applications should be widened in high-rise
buildings to directly reduce carbon emissions.

Table 15. Reduction of annual carbon emissions in kgCO2-e and the percentage drop in relation to
total emissions of the studied building.

Climate TMY 2020 2050 2080

WWR kgCO2-e % Drop
from Total kgCO2-e % Drop

from Total kgCO2-e % Drop
from Total kgCO2-e % Drop

from Total

0.4 273,412 4.71 280,586 4.84 285,365 4.92 304,838 5.25
0.5 275,050 4.74 283,337 4.88 290,346 5.00 312,613 5.39
0.6 278,237 4.79 287,007 4.95 296,645 5.11 322,115 5.55
0.7 281,913 4.86 290,662 5.01 301,843 5.20 332,134 5.72
0.8 283,571 4.89 294,167 5.07 308,737 5.32 342,218 5.90

This study investigates carbon reduction opportunities mainly from the perspective of
building energy efficiency. In fact, the reduction of carbon emission factors from the power
supply side is a direct means to suppress carbon emissions for an increasing electricity
demand trend under climate change. Widening gas-fired power plants and phasing out
coal-fired power plants are the roadmap for power companies in Hong Kong to further
reduce the carbon emission factor from the current level of 0.6 kgCO2-e per kWh.

5. Conclusions and Recommendations

This study develops a simplified cooling-demand model for a high-rise office building
in a sub-tropical climate based on the time series of climatic and architectural variables.
The model forms a viable tool to assess carbon reduction by a full variable speed chiller
system with free cooling under climate change. EnergyPlus is used to simulate hourly
cooling demands of a hypothesized high-rise office building in Hong Kong under a change
of window-to-wall ratios from 0.4 to 0.8 and climate conditions in the TMY, 2020, 2050 and
2080. The hourly cooling demand model has a very high accuracy with an R2 of 0.919 in the
training set and 0.929–0.933 in the testing sets. The input variables are the window-to-wall
ratio (WWR), outdoor air enthalpy (ho), global solar radiation (GHR), wind speed (v) and
their two steps ahead. Regarding the variable importance for cooling demand prediction,
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ho is ranked first, GHR the second, WWR the third and v the last. This addresses a need
of monitoring ho and GHR instead of outdoor temperature only. The ho can be calculated
based on the measured outdoor temperature and relative humidity to facilitate the real-time
monitoring of cooling demands in actual chiller systems.

The validated model is used to analyze the electricity use and carbon reduction of
a low carbon chiller system with full variable speed control and free cooling against a
conventional system. The annual cooling demand in 2080 can increase by 30.28–32.70%
from the base case of TMY. Using free cooling enables a minor drop of annual cooling
demand by 3.21–3.52% in 2080 and 4.96–5.76% in the TMY. The low carbon chiller system
can reduce the annual electricity use by 20.8–22.55% in 2080 and 16.76–17.13% in the
TMY. This ascertains the sustainability of using variable speed control and free cooling to
achieve more electricity saving under climate change. Yet, other HVAC sub-systems need
to complement with other low to zero carbon technologies in achieving a proposed energy
reduction target of 30–40% in commercial buildings for carbon neutrality in Hong Kong.

The annual electricity decrease by the low carbon chiller system contributes to a carbon
reduction of 4.92–5.32% in 2050 and 5.25–5.90% in 2080. This appeals for exploring more
energy-saving opportunities in building systems, so that the aggregate carbon reduction
meets a proposed target of 50% before 2035 in Hong Kong. The reduction of carbon
emission factors from the power supply side is a direct means to suppress carbon emissions
for an increasing electricity demand trend under climate change. Widening gas-fired power
plants and phasing out coal-fired power plants are underway to bring a considerable drop
in the carbon emission factor from a current level of 0.6 kgCO2-e per kWh. The carbon
reduction target is likely to be achieved under a reduced level of 0.3 kgCO2-e per kWh with
a flattening curve of electricity demand.

This study has some limitations that need to be further examined. First, the simplified
cooling demand model considers only WWR as the architectural variable. It is possible to
include more parameters about the heat transfer properties of envelope to make the model
more generic and robust. Indeed, some changes of architectural parameters will occur over
the building age and under the technological advancement. Second, the TMY is likely to
be outdated as it was compiled based on weather data in 1979–2003. This may affect the
reliability of generating the future weather data in 2020, 2050 and 2080. The TMY should
be revamped with weather data in recent decades to reflect better current climate change
trends in Hong Kong.

It is important to aggregate more energy saving technologies to meet the 30–40%
energy-reduction targets. Future work will be carried out to simulate other energy-saving
scenarios with the building envelope, other HVAC components, a lighting system, lift and
escalator system and photovoltaic system. Considering that the climate action plans last for
several decades, further research work is required about the advancement of the thermal
performance of building envelopes in terms of the thermal resistance of the envelope
materials, water vapor permeability coefficient, sealing property, etc. Their parameter
changes will interact with the change of cooling demands under future climate conditions.
Furthermore, the carbon emission trend should be changed when putting forward more
stringent policies on electricity use and carbon compensation. The low to zero carbon
technologies need to widen renewable applications for over 10% of the overall electricity
demand as expected in the climate action plan in Hong Kong. A stereotype high-rise office
building with adequate carbon reduction technologies will then be formulated to meet
carbon neutrality and to tackle the associated challenges under climate change.
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