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Abstract: The internal components of a smart building interact through a compatible fabric and logic.
A smart building integrates systems, structure, services, management, and their interrelationships
to create a dynamic and cost-efficient environment. Smart buildings reduce the amount of cooling
and heating load required to cool and heat spaces, thereby lowering operating costs and energy
consumption without sacrificing occupant comfort. Smart structures are an Internet of Things (IoT)
concern. The Internet of Things is a global network that virtualizes commonplace objects. The
Internet of Things infuses non-technical objects with technology. IoT development has led to the
creation of new protocols based on architectures for wireless sensor networks. Energy conservation
extends the life and improves the performance of these networks, while overcoming the limitations
of IoT node batteries. This research seeks to develop a data transmission model for routing IoT data
in smart buildings. Utilization of intelligent object clustering and particle swarm optimization (PSO),
chaotic particle swarm optimization (CPSO), and fractional chaotic order particle swarm optimization
(FCPSO) optimization methods. Using the proposed algorithm to minimize energy consumption
in the IoT is possible due to the algorithm’s ability to mitigate the problem by considering the
number of parameters that can have a significant impact on performance, which is the goal of many
optimization approaches.

Keywords: Internet of Things; energy consumption; optimization

1. Introduction

The term Internet of Things (IoT) refers to a vast network of actual physical objects
such as machines, buildings, and other things that have sensors, network connections,
and software integrated into them as a tiny system [1]. These embedded systems share
information with one another as well as gathering data from the environment around the
physical items. The integration of the physical world based on computer systems through
the IoT improves efficiency, accuracy, and the economy. Cyber-physical systems are a broad
term for sensors and actuators used in the IoT [2,3].

These kinds of systems can be said to contain various forms of smart cities, residences,
and transportation. The IoT is made up of several components, including sensors, software,
and hardware, which communicate with one another using radio waves [4]. Each of
these systems communicates with the others over wired and wireless networks if the
grouping of these components is employed as an embedded system [5,6]. Establishing
communication between things in the physical world enables real-time awareness of
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the physical world and an emergency response based on the data collected. The ever-
increasing development of smart buildings and the rate of innovation in this field have
prompted numerous researchers to implement a wide range of applications [7,8]. A smart
building is one that is equipped with a robust communication infrastructure that can
continuously react to and adapt to changing environmental circumstances, and that enables
the building’s occupants to use the available resources more efficiently and boost their
security and comfort [9]. In order to lower the expenses of the construction industry and
make optimal use of technology and the application of communication and computer
technologies, the energy efficiency of building management and automation systems will
increase. The savings coming from the employment of these solutions can therefore quickly
offset the associated expenses [10]. Intelligent control systems will have a high degree of
adaptability, allowing them to be quickly adapted to the diverse optimization strategies
for energy usage in smart buildings. During operation, it is also simple to adjust and
optimize operations for improved management, energy cost reduction, and maintenance
cost reduction. In an intelligent building, many of the behaviors that occupants display
habitually and unconsciously are performed by intelligent systems, saving time and money
on labor.

In many of the proposed methods, the authors have addressed only one of these
weaknesses, and the simultaneous elimination of these two weaknesses has received less
attention. Various algorithms and models, such as greedy routing, opportunistic routing,
data transmission methods, and clustering, have been developed in order to reduce energy
consumption and extend the lifetime of wireless nodes in the IoT.

In this study, two tools are employed concurrently to mitigate the deficiencies of
the standard particle swarm optimization algorithm. We wish to determine which of
chaotic particle swarm optimization (CPSO) and fractional chaotic order particle swarm
optimization (FCPSO) improves the overall convergence of the particle swarm optimization
(PSO) algorithm and protects it from local optima. Additionally, fractional order derivatives
are employed to accelerate the convergence rate of the particles toward the optimal general
response. Taking into account the significance of optimizing energy consumption in
organizations and smart buildings, the proposed method is based on the clustering of
intelligent objects and fuzzy systems. The proposed method aims to optimize energy
consumption in smart buildings via the IoT.

2. Related Works

Numerous studies have been undertaken to develop answers for the effective applica-
tion of IoT-related building energy consumption. Even though great advancements have
been made, the methodologies are quite diverse, and the challenges are still extremely
difficult, posing an ongoing problem for the research community.

In reality, equipment and appliances in a smart home can be monitored and managed
in the form of objects by employing IoT technology and web-based or mobile applications
based on this technology [11,12]. In general, an IoT node has limited resources, including
processing power and energy supply. If an IoT node must operate in an environment
without a direct power connection, it requires a battery. To solve this issue, a significant
amount of research has been undertaken on how to reduce energy consumption in wireless
sensor networks (WSNs) as a battery-constrained sensing technology, and a number of
techniques and approaches have been created to boost battery usage in an effective man-
ner [13,14]. A WSN may be utilized as a component of IoT technology to build a variety
of IoT platforms. The development of various routing algorithms, such as opportunistic
routing and greedy algorithms, can reduce sensor network energy usage. In addition to the
development of routing protocols, clustering techniques in sensor networks are an extra
method for lowering sensor energy consumption and extending network lifetime. The
clustering-of-objects approach is one of the efficient ways to lower energy usage during the
information transfer phase in the IoT. Each cluster in clustering has a node designated as
the cluster head, which is in charge of organizing network activities and gathering data
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from sensor nodes. Additionally, the cluster head eliminates unnecessary and redundant
data packets, reducing overheads and interference. By decreasing the size and quantity of
nodes in the routing, it also lowers routing complexity [15,16]. Additionally, the clustering
approach makes sensor networks more scalable and stable. Load balancing, which divides
network responsibilities between member nodes according to energy and battery memory,
is another benefit of the clustering process. The primary objective of this study is to reduce
energy consumption during the data transmission cycle. IoT applications are extremely
time-sensitive and crucial; therefore, the majority of communication and processing oper-
ations must be accomplished in a restricted amount of time to avoid negative outcomes.
Consequently, ensuring real-time support in large-scale IoT networks is one of the most sig-
nificant and demanding research topics. This allows the communication center to enhance
the monitoring of agents. Cloud services can provide applications such as social networks
for agent monitoring, environmental data analysis, and network analysis, etc., to advanced
users. Cloud computing plays a crucial role in delivering high-performance computing
and supporting several operating system platforms [17].

A genetic algorithm is offered by Ahmed et al. [18] as a solution for enhancing the
energy efficiency of existing Cloud of Things energy plans. The ETCORA algorithm is
contrasted with the proposed strategy, which is then subjected to extensive numerical
simulations to demonstrate its utility. The results of the analysis indicate that the proposed
strategy for optimizing energy use results in enhanced overall performance. A fuzzy
algorithm-based method for modeling energy loss optimization scheduling with many
targets is proposed by Ding and Wu [19]. In the IoT context, the multi-objective equipment
scheduling optimization equation is created, and the fuzzy algorithm is introduced into the
single-target energy loss problem. In order to reduce the overall energy consumption of
device scheduling in an IoT context, the algorithm searches for idle device time and opti-
mizes the device scheduling energy consumption model. Fanian et al. [20] use the shuffling
frog leaping algorithm (SFLA) to present a method for picking fuzzy input parameters in a
fuzzy multi-hop clustering protocol called PS-SFLA. This technique consists of three pri-
mary phases, each of which is introduced in three variants for the purpose of step-by-step
evaluation. In the initial iteration, the most common and diverse parameters were extracted
from the literature review and formulated. Kadri and Koudil [21] provide a technique
for mapping tasks with reliability in mind. It utilizes a combination of multi-objective
optimization and reinforcement learning (RL). It enables the recovery of persistent faults in
processing elements that may occur in a homogenous 2D-Mesh NoC, while pursuing the op-
timal performance-reliability tradeoff. A multi-objective biogeography-based optimization
method (MOBBO) is proposed for the development of optimal species distributions.

The data center has changed into a virtualized server network supported by hardware-
assisted virtualization with the introduction of the new cloud-based approach. To fulfill the
increased expectations of users, a new algorithm for resource management and real-time
scheduling is required. In wireless networks, cluster-based routing algorithms offer an
efficient means of enhancing network performance by separating sensor nodes into distinct
groups [22].

Given the significance of optimizing energy consumption in organizations and smart
buildings in this study, a data transmission model for routing data among IoT nodes in
smart buildings is proposed. The proposed method is based on smart object clustering
and a particle swarm optimization (PSO). The proposed method’s goal is to optimize
energy consumption in smart buildings powered by the IoT [14,23]. To improve the energy
efficiency of the networks and prevent the early failure of the network, the potential choice
of the cluster head with the remaining energy of the sensor node was addressed. A joint
method based on communication cost and residual energy was utilized to choose cluster
heads in a hybrid energy-efficient distributed clustering protocol (HEED). Due to the fact
that the clustering process was terminated after an arbitrary number of iterations, there
were insufficient cluster heads to cover the entire sensor region [24]. Consequently, some
sensor nodes may have evaded the coverage of the cluster heads and are now referred
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to as isolated nodes. Constantly searching for cluster heads or communicating directly
with the base station causes these nodes to consume a great deal of energy. Due to their
additional task of transmitting data to the base station, cluster heads consume significantly
more battery power than other nodes [25,26].

3. Optimization Model

In this section, first the PSO algorithm is stated, then the CPSO and FCPSO algorithms
are presented, and finally, using the theory of fractional order derivatives, the FCPSO
algorithm is formulated.

3.1. Particle Swarm Optimization Algorithm

Initially, the implementation-relevant characteristics of the system model are intro-
duced in depth. For the proposed protocol, we assume a large, dense network and a
database that is predominantly static. When deployed within the network, all items are
identical in terms of their physical properties, energy capacity, and transmission range.
Each network object is aware of its geographical position and home base. The operation is
carried through via a PSO algorithm [8,27].

The standard particle swarm optimization starts with a set of random solutions and
searches for the optimal solution by updating the generations. There are two learning
processes in particle swarm optimization: the cognitive learning process, which is based
on the history and past of each particle. The process of social learning is based on the
history and past of all particles and is obtained from the exchange of information between
all particles in the population. Particles move in the multidimensional search space. While
moving, each particle updates its position according to its experience and the experience
of neighboring particles, and after receiving information about its best position and the
best position of its neighbors, it updates its position based on a mathematical function.
Each particle searches for its coordinates in the problem-solving space, which takes the
best solution obtained so far (pbest) as the best particle location (gbest). Meanwhile, all
particles move toward the best particles. In each iteration, the optimization includes gbest
and pbest changes in the velocity of each particle toward the locations. The mathematical
model of particle movement is in the form of Equation (1):

|v[t + 1] = wv[t] + ρ1r1(χ1[t]− x[t]) + ρ2r2(χ2[t]− x[t])
|x[t + 1] = x[t] + v[t + 1]

, (1)

where the parameters w, ρ1 and ρ2 are real and positive weights that show the effect of
inertia. The best cognitive component (the best location of the particles) and the best social
component (the best location of the particles) are known when determining the new speed
v[t + 1] for a particle. A coefficient “and” a |R-dimensional random vector in which each
component is a random variable with a uniform distribution between zero and one, the
natural number r represents the dimension of the problem search space. The variables v[t]
and x[t] are respectively the velocity and position vectors of the particle in the tth iteration.
The χ1[t] and χ2[t] are the components of the best cognitive position and the best social
position, respectively [27].

3.2. Chaotic Particle Swarm Optimization Algorithm

The chaotic particle swarm algorithm is a combination of the standard particle swarm
optimization algorithm and a chaotic mapping in which, this mapping, in the initialization
process as well as the evolution process of the particle swarm optimization algorithm.
Chaos is a phenomenon in non-linear systems that includes numerous unstable round
motions. In other words, chaos is a random behavior in a certain nonlinear system [25]. A
chaotic mapping is a time-discrete dynamical system as follows:

xk = f (xk−1), k = 1, 2, 3, . . . (2)
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Chaotic mapping can be used to generate sequences of numbers. These sequences,
which are known as chaotic sequences, have characteristics of chaotic mapping such as
being random, independent of time, and being regular, and accordingly, no state is repeated
in them. Chaotic sequences are considered as random sequences and are used as a random
parameter in the optimization algorithm of chaotic particle swarms. In this way, chaotic
sequences are a suitable tool to control the particle swarm optimization algorithm and
prevent the algorithm from being placed in a local optimal point during the search process,
as well as the early convergence phenomenon, which is one of the problems of the standard
algorithm. So far, many chaotic maps have been introduced to improve the particle swarm
optimization algorithm. For the algorithm proposed in this article, logistic chaos mapping
is used to produce uniform particles in order to improve the quality of the initial population
generation and avoid local optimal points [28,29].

3.3. Fractional Chaotic Particle Swarm Optimization Algorithm

After generating the initial population in the algorithm, the position and speed of the
particles should be updated. In this article, the method of fractional order derivatives is
used to model the movement of particles [16]. In general, the equations of particle swarm
optimization algorithms in discrete form are as follows:

|v[t + 1] = wv[t] +
2

∑
i=1

ρiri(χi[t]− x[t])

|x[t + 1] = v[t]

(3)

and the continuous form of the above equations is as follows:

| d
dt v[t] = wv[t] +

2

∑
i=1

ρri(χi[t]− x[t])

| d
dt x[t] = v[t]

(4)

Because the particles move in a zigzag pattern, due to the complexity of the particle
movement and the dependence of their movement on the previous position, fractional
order derivatives are used which have a better description of the long-term past of the
particle movement [9,10]. The above equations were written using Caputo’s fractional
derivative model as follows:

|cDαv[t] = wv[t] +
2

∑
i=1

ρiri(χi[t]− x[t])

|cDαx[t] = v[t]

(5)

By discretizing Caputo’s fractional Mortier derivative for v and x, the velocity and
location of the particles based on the fractional Mortier derivative (α) are as follows:

v(t + 1) = (α + haw)v(t) + haρ1r1(χ1(t)− x(t))
+ haρ2r2(χ2(t)− x(t))

x(t + 1) = αx(t) + 1
ha v(t + 1)

(6)

The stability of the particle swarm optimization algorithm has been proven by apply-
ing fractional order derivatives [9].

The important point in determining the optimal value of the order of the fractional
derivative is that this value depends on the optimization problem and has a specific value
for each problem.
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3.4. Interface Node to Send Data Selection

Taking into account the two criteria of energy and distance difference, the proposed
technique selects the intermediate node from among all live nodes in the network that have
optimal conditions. As an intermediate node, it is optimal to choose a node that does not
deplete the energy of the entire network. The energy utilized to convey data to the interface
node is determined by calculating the relationship between the energy reduction of the
sending nodes and Equation (7).

|EijBS = ETx(l, d(si, sj)) + ERx(l) + ETx(l, d(sj, BS))
| = l

(
Eelec + E f sd2(si, sj)

)
+ lEelec + l

(
Eelec + E f sd2(sj, BS)

)
| = 3lEelec + lE f s

(
d2(si, sj) + d2(sj, BS)

) (7)

where EijBS shows the energy used to send data from the i node through the j interface
node to reach the base station. d(si,sj) shows the distance from node i to node j and d(si,BS)
represents the distance of node i to the base station. The energy used to send information
to the base station is obtained directly from Equation (8).

EiBS | = ETx(l, d(si, BS)) + l
(

Eelec + E f sd2(si, BS)
)

| = lEelec + lE f s
(
d2(si, BS)

) (8)

The difference between these two quantities of energy consumption (Equation (9))
must be more than zero in order that the network’s total energy does not drop when the
interface node is chosen.

|lEelec + lE f s
(
d2(si, sj) + d2(sj, BS)

)
− lEelec + lE f s

(
d2(si, , BS)

)
> 0

|2lEelec + lE f s
(
d2(si, sj) + d2(sj, BS)− d2(si, , BS)

)
> 0

|
(
d2(si, sj) + d2(sj, BS)− d2(si, BS)

)
> −

(
2Eelec /E f s

) (9)

The intricacy of these two-stage procedures is intimidating for engineers who seek to
integrate search algorithms in production goods. Although some techniques’ source codes
are available, they may not be immediately implementable in a company’s actual products.
The complexity analysis comparison for optimization methods is presented in Table 1.

Table 1. Complexity comparison of the optimization method.

Tp P Cost

PSO O(1) O(N) O(N)
CPSO O(N/2) O(N) O(N2/2)

FCPSO O(N1−x) O(N2) O(N log N)

4. Evaluation of the Proposed Method

MATLAB has been used to simulate and evaluate IoT and PSO, CPSO, and FCPSO
information security in smart buildings. In addition, the results of the proposed method
were compared to those of similar methods. Numerous parameters are affected; the
values of these parameters are highly dependent on convergence improvement. In this
study, the following parameters are considered when transferring data to the center or
between objects:

- Etx, Erx: the energy used to transmit and receive data in nodes, respectively.
- Dij: distance between node i and j.
- Eelec: the available energy in each node.
- Fij: data transmission rate between two nodes.
- CS, CR, CB: base station node cost, sensor node cost, and amplifier node cost, respectively.
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All simulations are performed in a Windows 10 operating system using 2.5 GHz quad-
core processors, a working frequency 2 and with a memory capacity of 8 GB. Simulation
is done in MATLAB 2020 software. To check the efficiency of the proposed algorithm, 10
testbench functions were used (Table 2) [30,31]. In all functions, the target point is zero, the
optimal point is zero, and the dimensions of all functions are r = 50.

Table 2. Testbench functions and interval.

ID Function Interval

F1 f (x) = ∑n
i=1 x2

i
−∞ ≤ xi ≤ ∞

1 ≤ i ≤ n

F2 f (x) = ∑n
i=1([xi + 0.5])2 −10 ≤ xi ≤ 10

F3 f (x) = An ∑n
i=1
[
x2

i −Acos(2πxi)
]

1 ≤ i ≤ n

F4 f (x) = ∑n−1
i=1

[
100
(

xi+1 − x2
i
)2

+ (xi − 1)2
] −∞ ≤ xi ≤ ∞

1 ≤ i ≤ n

F5 f (x) = 418.9829−∑d
i=1 xisin

(√
|xi|
)

−∞ ≤ xi ≤ ∞

F6 f (x) = ∑n
i=1
[
x2

i − 10cos(2πxi + 10)
]

−5.12 ≤ xi ≤ 5.12

F7 f (x) = −20exp
(
−0.2

√
1/n ∑n

i=1 x2
i

)
− exp(1/n ∑n

i=1 cos(2πxi)) + 20 + e −5 ≤ x, y ≤ 5

F8 f (x) = 1/4000 ∑n
i=1 x2

i −
n
∏
i=1

cos
(

xi√
i

)
+ 1 −100 ≤ xi ≤ 100

F9
f (x) = 0.1

{
sin2(3πxi) + ∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)
]
+ (xn − 1)2[1 + sin2(2πxn)

]}
+

∑n
i=1 u(xi, 5, 100, 4)

−50 ≤ xi ≤ 50

F10

f (x) = π/n
{

10sin(πy1) + ∑n−1
i=1 (yi − 1)2

[
1 + 10sin2(πyi+1)

]
+ (yn − 1)2

}
+

∑n
i=1 u(xi, 10, 100, 4)

yi = 1 + (xi + 1/4)u(xi, a, k, m) =


k(xi − a)m, xi > a,

0− a < xi < a,

k(−xi − a)m, xi < −a.

−50 ≤ xi ≤ 50

The simulation results of initial population generation with the help of chaos with
objective functions are shown in Table 3. As can be seen Table 1, in some cases, the results
of the improved algorithm with CPSO are weaker than the standard algorithm. The
presentation of the FCPSO shows a better performance than the PSO and CPSO for higher
fractional order derivative values. According to the obtained results, the proposed FCPSO
algorithm shows better performance than the other two algorithms for each, which is one
of the most important achievements of this proposed algorithm.
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Table 3. The result of PSO, CPSO and FCPSO algorithms in testbench functions for different orders of derivatives.

Method
The Order of
the Fractional
Derivative (α)

The Value of the Objective Function Run time

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

PSO 0.98371 7 × 10−5 0.983 1.2 ×
10−13

4.2 ×
10−16 0.98371 7 × 10−5 0.983 2 ×

10−14
3.99958
×

10−12
0.10098 0.09748 0.101 0.097 0.078 0.10098 0.09748 0.101 0.097 0.078

CPSO 1.00876 0.00088 1.009 1.8 ×
10−12

3.5 ×
10−14 1.00876 0.00088 1.009 6.4 ×

10−12
1.765
×

10−12
0.09512 0.10276 0.095 0.102 0.12 0.09512 0.10276 0.095 0.102 0.12

FCPSO

0.2 0.0001802 0.00051 0.0000102 1 ×
10−12

3.75 ×
10−15 0.0001802 0.00051 1.02 ×

10−5
1.5 ×
10−12

4.10375
×

10−12
0.08104 0.09136 0.081 0.091 0.098 0.08104 0.09136 0.081 0.091 0.098

0.4 0.000189 0.00049 0.000031 1 ×
10−12

4.02 ×
10−15 0.000189 0.00049 3.1 ×

10−5
7.9 ×
10−12

4.90402
×

10−12
0.12399 0.08778 0.123 0.088 0.072 0.12399 0.08778 0.123 0.088 0.072

0.6 0.00033989 0.00063 1.101 ×
10−7

1 ×
10−12

4.21 ×
10−15 0.00033989 0.00063

1.10108
×

10−7
1.9 ×
10−12

3.30421
×

10−12
0.10525 0.18101 0.105 0.181 0.163 0.10525 0.18101 0.105 0.181 0.163

0.8 0.01136 0.00026 0.0109 1 ×
10−12

3 ×
10−15 0.01136 0.00026 0.0109 3.5 ×

10−12
2.903
×

10−12
0.09274 0.09842 0.092 0.098 0.079 0.09274 0.09842 0.092 0.098 0.079
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In Table 4, the results of running simulations with three different optimization methods
(PSO, CPSO, and FCPSO) are compared in order to draw conclusions about energy usage
in the IoT. Comparisons are made between the algorithms’ computation times as well as
the average positioning errors they produce.

Table 4. The simulation results of energy consumption in IoT using three optimization algorithms.

Optimization Algorithms
Mean Error

ERA =
∑N

n=1

√
(Yn−yn)

2

N

*

PSO 0.0829
CPSO 0.0971

FCPSO (α = 0.8) 0.0029
* Y is the objective parameter real value, y is the objective optimization value, and N is the number of data.

It can be seen that the amount of error in the CPSO optimization algorithm is higher
than in the other two algorithms. It can be further easily seen that the mean error using
the proposed algorithm is significantly lower than the other two algorithms; therefore, the
error has been significantly reduced.

The implemented algorithm has been evaluated in two modes of information transfer
of all nodes (objects) to the information center and information transfer from one node to
another, as well as their respective energy consumptions. There is a random placement of
objects in the implementation space. Figure 1 depicts an example of object placement in
coordinate space.
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Figure 1. Object placement in coordinate space.

Figure 2 depicts the energy consumption in two normal states and the optimal state
chosen by the FCPSO algorithm for information transmission. As shown in Figure 2, when
the FCPSO is used to transfer information between the objects and to the center, the energy
of the objects is drastically reduced.
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Figure 3. The amount of data created per object.

Each object’s data for transmission to the center is generated at random at the start of
the simulation (Figure 3). Nodes can be viewed in two states, normal nodes 1 and amplifier
nodes 2, as a second method for evaluating the proposed energy-saving strategy. In this
instance, amplifier nodes refer to a sensor node with excess energy; in fact, the amplifier
node is a positive operator when executing the algorithm on the cost function of the FCPSO
algorithm, thereby increasing the energy of the amplifier object. In addition, random is the
selection of the sensor node (normal) and amplifier. Similar to the previous investigation,
the total number of objects in this one is 40, and the center’s characteristics are unchanged.
Figure 4a illustrates the energy improvement relative to the initial state. In a scenario
where the FCPSO method is used for information transmission, energy consumption can
be reduced by employing the FCPSO method for optimization. A second testing method
employs the same method described for evaluating the parameters Etx and Erx. These two
parameters can be viewed as a single parameter whose value can be arbitrarily determined
for each object. The FCPSO method outperforms the standard transfer mode in this test
mode. Figure 4b illustrates a comparison between these two processes.



Sustainability 2023, 15, 6475 11 of 15
Sustainability 2023, 15, x FOR PEER REVIEW 11 of 15 
 

  

Figure 4. Comparison of (a) energy consumption reduction, and (b) the energy required for data 

transmission and reception of two normal methods and FCPSO optimization. 

The execution time criterion is subjected to further testing as well. When compared 

to the amount of time needed to complete authentication requests in IoT-based smart 

buildings, this metric appears to be significantly faster. A comparison has been made be-

tween three methods. The first option is to use the FCPSO algorithm to optimize the 

method. The second approach involves performing an analysis of ZigBee. ZigBee is a type 

of wireless network that accomplishes its tasks through the transmission of a signal from 

one piece of hardware to another. This contributes to the network becoming more robust 

and extensive. ZigBee can be utilized in a wide variety of applications, including door 

locks, thermostats, dimmer switches, and many others [32]. KNX is the third approach, 

and is an open-source protocol that is typically utilized for automation. Because each KNX 

system is intelligent and operates on more than one physical layer, the functionality of 

other devices connected to the network is unaffected if one of the systems fails. KNX is a 

building control system [33]. As can be seen in Figure 5, the packet sizes have become 

significantly bigger across the board. 

 

Figure 5. Execution time with different methods. 

In Figure 6, in this measure, the amount of memory consumed (in megabytes) to 

complete authentication requests in smart buildings based on the IoT has been examined 

and compared based on the number of packets sent; the results indicate that the third 

method has the lowest amount of memory consumption for more packages, whereas the 

proposed method was not able to reduce memory consumption for high package counts. 

Figure 4. Comparison of (a) energy consumption reduction, and (b) the energy required for data
transmission and reception of two normal methods and FCPSO optimization.

The execution time criterion is subjected to further testing as well. When compared
to the amount of time needed to complete authentication requests in IoT-based smart
buildings, this metric appears to be significantly faster. A comparison has been made
between three methods. The first option is to use the FCPSO algorithm to optimize the
method. The second approach involves performing an analysis of ZigBee. ZigBee is a type
of wireless network that accomplishes its tasks through the transmission of a signal from
one piece of hardware to another. This contributes to the network becoming more robust
and extensive. ZigBee can be utilized in a wide variety of applications, including door
locks, thermostats, dimmer switches, and many others [32]. KNX is the third approach,
and is an open-source protocol that is typically utilized for automation. Because each KNX
system is intelligent and operates on more than one physical layer, the functionality of
other devices connected to the network is unaffected if one of the systems fails. KNX is
a building control system [33]. As can be seen in Figure 5, the packet sizes have become
significantly bigger across the board.
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Figure 5. Execution time with different methods.

In Figure 6, in this measure, the amount of memory consumed (in megabytes) to
complete authentication requests in smart buildings based on the IoT has been examined
and compared based on the number of packets sent; the results indicate that the third
method has the lowest amount of memory consumption for more packages, whereas the
proposed method was not able to reduce memory consumption for high package counts.
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Figure 6. Memory required with different methods.

In a second test, the amount of energy required to transmit data from the source
to the destination is assessed. The quantity of data packets has increased at each suc-
cessive stage. Figure 7 demonstrates that the proposed method utilizes less energy than
comparable methods.
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Figure 7. The energy demand to transmit the request with different methods.

The accuracy criterion indicates how effectively the suggested technique can accurately
display the identify in IoT-based smart buildings. In Figure 8, the accuracy of the suggested
technique for 188 unique identity effects is compared to the accuracy of the second and
third methods (described previously) for various packages.
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The simulation results indicate that the proposed method is more accurate than the
second and third methods for identifying distinct packages in IoT-based smart buildings.

5. Conclusions and Suggestions for Future Work

The energy consumption model in IoT networks is dependent on the hardware, data
processing, and communication interface. In this study, the cycle-based model and informa-
tion transfer to the base station and between items were utilized for energy consumption
and the IoT network. The most significant challenges in IoT routing are each node’s power
consumption, comparability, fault tolerance, and network dynamics. For effective com-
munication and information transfer, it is necessary to evaluate a node’s quality using
the appropriate criteria. In this study, the energy used to transmit and receive data in the
nodes, the energy available in each node, the distance between two nodes, and the data
transmission rate between two nodes were evaluated. In accordance with the goal of this
study, which is to optimize energy consumption in the IoT, an FCPSO algorithm was used
to reduce energy consumption during information transmission. Using the FCPSO algo-
rithm to reduce energy consumption in the IoT is possible due to the algorithm’s ability to
optimize the problem by considering the number of parameters that can have a significant
impact on the performance of the problem, which is the goal of many optimization prob-
lems. The simulation results demonstrated that employing an FCPSO method improves
and decreases energy consumption during program execution and the information transfer
cycle. The most significant limitation of this study is that there are not enough data that
can be relied on to construct an optimal model. Because of this, there is a greater possibility
that the model will not converge. Another topic that deserves attention in this area is the
degree of computational difficulty that new models of data transmission require.

According to the outcomes of implementation and ongoing study in this subject, the
following recommendations can be made for future work:

- Practical implementation of the proposed method in a smart environment that uses
the IoT, such as smart buildings.

- Using the proposed method for multicast routing, additional research can be conducted
in this area, such as how to select routes.

- Utilizing alternative evolutionary algorithms and evaluating their outcomes to increase
the reduction of current overheads and reach more ideal results.

- Combining the proposed method with other algorithms, such as tree-based algorithms,
and presenting it within the IoT domain.
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