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Abstract: The paper presents an innovative approach in the modelling of multi-storey timber-framed
buildings, where double-skin façade elements (DSF) are additionally considered as load-bearing
wall elements against a horizontal load impact. The mathematical model with a fictive diagonal
element developed for timber-framed wall elements with classical oriented strand boards (OSB)
or fibre–plaster sheathing boards (FPB) is upgraded for DSF elements. The diameter of the fictive
diagonal is determined with either experimental results or numerically obtained results using the
time-consuming FEM model with elastic spring elements, which simulates the bonding line between
the timber frame and both glazing panes. In the second part of the study, the numerical analysis
of a specially selected three-storey timber-framed building was performed using the developed
mathematical model with fictive diagonal elements. Two alternative calculations were performed
with the DSF elements as non-resisting and racking-resisting wall elements. It was demonstrated
on the selected case that the racking resistance (R) of a building can essentially increase up to 35% if
DSF elements are considered as resisting wall elements. As a secondary goal of the study, it is also
important to point out that by using DSF elements as racking-resisting elements, the distortion in
the first floor essentially decreased. It is demonstrated on the selected numerical example that this
torsional influence decreased notably (by almost 18%) when the load-bearing DSF elements were
used for seismic excitation in the X direction. Therefore, such an approach can open new perspectives
in designing multi-storey timber-framed buildings with a more attractive and dynamic floor plan
and structure.
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1. Introduction

In a sense, decreasing CO2 emissions and designing energy-efficient buildings has
been a topic of research since 1970. If the green house gas (GHG) emissions will continue to
grow as they currently are, the Earth’s average temperature will increase by at least 1.50 ◦C
until the end of 21st century [1]. Consequently, a new strategy to design buildings with net
zero emissions has to be adopted not only for new buildings, but also for a wide range of
building renovations [2,3], integrating a life-cycle approach as well [4]. Timber, as a natural
raw material with the potential to store CO2, has the capacity to rapidly decrease GHG
emissions, and seems to be the best possible solution to this problem.

A similar increasing trend may be observed in the construction of new multi-storey
(MSTB) and high-rise timber buildings (HRTB). However, a “high-rise” building is mainly
considered as such when surpassing 25 m [5,6] or having more than ten storeys [7,8]. On the
other hand, the term “multi-storey” tends to be a lot more defined and refers to buildings
of four storeys or more, which is why it will be used in this paper. Despite the increase and
advantages shown by numerous studies in recent years, the global spread of multi-storey
timber construction is still relatively low compared to massive steel construction with
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essentially higher lateral resistance compared to timber structures. An additional aspect
is the eventual non-regularity in a multi-storey building floor-plan, which can essentially
increase distortion effects in each storey and amounts to an additional limitation of multi-
storey timber buildings. As a result, buildings that could be built from timber are still
built from reinforced concrete or steel, which leads to an environmental performance that
is poorer than if this housing stock had been built with timber—even the new timber
structural systems that have been recently developed, such as those in [9].

On the other hand, the use of glazing in buildings has always contributed to open-
ness, visual comfort, and a better daylight situation. Over the years, manufacturers have
improved the thermal insulation and strength of glass [10], which enabled not only the
internal illumination of buildings with large glass surfaces which were primarily south
oriented, but also solar energy heating with increased solar heating gains through the
transparent areas. On the other hand, the installed glazing areas that are non-load bearing
in their planes in terms of assuming horizontal loads further aggravate the problem of
required horizontal load-bearing capacity from a structural perspective.

Therefore, it is crucial in such cases to develop a load-bearing timber–glass wall
element, which can significantly contribute to resisting the increased horizontal load impact.
With their racking stiffness, such elements can increase the horizontal stiffness of the whole
building and consequently decrease the torsional effects of seismic forces. In this sense,
so-called single-skin timber–glass wall elements were initially developed [11], where the
single-layer or thermal insulated two- or three-layered glass pane is rigidly connected to the
timber frame with the bonding line [12]. It was concluded by many experimental [12–14]
and numerical studies [15–17] that by using only single-skin timber–glass wall elements,
the racking stiffness in particular did not increase in the expected manner and was not in
the same range as the timber-framed walls with the classical sheathing boards, such as
OSB or fibre–plaster boards. Therefore, special double-skin façade (DSF) timber–glass wall
elements were further developed, supported by experimental [18] and further numerical
studies [19]. The DSF elements were first developed primarily to be used for the energy
and structural renovation of existing old buildings but can be used in new multi-storey
timber buildings as well, especially in cases of a strong asymmetric position of transparent
areas on the building envelope.

However, this numerical study was performed with a very time-consuming finite
element model (FE) of a composite timber–glass wall element using elastic springs for
simulating the bonding line between the timber frame and both glazing panes. Therefore,
such an FE model is not appropriate, in practice, for any engineering application in the
static or dynamical stability of multi-storey timber buildings and can be performed only in
theoretical studies and analyses of a single wall element.

To avoid such time-consuming calculations in the presented study, the developed DSF
timber element was integrated into a quite simple mathematical model with the fictive
diagonal for simulating the racking stiffness of the bracing timber–glass wall element
(Section 3). The FE model with the fictive diagonal was already developed in [20], but only
for the classical fibre–plaster and OSB sheathing boards, where the sheets are stapled to the
timber frame and not continuously bonded such as in the case of DSF elements. In Section 4,
such modelled DSF elements are integrated into the static model of a specially selected four-
storey timber-framed building with an asymmetrical position of transparent DSF elements.
The influence on seismic behaviour of this selected timber building is numerically studied
using an FE calculation programme SAP 2000 [21], with a special impact dedicated to the
influence of the developed DSF elements to increase the racking resistance and stiffness
of the building. Special attention is paid to a decrease in torsional effects caused by the
seismic force if the building is analysed without and with racking resisting DSF elements.
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2. Structural Stability of Multi-Storey Timber-Framed Buildings
2.1. Structural Design of Multi-Storey Timber Buildings

In the last decades, new timber products (cross-laminated timber, for instance, at the
beginning of the 1990s) changed the form and especially the maximum possible height of
timber buildings. In this sense, timber structures became competitive with other structures
built with conventional and commonly used structural materials. Furthermore, combining
timber structural elements with other commonly used building materials (brick, concrete,
steel, and lately also glass) can open new perspectives on the attractive architectural forms
of such hybrid timber buildings. Therefore, a combination with load-bearing glazing will
be presented at the end of this section.

There are many different basic structural systems which are commonly used in multi-
storey timber buildings schematically presented in Figure 1. They also differ from each
other in a horizontal load transfer, and therefore allow different limits in the maximal height
of timber structures. For instance, it is recommended to build timber frame-and-panel
structures with up to four storeys, and a solid timber construction with CLT elements with
up to ten storeys. Higher high-rise timber structures are constructed in a frame construction
(14-storey Tree building in Bergen with the maximal height of 52.8 m) or even as hybrid
structures combining timber primarily with a reinforced-concrete (RC) core (24-storey
HoHo timber building in Vienna with the maximal height of 84 m). The limits in the height
of timber buildings also strongly depend on the location of the building and the subsequent
horizontal load impact (wind or earthquake).
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Figure 1. Classification of timber structural systems according to their load-bearing function.

In most cases, the more problematic of these two horizontal load actions is an earth-
quake, which subjects a building to a high-intensity dynamic load often resulting in catas-
trophic consequences. One of the basic principles when designing a building to resist
seismic loads is trying to avoid plan irregularity, clearly described in, and prescribed by,
the Eurocode 8 (2005) standard [22]. This means that the centre of gravity (M), where the
resulting seismic force (Fb) acts, and the centre of rigidity/stiffness (R) of a building with a
resulting horizontal resisting force should be as close to each other as possible. Unfortu-
nately, this is an issue for energy efficient buildings with large glazing areas predominantly
placed on one side of the structure, resulting in an uneven stiffness of their floor plan and
an important dislocation between the centre of gravity (M) and the centre of rigidity (R), as
schematically presented in Figure 2. To avoid this distortion, it is important to consider
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the most external walls on the south façade as racking-resisting load-bearing elements.
This means that walls with fixed glazing areas (but not windows) should also be treated as
racking-resisting bracing elements and will be treated as composite elements in the timber
frame-and-panel system of a timber frame and a glass sheathing, which can transmit a
considerable share of horizontal forces to the basement. With such an approach, the racking
resistance and stiffness of the whole analysed building can be increased, and new limits
in the maximal height of multi-storey buildings constructed in a timber-framed structural
system can be set. The influence of such an approach will be numerically analysed on a
specially selected four-storey timber-framed building in Section 4.
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Figure 2. An example of dislocation between the centre of gravity (M) and the centre of rigidity
(R), [16].

It must be emphasised, however, that the final structural design of a multi-storey
timber-framed building additionally depends on its micro-location and height. It is gen-
erally known that according to Eurocode 1 [23], wind loads exponentially increase only
from a certain height of a building upwards, while earthquake loads according to Eurocode
8 [22] increase almost linearly with the height of a building as schematically shown in
Figure 3 for cases when higher loads are caused by earthquake loads. Consequently, a high
horizontal load impact is particularly significant in the first storey of the building where a
maximal load-bearing capacity has to be reached with all resisting wall elements. In lower
stories of middle-rise or high-rise timber buildings, it is therefore of the utmost importance
to consider all wall elements with fixed glass panes as resisting bracing elements, which
can contribute to the overall racking resistance and stiffness of the whole building in the
first storey.
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2.2. Load-Bearing Timber–Glass Wall Elements

As mentioned before, transparent glass areas in energy-efficient timber houses are
mainly installed on the south façade of the building envelope. To decrease the torsional
effects of seismic forces, it is crucial to develop load-bearing timber–glass wall elements,
which can contribute to the overall racking resistance and stiffness of the whole building and
decrease the torsional effects. In such timber–glass wall elements, a conventional sheathing
board (fibre–plaster or OSB, Figure 4b) is replaced with a glass pane (Figure 4c). The main
concept of such timber–glass wall elements is that according to the basic horizontal force
distribution (Figure 4a), the bonding line between the glass pane and the timber frame
will take over the shear flow and the glass pane will take over the diagonal tensile force
transmission (Figure 4c).
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In the case of timber–glass wall elements, the horizontal point load acting at the top of
the element is consequently transferred to the supports in the same manner as presented in
Figure 4a for any timber-framed wall elements for any sheathing boards:

• The adhesive takes over the shear stress in the gluing line;
• The tensile diagonal of the glass pane shifts the force to the support.

Timber–glass wall elements will be further separately treated as single-skin façades
(SSF) with a single-glass panel and double-skin façade (DSF) elements with two panes
of glazing.

2.2.1. Single-Skin Façade (SSF) Timber–Glass Wall Elements

The problem with single-skin glazing in timber-framed walls acting as racking resisting
elements actually began with substantial research work in [11,13,24]. In these studies, a
single-skin timber-framed load-bearing wall element with one-pane non-insulating glazing
was developed using experimental and numerical tests. In [24], a special substructure was
used to connect the glass pane to the timber frame. The most important technological
advantage of such a type of connection is a relatively simple replacement of the glazing if it
breaks. In the study of Blyberg [25], a shear wall element intended to be used as a load-
bearing façade element was designed. In contradiction to [24] in this case, a non-insulating
glass one-pane was rigidly bonded to a timber frame using different types of adhesives.

However, all such load-bearing timber–glass elements actually do not have any ther-
mal insulating function and cannot be used as building envelope elements at all. Therefore,
in the Wood Wisdom international research project [12], load-bearing timber–glass wall
elements were further developed, where a double- or even a three-layered thermal insu-
lating single-skin glazing was rigidly bonded directly to the timber frame structure. Such
elements can be treated as single-skin façade elements. Since various parameters (such
as the type and thickness of the adhesive, the type and thickness of the glass pane, wall
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element dimensions, etc.) can significantly affect the racking resistance and stiffness of
such timber–glass wall elements, a unique mathematical model was further developed
using special spring elements to simulate the slip in the bonding line between the glass
pane and the timber frame [15]. A major parametrical numerical study varying the most
influential parameters stated above was further performed. It was demonstrated in many
experimental and numerical studies that triple-insulating glazing can foster higher racking
resistance and stiffness compared with single non-insulating glazing. However, many
challenges still lie ahead to improve the type of the bonding line, the type of the used
adhesive, the position of the glazing, etc., to enhance the horizontal resistance and stiff-
ness of timber–glass wall elements, improving the structural stability of the whole timber
building. The racking stiffness with a polyurethane or silicone adhesive is not in the same
range as the compared timber-framed walls with conventional sheathing boards, such as
OSB or fibre–plaster boards, which are prescribed by standards as primary load-bearing
racking-resistant structural wall elements.

2.2.2. Double-Skin Façade (DSF) Timber–Glass Wall Elements

As presented in Section 2.2.1, many experimental and numerical studies highlight
that the racking resistance obtained with the developed timber single-skin façade (SSF)
elements is not sufficient to improve the structural behaviour of a whole building under a
horizontal load impact, especially if the building is exposed to a more significant horizontal
load impact as schematically presented in Figure 3. Consequently, it is crucial to develop a
new load-bearing timber–glass wall element as a resisting bracing element in another way,
not by using only two- or three-layer insulating single-skin (SSF) glazing, but by adding
a structurally important external non-insulating single-layer glass pane. Such façade
elements are treated as double-skin façade elements (DSF) and will be further presented.
The introduction of innovative solutions by applying the developed DSF elements would
thus expand the range of multi-storey timber building design options on account of said
structural advantages. In practice, this would mean that buildings with a slightly more
complex design could be built (a higher degree of floor plan or façade asymmetry, more
storeys, etc., are allowed) within the scope of the same boundary conditions, and better
energy efficiency could be achieved.

The schematic presentation of such a load-bearing DSF element is provided in Figure 5.
It is important to point out that the thermal-insulating three-layered float glazing is placed
on the internal side of the façade element and a single-layer non-insulating fully-tempered
glazing on the external side. Solar shading systems can be integrated within the cavity, and
the width of the cavity can vary from 200 mm to even more than 2 m. The installation of
any ventilation devices, which would also be optimal for the building, is not suitable for
load-bearing DSF elements. Ventilation requires openings in the load-bearing elements
of the DSF system, which significantly affect the horizontal load-bearing capacity of such
a DSF wall element as presented in our previous study on timber-framed wall elements
with fibre–plaster sheathing boards [26]. Within the scope of the Home+ development
project, the developed timber DSF wall elements constitute an additional potential of
transparent areas in multi-storey timber construction [18]. In addition to the foreseen
structural advantages, they provide better sound insulation of the building envelope and
better energy performance as compared to the regular triple-insulating glazing [27–35].

Recently, many studies have analysed the thermal and acoustic performance of DSF
elements, but almost none of them have analysed their structural behaviour, especially
in terms of determining their racking resistance. Such façade elements were in the past
primarily developed with the goal of essentially improving the thermal and acoustic
resistance of the building envelope [30–32]. Therefore, DSF elements have been proposed
as a promising passive building technology to enhance energy efficiency and improve
indoor thermal comfort [33]. Such a constructed envelope DSF element demonstrates better
acoustic resistance [29] in comparison with the widely used and previously described single-
skin façade (SSF) elements and can, therefore, be suitable for high-noise areas where a high
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level of sound insulation is required [34,35]. In wide research in Pomponi and D’Amico [28],
a structural approach with a timber DSF was studied, but only for the vertical load impact.
Consequently, a load-bearing DSF timber element must also be developed for a horizontal
load impact to increase the possibility of also using larger transparent glass areas in multi-
storey timber-framed buildings and consequently to increase the potential of wood as a
natural and eco-friendly material in a variety of multi-storey residential buildings.
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Figure 5. Schematic presentation of a DSF load-bearing structural wall element [19].

3. Mathematical Modelling of Multi-Storey Timber-Framed Buildings
3.1. Mathematical Modelling of Conventional Timber-Framed Wall Elements

To perform the numerical analysis, it was initially necessary to define a suitable math-
ematical model of the structure. For this purpose, the previously introduced mathematical
model with a fictive diagonal for determining the racking stiffness of timber-framed wall
elements with conventional OSB or fibre–plaster (FPB) sheathing material [20] was ap-
plied and further developed for the timber–glass wall elements stiffness simulation. It is
important to point out that in the case of OSB or FPB, sheathing boards are connected to
the timber frame with mechanical fasteners, usually located at a constant distance (seff).
Consequently, the effective bending stiffness (EI)eff of such a wall element can be calculated
in a semi-analytical way through Equation (1c) using the Gamma method. Following the
expressions presented in [20], the fictive diagonal diameter for conventional sheathing
boards (OSB or FPB) is further determined in the way that the horizontal displacement of
the actual wall element is the same as the horizontal displacement of the simplified model
with a fictive diagonal as schematically presented in Figure 6. Finally, the fictive diagonal
diameter (dfic) is expressed in the final analytical form, as follows:

Ad,fic =
kp · Ld

ED · cos2 α
(1a)

kp =
1

Dp
=

(
H3

3 · EIeff
+

H
GAs

)−1

(1b)

(EI)eff = EbIb + EtIt = Eb ·
nb · t · b3

12
+ Et ·

(
2 · a3 · c

12
+

d3 · c
12

+ 2 · γi · At · z2

)
(1c)

dfic = 2 ·
√

Ad,fic

π
(1d)

with Eb and Et being the moduli of elasticity of the board and the timber. ED is the modulus
of elasticity of the diagonal with the fictive cross-section of the diagonal (Ad,fic) and Ld is the
length of the diagonal. The horizontal stiffness of the panel is kp, Dp is the panel capacity,
H is the height of the panel, and GA is the shear stiffness of the panel. The geometrical
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characteristics in Equation (1c) are schematically presented in Figure 7. However, it is
important to point out that the mathematical model developed by [20] can be used only
for sheets that are mechanically fastened to the timber frame by staples or nails. The
effective stiffness (EI)eff is calculated using the Gamma method following the Eurocode
5 [36] expressions. The stiffness coefficient of fasteners γy is defined in accordance with
Eurocode 5 [36].
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3.2. Mathematical Modelling of DSF Timber Wall Elements

In case of timber–glass wall elements, where the glass pane is continuously bonded to
the timber frame, it is not possible to determine the gamma coefficient and consequently
the effective stiffness (EI)eff in Equations (1b) and (1c) directly with the known expressions
from the Eurocodes, as it is numerically performed for the conventional sheathing boards
(OSB or FPB) in Section 3.1. The diameter of the fictive diagonal (dfic) can be determined
using Equation (2):

dfic =

√
4·Fcr·Ld

wcr· (cosα)2·π·ED
(2)

in two alternative approaches:

• By using the experimental results from [37] with the measured values for force forming
the first crack in the glass pane (Fcr) and the corresponding horizontal displacement
(wcr) at the top of the wall element. However, this procedure is very expensive and
also time-consuming;

• By using the numerical finite element method (FEM) approach, where the flexibility of
the bonding line is simulated with elastic spring elements. This approach is briefly
described below.

Certain developed mathematical finite element (FE) models with spring elements
simulate the flexibility of the bonding line between the glass pane and the timber frame [24].
The model is based on an extensive numerical parametric study performed only for single-
skin façade (SSF) elements and presented in [15]. The adhesive bonding of the glazing
panes to the timber frame was modelled using elastic linear link elements (springs) as
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schematically presented in Figure 8 and introduced by Kreuzinger and Niedermaier [38].
In the computational model, the timber frame was modelled with one-dimensional finite
elements (beams and studs) and the glazing panels with two-dimensional finite elements
of the “composite shell” type, which allows the simulation of multilayer shells. The
timber material was considered as an isotropic elastic material (with the modulus of
elasticity E0,mean) and the elements of the timber frame were modelled as the simple plane
stress elements. As glass is a very brittle material, it was therefore modelled as acting
linearly elastic in tension and compression; in reality, the adhesive bonding is provided
continuously over the whole perimeter, and the stiffness properties of discrete spring
elements were defined based on the spacing of the springs (la) in the computational model
using Equations (3) and (4) for the bonding line of the inner and outer glass panes (see
Figure 5) separately:

K1 =
Ea·Aa

ta
=

Ea·(wa·la)
ta

(3)

K2 =
Ga·Aa

ta
=

Ga·(wa·la)
ta

(4)

where K1 is stiffness in the direction normal to the connected plane, while K2 is the shear
stiffness in the two perpendicular directions in the connected plane. Ea and Ga are the
modulus of elasticity and the shear modulus of the adhesive material, respectively, ta and
wa designate the thickness and the width of the adhesive layer, respectively, and la is the
impact length for a single spring element and is equal to the spacing between the springs.
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With the presented FE model force forming the first crack in the glass pane (Fcr), the
corresponding horizontal displacement (wcr) at the top of the wall element at this force can
be calculated. The diameter of the fictive diagonal (dfic) can be determined now using the
expression in Equation (2).

The calculated values of the diameter of the fictive diagonal element (dfic), considering
various values for the width (wa) and the thickness (ta) of the adhesive in the bonding
line, are presented in Tables 1 and 2. The diameter of the fictive diagonal (dfic) was first
determined for different widths of the adhesive layer, considering a constant adhesive
thickness of ta = 7 mm (Table 1), and also for different adhesive thicknesses, considering a
constant (experimental) width of the adhesive layer of wa = 28 mm (Table 2). Both tables
present the racking stiffness (R) of the DSF wall element calculated with the programme
SAP 2000 [21] using the spring mathematical model (Figure 8) and the values for fictive
diagonal diameters subsequently obtained by Equation (2).
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Table 1. Fictive diagonal diameter and stiffness at different widths of the adhesive layer wa

(Ea = 1.083 MPa).

Width of the Adhesive Layer
wa (mm)

Racking Stiffness
R (N/mm)

Diameter of the Fictive
Diagonal
dfic (mm)

24 792 8.194
28 * 857 8.521
exp. 909
32 917 8.817
36 976 9.092

* Additional experimental study performed on DSF elements [37].

Table 2. Fictive diagonal diameter and stiffness at different adhesive thicknesses ta (Ea = 1.083 MPa).

Adhesive Thickness
ta (mm)

Racking Stiffness
R (N/mm)

Diameter of the Fictive
Diagonal
dfic (mm)

3 1563 11.506
5 1080 9.566

7 * 857 8.521
exp. 909

9 765 8.052
* Additional experimental study performed on DSF elements [37].

A comparison of the numerical and experimental results for the analysed DSF elements
is very briefly presented in Figure 9. However, a deep analysis can be found in [19].
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The results show that the racking stiffness (R) increases with the increasing width
of the adhesive layer (wa) or the decreasing adhesive thickness (ta). In the opposite case,
stiffness decreases. This was expected, as a higher thickness or lower effective width of
the adhesive results in the higher yield strength of the joint between the timber frame and
the glass. Similar conclusions were obtained for SSF elements in the parametric numerical
study in [16] and will not be further analysed in this paper.

However, in the current form, there is no further developed possible mathematical
analytical or semi-analytical correlation between the spring stiffness (K1 in Equation (3) and
K2 in Equation (4)) and the effective bending stiffness (EIeff in Equation (1c)) to follow the
developed expressions from Equations (1a–1d) to analytically determine the needed value
of the fictive diagonal parameter (dfic), as it can be very simply analytically performed for
conventional FPB or OSB sheathing boards. The DSF modelling presented here is therefore
an extension of the previously developed mathematical models of this type by using spring
elements (schematically presented in Figure 8) to simulate the bonding line [19]. However,
at this point, it is of the utmost importance to point out that using the described FEM
procedure with spring elements to determine the racking stiffness of DSF elements is very
time consuming. Moreover, the calculation time is too lengthy to be implemented into
the whole structural building model for the practical engineering implementation for the
seismic analysis of the whole structure.

4. Special Numerical Study on Selected Three-Storey Timber-Framed Building

The seismic resistance of a three-storey prefabricated building in Ljubljana (LJ), with a
constant floor plan in each storey as shown in Figure 10, has been analysed. The points
ABCD are the corner points on the top storey of the building, where the racking stiffnesses
(R) and displacements (U) were calculated. The side view of the building is shown in
Figure 11, where the marks 1–8 and A–G are the axes where the load-bearing wall elements
are located. The aim of our study is to compare the seismic resistance of a three-storey
building, where DSF elements will be considered as load-bearing and non-load-bearing
elements, and to assess a possible contribution of the load-bearing DSF elements to the over-
all seismic resistance of the chosen timber building. Therefore, two alternative structural
analyses were performed:

(a) The DSF elements are considered as non-resisting structural wall elements;
(b) The DSF elements are considered as horizontal-load-resisting structural wall elements.

The analyses will be focused primarily on the following two items:

(a) An increase in the overall racking stiffness of the building if the DSF elements are
considered as racking resisting;

(b) A decrease in the distortional effect in the first storey if the DSF elements are consid-
ered as racking resisting.

The DSF elements are primarily positioned on the south façade (direction X) to in-
crease solar gains through the transparent areas. The seismic analysis of the building
was performed using a 3D mathematical model and a modal analysis of the structure by
using the commercial finite element model computer programme SAP 2000 Nonlinear v
23.0.0 [21]. Therefore, in alternative (a), only solid wall elements without any openings and
DSF wall elements were considered as load-bearing elements, and in the alternative (b),
DSF elements with ta = 7 mm and wa = 28 mm, which are marked in red on the floor plan
(Figure 10), were taken into account in the calculation, using fictive diagonal elements to
simulate the racking stiffness of such transparent elements.

Since the length of the wall elements is not ideal (multiples of 1.25 m), we made the
assumption for all wall elements that each wall is a multiple of 1.25 m. The principle is
that for each wall, the number of full wall elements (1.25 m long) is determined, and the
remaining length is considered a full element if the length of the remaining part of the wall
is more than half the length of the full wall, i.e., 0.625 m. All wall elements (external and
internal) consist of a timber frame and two 2.50 m high sheathing boards. Fibre–plaster
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boards (FPB) are generally used as sheathing boards. Where the wall elements must be
reinforced, OSB sheathing boards were used instead of fibre–plaster boards.
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The structure was modelled using the previously described model with a fictive steel
diagonal with a circular cross-section, where the stiffness of the wall element is simulated
by the fictive diameter of the diagonal (dfic). Table 3 shows the fictive diagonal diameters
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and the racking stiffness of each resisting wall element, the conventional sheathing boards
(with FPB or OSB sheathing boards for the external and internal wall timber-framed wall
elements) and the load-bearing DSF elements. Both values for the DSF element were
taken from Tables 1 and 2 by using Equations (2)–(4), while the values for the OSB or FPB
timber-framed wall elements were calculated according to Equations (1a)–(1d).

Table 3. Diameter of the fictive diagonals and load-bearing capacities of the wall elements.

Timber-Framed Wall
Elements

Racking Stiffness (R)
of the Resisting Wall

Elements (N/mm)

Diameter of the Fictive
Diagonal
dfic (mm)

DSF 857 8.52
OSB—external wall 2800 16.90
OSB—internal wall 2482 15.93
FPB—external wall 4192 20.70
FPB—internal wall 3962 20.10

The supports are also simulated as fully rigid. At the same time, the axial stiffness of
the frame in the calculation model should be high enough so that the influence of the frame
ductility can be eliminated and only the ductility of the diagonals can be considered [20].
The material used for the diagonals was steel with a modulus of elasticity of E = 210 GPa.
The surface load subjected to the floor slabs was 2 kN/m2. A computational model has
been carried out for a three-storey timber building with identical floor plan dimensions.
Figure 11 shows the 3D model for the three-storey building, while Figure 12 shows the
model of the wall in Axis 1 using a load-bearing and non-load-bearing DSF element.
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Figure 12. View of Axis 1 of the three-storey wall model using load-bearing (a) and non-load-bearing
DSF elements (b).

5. Discussion of Results

The numerical results for the three-storey prefabricated building have been compared,
considering the DSF elements as load-bearing (alternative (b)) and non-load-bearing (al-
ternative (a)). In the case of the load-bearing DSF elements, the thickness of the fictive
diagonal was 8.52 mm. The comparison was performed for the location in Ljubljana, where
the design ground acceleration ag is 0.25 g. First, the oscillation times of the structure were
calculated. Table 4 shows the oscillation times (the first three oscillation modes) of the
structure for the two analysed alternatives with resisting and non-resisting DSF elements.
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Table 4. Oscillation times of the three-storey building considering load-bearing and non-load-bearing
DSF wall elements.

DSF Element Non-Load-Bearing DSF
Elements (a) Load-Bearing DSF Elements (b)

Oscillation Mode Oscillation Times
T [s]

Oscillation Times
T [s]

1. 0.479 0.438
2. 0.367 0.363
3. 0.308 0.303

As expected, the oscillation times are higher when considering non-load-bearing DSF
elements, because the racking stiffness is in this case smaller and the mass is supposed to
be unchanged. The calculated horizontal (racking) stiffnesses (R) and displacements of
the structure (at the resultant force FH = 376 kN for non-load-bearing DSF elements and
FH = 386 kN for load-bearing DSF elements) in both global orthogonal directions of the
earthquake action (directions X and Y) for the individual selected control points (A–D),
considering both load-bearing and non-load-bearing DSF elements, are shown in Table 5.

Table 5. Racking stiffnesses (R) and displacements (U) of the corner points on the top storey of the
three-storey building.

DSF Element Load-Bearing DSF Elements Non-Load-Bearing DSF Elements

Earthquake Direction X Direction Y Direction X Direction Y

Location LJ LJ

Point Displacement
(mm)

A
Ux
Uy
UR

10.25 7.96 9.35 8.51
1.09 6.37 2.31 6.89

10.31 10.20 9.63 10.95

B
Ux
Uy
UR

10.25 7.95 9.35 8.51
7.87 10.90 11.13 10.44

12.92 13.49 14.54 13.47

C
Ux
Uy
UR

17.35 6.59 21.64 7.56
1.09 6.38 2.32 6.90

17.38 9.17 21.76 10.24

D
Ux
Uy
UR

17.35 6.59 21.64 7.56
7.88 10.91 11.14 10.45

19.06 12.75 24.34 12.90
R (N/mm) 15,198 18,859 11,314 18,953

The allowed value of the horizontal displacements for a multi-storey building, accord-
ing to [22] is H/500, which, in our case, amounts to 15 mm. For Ljubljana, the values of
horizontal displacements exceed the prescribed Eurocode limits by about 21% when DSF
are considered as resisting and by about 38% when DSF are considered as non-resisting.
These values are marked in red in the table. The overall racking stiffness (R) of the whole
building also essentially increases if load-bearing DSF elements are used, i.e., by 34% in
the X direction, while there is almost no influence for the Y direction because almost all
load-bearing DSF elements are placed in the X direction (south face) of the building façade
only. Therefore, the use of load-bearing DSF elements is very important in this case.

Table 6 shows acting horizontal forces (Fx and Fy, respectively) due to seismic action
in two global perpendicular directions (directions X and Y) and the resulting force (FR) in
the external walls of the building façade (axes 1, 8, A, G), which are shown in Figure 11.
The horizontal force acting on the corner timber-framed wall element 1 in Axis 1 with the
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conventional OSB sheathing boards (F1 marked in Figure 12b) is particularly controlled to
assess the influence of the DSF load-bearing elements in decreasing the distortion of the
first floor.

Table 6. Horizontal forces in the exterior walls of the building.

DSF Element Load-Bearing DSF Elements Non-Load-Bearing DSF Elements

Earthquake Direction X Direction Y Direction X Direction Y

Location LJ LJ

Axis Force
(kN)

1
Fx 52.82 21.67 30.77 11.55
Fy 126.01 64.38 130.11 58.53
FR 136.63 67.93 133.70 59.66

8
Fx 43.78 43.62 39.44 45.94
Fy 80.13 119.42 117.79 120.68
FR 91.31 127.14 124.22 129.13

A
Fx 13.68 76.43 31.71 83.51
Fy 161.29 138.69 183.43 147.10
FR 161.87 158.36 186.15 169.15

G
Fx 28.80 47.96 42.92 47.38
Fy 130.93 128.20 131.08 125.20
FR 134.06 136.88 137.93 133.87

Axis 1: F1 (kN) 20.20 24.76 24.56 24.68

It is evident from the presented results that the force F1 decreased notably (by almost
18%) when the load-bearing DSF elements were used for seismic excitation in the X direction.
On the other hand, there is practically no influence for seismic excitation in the Y direction,
as similar results were observed for the overall racking stiffness of the building in Table 5.
Consequently, it can be concluded that the distortion effect on the building can be essentially
decreased by using load-bearing DSF elements.

6. Conclusions

Based on the computational analyses performed, the use of the developed DSF ele-
ments as load-bearing structural elements to increase the racking load-bearing capacity
of the whole structure proved to be very reasonable, since the racking stiffness of the
entire building could be increased by up to 35% with the given fixed installation of the
DSF elements. It should be noted that the influence of the stiffness of the DSF elements
on the overall racking stiffness of the whole building depends on the floor layout of the
load-bearing DSF elements on each individual floor. Additionally, as a secondary goal of
the study, it is important to point out that by using the DSF elements as racking resistant,
the distortion on the first floor essentially decreased because the horizontal action in the
checked corner timber-framed wall elements with an OSB sheathing board in Axis 1 was
lower by almost 18%.

The development of such racking-resistant timber DSF elements can open many new
perspectives in designing contemporary multi-storey timber buildings located in seismic
areas with strong winds and with a strong asymmetrical position of the transparent glass
areas. On the other hand, this decreases the energy demand for heating and provides
better daylight, contributing to better living comfort in the building. However, this opens
many structural problems, especially for mid- and high-rise prefabricated timber buildings,
which can be solved by the developed lateral resistant DSF elements. The results of the
study can also have important socioeconomic effects, as they can significantly contribute to
the additional expansion of multi-storey timber buildings throughout Europe, resulting in
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the better use of forested areas, and thus significantly contributing to the reduction of the
environmental impacts of buildings.

However, there are still some problems with the mathematical modelling of resisting
DSF elements using a simplified fictive diagonal model, which is only acceptable for a
practical and rapid engineering static and dynamical analysis of multi-storey prefabricated
timber buildings. In the current stage, the fictive diagonal model can be widely used only
for conventional timber-framed wall elements with OSB or FPB boards. However, for
load-bearing DSF elements, the effective bending stiffness of the composite wall elements
still cannot be calculated in a semi-analytical way through Equation (1c) using the Gamma
method. Therefore, the results of experimental tests or the FEM model with spring elements
have to be used first to determine the diameter of the fictive diagonal using Equation (2).
However, the experimental approach is very expensive and the FEM approach with springs
presented in this paper is still very time consuming. Therefore, it is of the utmost impor-
tance for further research to develop a semi-analytical approach to determine the fictive
diagonal diameter.
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