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Abstract: The ever-present environmental crises are current research hotspots. Nature-based solutions
have been shown to have multiple co-benefits toward solving these crises. Plant-based coagulants are
known to be a cost-effective and environmentally friendly approach for coagulation and flocculation
processes for drinking-water treatment. In this study, a natural coagulant was extracted from Annona
diversifolia seed, and its effectiveness was investigated for turbidity reduction using jar test in kaolin
suspension, river water, and evaluation of factors for sludge dewatering. The characterisation studies
of Annona diversifolia seed extract were carried out using techniques including Fourier-transform
infrared spectroscopy (FTIR), zeta potential analyser, and transmission electron microscopy (TEM).
Response surface methodology (RSM) was also performed for the optimisation study. The results
from FTIR showed that Annona diversifolia seed extract contains carboxyl and hydroxyl functional
groups. The charge density was found to be negative. A web-like structure surface morphology
was observed from TEM. The optimum treatment settings were found to be at pH 3 and a dosage
of 25 mg/L for water treatment, and 50 mg/L for sludge dewatering, which were comparable to
the metal–salts coagulants. Annona diversifolia seed extract has been shown to be a good natural
coagulant. Further research can be conducted to modify and enhance its performance.

Keywords: Annona diversifolia seed extract; natural coagulant-aid; water treatment; sludge dewatering

1. Introduction

Nature-based solutions (NBS) are among the fundamental pillars of solving environ-
mental crises and climate change [1]. They are regarded as low-cost solutions compared
to conventional methods. The use of NBS is known to be beneficial in improving human,
social, and economic health in a highly effective manner [2,3]. As diverse as NBS could
be, within the context of this article, the use of NBS can be defined as a means of using
nature-based materials in aiding water and wastewater treatment.
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According to the European Union (EU) environment, multiple benefits can be achieved
from the use of NBS. One of the promises of NBS is its promotion towards delivering
multiple sustainability goals synergistically [4,5]. From the 2022 Sustainable Development
Goals (SDG) report, one can observe that meeting clean water and environment to achieve
2030 goals will require a quadruple increase in the rate of progress. Moreover, the report
indicated that despite the increase in safely managed clean water supply, only 81% of
world coverage will be achieved by 2030 [6]. This means that approximately 1.6 billion
people will be without a safely managed water supply. Furthermore, agricultural and
untreated wastewater have been identified to be the two biggest threats to environmental
water quality worldwide. Their discharge introduces excess pollutants into waterbodies
including groundwater, which upsets the ecosystems’ functionality. With an integrated
monitoring system and the use of NBS, water quality issues will be minimised, and a clean
water supply could be achieved worldwide, thus fulfilling SDG 6 [7,8].

The general assumption is that environmental pollution remediation, including that of
water and wastewater, requires technological solutions stands; however, researchers have
shown that NBS and technology can be powerful allies [4,9,10]. Notwithstanding, this needs
science-based proof as evidence of NBS performance efficiencies. In view of sustainable water
and wastewater treatment, the use of nature-based materials could contribute tremendously
to aiding the coagulation and flocculation processes, thus minimising the use of chemicals
and the production of toxic sludges from water and wastewater treatment plants.

The coagulation and flocculation process (CFP) has been identified as the most efficient
and reliable method for water and wastewater treatment and it requires low energy and
time consumption during operation [11,12]. The CFP is highly effective in the removal of
suspended solids from wastewater and in sludge dewatering [13]. The process is achieved
through the addition of coagulants into the wastewater during the treatment. These co-
agulants can be chemical-based or nature-based. The conventional chemicals commonly
used alongside their aids include aluminium salts and ferric salts, and synthetic polymers,
respectively [14]. Despite their wide applicability, they have exhibited some shortcomings
such as ineffectiveness in low-temperature waters, production of large quantities of sludge,
affecting the pH of treated water, high procurement costs, and also harmful effects on
human health due to the presence of the chemical residuals in treated water [15]. The appli-
cation of synthetic polymers such as polyacrylamide derivatives and polyethyleneimines
has also been reported to pose some environmental problems. Many of these chemicals
are expensive and non-biodegradable and their residual monomers are neurotoxic and
carcinogenic [16]. Therefore, it is desirable to replace these chemical coagulants and their
aids with natural alternatives which can be extracted from either plants, microorganisms,
or animal waste [17].

Plant-based natural coagulants are found to be the most desirable of all-natural coagu-
lants [18,19]. The use of plant-based natural coagulants dates back centuries in traditional
wastewater treatment. Various plant species have been identified to be extracted for produc-
ing plant-based coagulants. Nirmali seeds, Moringa oleifera seeds, and opuntia ficus-indica
cactus are considered the most common natural coagulants [20–23]. The seeds of Feronia
limonia, Carica papaya, Prunus armeniaca, Persea americana, Mangifera indica, and the peels
of Citrus sinensis have been applied for treating turbid synthetic water and wastewater. A
turbidity reduction of more than 80% has been reported to be achieved using fruit waste
coagulants [21,24–28]. The use of plant-based coagulants has been found to produce less
voluminous sludge, which is the most important step to reduce the overall cost of a sewage
treatment plant operation [29,30]. Another tropical fruit tree is Annona diversifolia: it has
fruits of different shapes and contains a lot of seeds.

Annona diversifolia seed extract has been found to contain polysaccharides that are
capable of reducing chemical oxygen demand (COD) and turbidity in wastewater [31].
The seed extracts have been shown to possess functional groups of carboxyl and hydroxyl
groups that are highly associated with the flocculating ability of plant materials [18,19,23].
Since few studies have focused on the use of Annona diversifolia seed extract as a coagulant
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in wastewater treatment, the objective of this study is to evaluate the capability of Annona
diversifolia seed extract for water treatment and sludge dewatering.

2. Materials and Methods
2.1. Materials

Annona diversifolia seeds were collected from a local market in Perak, Malaysia. River
water samples were collected from the Parit Water Treatment plant in Perak, Malaysia, and
stored in a cold room at 4 ◦C. A 500 mL BEHR Soxhlet Extractor was used for extraction at
the Environmental Engineering laboratory Universiti Teknologi PETRONAS. An activated
sludge sample was collected from the Sewage Treatment Plant (STP) located at Universiti
Teknologi PETRONAS. Sigma Aldrich supplied analytical-reagent-grade sodium hydroxide
(NaOH), hydrochloride acid (HCl) and kaolin powder with 100% purity, and pH 6–7.

2.2. Methods
2.2.1. Extraction and Characterisation of Annona diversifolia Seed

The seeds of Annona diversifolia were washed with tap water. The seeds were kept at
room temperature to dry. The seed kernels were ground to a fine powder using an ordinary
blender. The seed powder was then extracted in a Soxhlet extractor in the presence of hexane
(60–80 ◦C for 6 h) to remove the fat. The defatted powder was dried in an oven overnight
at 50 ◦C. The final products were stored in an air-tight container at room temperature until
they were used.

Fourier-transform infrared spectroscopy (FTIR, Spectrum one, Perkin Elmer-Waltham,
MA, USA) was used to determine the functional groups of Annona diversifolia seed extract
(ADE). The operation scanning ranged from 4000 cm−1 to 400 cm−1. The charge density
and particle size of the ADE were determined using a Zeta Potential Analyser (Zetasizer
Nano, S90, Malvern, UK). Transmission electron microscopy (TEM) of the ADE and formed
flocs were determined to identify the morphology, size, shape, and microstructure of the
materials using Zeiss Libra 200 FE.

2.2.2. Coagulation and Flocculation Assay in Kaolin Suspension and River Water

Synthetic turbid water (kaolin suspension) for the jar test was prepared by adding
kaolin to distilled water with a ratio of 0.15 g: 1 L. The measurement of pH and turbidity
of the turbid water was performed using a portable pH meter (HACH Sension 1) and a
turbidity meter (HACH 2100Q), respectively. The initial turbidity of kaolin suspension
was at approximately 200 NTU. Analytical-reagent-grade sodium hydroxide (NaOH), and
hydrochloride acid (HCl) were used to adjust the pH of the suspension.

Jar test apparatus was used to evaluate the efficiency of coagulants in kaolin suspen-
sion and river water according to the standard method jar test ASTM D2035-19 [32]. The
jar test apparatus accommodates a series of six beakers with six spindle steel paddles. The
working volume was 1 L. The pH and ADE coagulant dosage were adjusted for each beaker
based on the experimental designs. The samples were then stirred with rapid mixing
(150 rpm) for 3 min followed by slow mixing (25 rpm) for 15 min. Lastly, the samples were
left standing still for 30 min. The supernatant was withdrawn using a pipette for final
measurements. After the coagulation–flocculation process, the initial and final turbidities
were measured, and the percentage of turbidity reduction was calculated according to
Equation (1) [33].

Turbidityreduction(%) =
InitialTurbidity − FinalTurbidity

InitialTurbidity
× 100 (1)

A factorial design was conducted to determine the influencing factors using Design
Expert 7 software. The range for kaolin suspension was at pH 3 and 10, whilst the dosage
was between 4 mg/L and 20 mg/L. On the other hand, the range for river water was
between pH 3 and 9, whilst the dosage was between 0.1 mg/L and 20 mg/L.
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2.2.3. Preparation and Characterisation of Activated Sludge

The pH, moisture content, total solids, total suspended solids, and volatile suspended
solids of the bio-solid were measured following the APHA method. The preliminary analy-
sis of biosolids showed a pH of 6.1, moisture content of 98.5%, total solid of 14,600 mg/L,
total suspended solid of 31,240 mg/L, and volatile suspended solid of 10,813 mg/L.

2.2.4. Sludge Dewaterability Assay in Sewage Sludge

The time to filter (TTF) method (APHA method 2710H) was applied to measure sludge
dewaterability as a simple, rapid, and inexpensive technique. In this method, a Buchner
funnel with a Whatman filter paper was placed above a graduated cylinder. A total of
200 mL of sludge was poured into the funnel and vacuumed into the cylinder using a
vacuum pump providing a constant vacuum of 51 kPa. The time required for collecting
100 mL of sample in the graduated cylinder was recorded using a stopwatch. The recorded
time shows the efficiency of coagulants in the dewatering of sludge.

2.2.5. Response Surface Methodology

Response surface methodology (RSM) was employed to conduct optimisation [34–37].
Central composite design (CCD) was applied to build a second-order (quadratic) model to
evaluate the combined impacts of independent variables on studied responses. The fitness
of the quadratic model was expressed by the coefficient of determination (R2). Analysis of
variance (ANOVA) was used to analyse the statistical significance of the model at p < 0.10.

3. Results
3.1. Extraction and Characteristics of Annona diversifolia Seed Extract (ADE)

The results of FTIR analysis for Annona diversifolia seed extract (ADE) are presented
in Figure 1.
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Figure 1. Fourier-transform infrared spectroscopy (FTIR) spectra of Annona diversifolia seed extract (ADE).

The spectrum shows the presence of hydroxyl (-OH) group at approximately 3423 cm−1,
medium peaks of amine group including N-H at 1648 cm−1 and C-N at 1074 cm−1, and
also a weaker symmetric stretching of carboxyl (COO¯) group at 1450 cm−1. ADE can un-
dergo negative charge-assisted H-bond interaction with their oxygen-containing functional
groups. Table 1 presents the particle size and zeta potential of ADE. The charge was found
to be negative.
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Table 1. Particle size (nm) and zeta potential (mV) of ADE coagulant.

Record No. Size (nm) Zeta Potential (mV)

Average 193.8 −27.0

The images from the transmission electron microscope (TEM) analysis of ADE and
formed flocs are shown in Figure 2.
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Figure 2. Transmission electron microscope (TEM) analysis of (a) Annona diversifolia seed extract
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The coagulant image showed a web-like structure at a magnification of 25,000, while
the flocs aggregate was shown under a magnification of 40,000. ADE may function as a
web network to trap the particles by adsorbing them on its surface.

3.2. Coagulation and Flocculation Performance of Annona diversifolia Seed Extract (ADE)

From the jar test, results for the performance of Annona Diversifolia seed extract (ADE) and
FeCl3 using kaolin suspension and river water are presented in Figures 3 and 4, respectively.

3.3. Sludge Dewatering at Varying pH and Annona diversifolia Seed Extract (ADE)

The variation in the time to filter (TTF) with different pH values and Annona diversifolia
seed extract (ADE) coagulant dosages is presented in Figure 5. The results revealed that
TTF significantly decreased with decreasing pH. Rapid dewaterability occurred (6 min)
with an application of 50 mg/L of the coagulant at pH 3. In acidic pH, the concentration
of positive charges increases in the sludge, which attracts negatively charged molecules,
i.e., sewage sludge particles and ADE coagulant. A polymer bridge is formed when two
or more particles are adsorbed on the surface of the polymer. The formed polymer bridge
adsorbs particles from sludge and increases the floc sizes, which improves the sludge
dewatering [38,39].

3.4. Screening and Optimisation of Process Factors Using Factorial Design and Response
Surface Methodology
3.4.1. Screening Process

The outcomes of the screening process of the obtained results from the coagulation
tests with kaolin synthetic wastewater using ADE or FeCl3, and with the river water using
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ADE or alum were stored in the software. After storing the range of factors in the software,
nine conditions were developed by the software, and the experiments were conducted
based on the factorial design. In Table 2, ANOVA shows that pH, coagulant dosage and
their interactions are significant (p < 0.10) in the coagulation and flocculation processes.
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(20 mg/L) (a,b), and in the presence of a varying dosages of FeCl3 and ADE at fixed pH of 6.5 and
4.0, respectively (c,d).

Sustainability 2023, 15, x FOR PEER REVIEW 6 of 14 
 

 

The coagulant image showed a web-like structure at a magnification of 25,000, while 
the flocs aggregate was shown under a magnification of 40,000. ADE may function as a 
web network to trap the particles by adsorbing them on its surface. 

3.2. Coagulation and Flocculation Performance of Annona diversifolia Seed Extract (ADE) 
From the jar test, results for the performance of Annona Diversifolia seed extract (ADE) 

and FeCl3 using kaolin suspension and river water are presented in Figures 3 and 4, re-
spectively. 

 
Figure 3. The amount of turbidity reduction percentage in kaolin synthetic wastewater supplied 
with varying pH and fixed coagulant dosage of FeCl3 (8 mg/L) and Annona diversifolia seed extract 
(ADE) (20 mg/L) (a,b), and in the presence of a varying dosages of FeCl3 and ADE at fixed pH of 6.5 
and 4.0, respectively (c,d). 

 
Figure 4. The amount of turbidity reduction percentage in river water supplied with varying pH 
and fixed coagulant dosage of Alum (30 mg/L) and Annona diversifolia seed extract (ADE) (25 mg/L) 
(a,b), and in the presence of a varying dosages of Alum and ADE at fixed pH of 7 and 3, respectively 
(c,d). 

Figure 4. The amount of turbidity reduction percentage in river water supplied with varying pH and
fixed coagulant dosage of Alum (30 mg/L) and Annona diversifolia seed extract (ADE) (25 mg/L) (a,b),
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Annona diversifolia seed extract (ADE) coagulant dosages and pH.

Table 2. Analysis of variance (ANOVA) of data obtained from the screening process related to kaolin
synthetic wastewater, and river water experiments.

Wastewater Coagulants Source Sum of
Squares Mean Square F Value p-Value

Kaolin synthetic
wastewater

Annona diversifolia
seed extract

(ADE) coagulant

pH 6821.93 6821.93 723.42 <0.0001

Dosage 80.91 80.91 8.58 0.0428

pH × Dosage 56.18 56.18 5.96 0.0712

FeCl3

pH 4823.3 4823.3 14,483.52 <0.0001

Dosage 11.22 11.22 33.7 0.0044

pH × Dosage 22.56 22.56 67.75 0.0012

River water

ADE coagulant

pH 5061.61 5061.61 2532.05 <0.0001

Dosage 33.35 33.35 16.68 0.0150

pH × Dosage 29.43 29.43 14.72 0.0185

Alum

pH 1274.13 1274.13 7395.71 <0.0001

Dosage 1370.85 1370.85 7957.11 <0.0001

pH × Dosage 1284.86 1284.86 7458.00 <0.0001

3.4.2. Optimisation Process

The relationship between the independent variables and the responses was analysed
using RSM. The central composite design (CCD) matrix and turbidity reduction percentage
related to the application of the experimental coagulants were determined and the ANOVA
results for the model terms and predicted models are presented in Table 3.

The results of coagulant application in kaolin synthetic water showed that pH and
coagulant dosage are significant factors (p < 0.10) in the coagulation process with the
application of ADE; however, pH was found to be the only significantly effective factor
when FeCl3 was applied. This can be due to the chosen experimental range for the FeCl3
dosage. It is presumed that a wider range of FeCl3 coagulant dosages can lead to more
reliable results. On the other hand, the data related to river water showed that pH and
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coagulant dosage are significant factors in coagulation and flocculation processes using
either ADE or alum as coagulants.

Table 3. Analysis of variance (ANOVA) of data obtained from optimisation process related to kaolin
synthetic wastewater, and river water experiments.

Wastewater Coagulants Source Sum of Squares Mean Square F Value p-Value

Annona diversifolia
seed extract (ADE)

coagulant

pH 8317.18 8317.18 458.05 <0.0001
Dosage 93.54 93.54 5.15 0.0575

Kaolin synthetic
wastewater pH × Dosage 30.20 30.20 1.66 0.0382

pH × pH 4360.46 4360.46 240.14 <0.0001
Dosage × Dosage 33.52 33.52 1.85 0.2164

pH 2950.38 2950.38 21.46 0.0012
Dosage 40.75 40.75 0.30 0.5994

FeCl3 pH × Dosage 1051.06 1051.06 7.65 0.0219
pH × pH 832.55 832.55 1.66 0.2386

Dosage × Dosage 1046.13 1046.13 2.09 0.1920

ADE coagulant

pH 7702.73 7702.73 5269.33 <0.0001
Dosage 46.26 46.26 31.65 0.0008

pH × Dosage 29.43 29.43 20.13 0.0028
pH × pH 1933.70 1933.70 1355.60 <0.0001

Dosage × Dosage 0.43 0.43 0.30 0.6032
River water

Alum

pH 3202.12 3202.12 50.34 0.0002
Dosage 657.52 657.52 10.34 0.0148

pH × Dosage 871.43 871.43 13.7 0.0076
pH × pH 884.52 884.52 13.91 0.0074

Dosage × Dosage 357.32 357.32 5.62 0.0496

Significant model terms contributed to developing well-fitted predicted models where
the turbidity reduction percentage as the responses (y) was a function of pH (x1) and
coagulant dosage (x2). Each model was calculated as the sum of the intercept coefficient,
two linear (x1 and x2), two quadratic (x1

2 and x2
2), and one interaction effect (x1x2), as

shown in Table 4. The high values of R2 indicated that the data fitted adequately to the
second-order polynomial models for all the responses in all experiments.

Table 4. The predicted models for the dependent variables.

Wastewater Coagulants Quadratic Equation R2

Kaolin synthetic
wastewater

ADE coagulant y = 6.04 − 37.23x1 − 3.95x2 + 2.75x1x2 + 39.73x2
1 + 3.48x2

2 0.9910

FeCl3 y = 75.80 − 36.37x1 + 9.93x2 + 0.73x1x2 − 17.36x2
1 − 19.46x2

2 0.8658

River water
ADE coagulant y = 36.36 − 35.83x1 − 2.78x2 − 2.71x1x2 + 26.79x2

1 + 0.40x2
2 0.9990

Alum y = 85.41 − 23.10x1 + 10.47x2 − 14.76x1x2 − 17.90x2
1 + 11.37x2

2 0.9723

The influence of independent variables on the turbidity reduction percentage can be
found based on the ANOVA results for model terms (see Table 3) and the response surface
plots. Figure 6a,b presents the contour plots obtained from the application of ADE and
FeCl3, respectively.

The response surface contour plots detected optimal areas where maximum responses
are achieved by proper values of the tested experimental factors. According to the graphs
in Figure 6a,b, ADE was more effective at pH 3 and a dosage of 15 mg/L, while FeCl3
performed best at pH 4 and a dosage of 12 mg/L.

The pH has an important role in the coagulation process: it affects the electrical
potential gradient on the surface of the particle. During the coagulation and flocculation
process, the added dosage of Annona diversifolia seed extract (ADE) coagulant in the water
destabilizes the negative surface of particles and promotes the London–Van der Waals
force of attraction between the particles, which leads to aggregation [11]. At a high pH, the
concentration of H+ decreases. Negatively charged functional groups of ADE (hydroxyl
(OH−) and carboxyl (COO−), and the negatively charged kaolin surface create a repulsive
force that allows the coagulant molecules to be extended and to produce loops and tails
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to promote bridging mechanisms and large open-structure flocs [40]. Figure 7 shows the
schematic diagram of how adsorption and bridging mechanisms occur.
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The anionic coagulant polymer is then attracted to the positive side of destabilized
particles and forms flocs [26,38]. The numerical optimisation tool of design expert software
predicted the optimum values of the independent variables to maximize the coagulants’
turbidity removal ability. The actual and predicted values of turbidity reduction percentage
are listed in Table 5. Based on the data, the actual amounts were found to be in close similarity
and strong agreement with the predicted values for all percentages of turbidity reduction.

Nature-based coagulants are highlighted as good alternatives to conventional chemical
coagulants for water and wastewater treatments. However, several limitations have been
associated with their implementation on a larger scale. In light of plant-based natural
coagulants, major disadvantages have been identified including thermo-sensitivity, pH
sensitivity, a loss of viscosity during storage, and their vulnerability to microbial contamina-
tion [41]. A lack of rigorous investigation into their resilience to the biological environment
has been outlined [42,43]. Even though plant-based coagulants are often associated with
multiple benefits, only the benefits within the focus of the research are considered, resulting
in the side-lining of a co-benefits investigation. However, this may be due to the difficulty
in monetizing the co-benefits and to the high uncertainty of market values [44–46].

Additionally, large knowledge gaps in terms of the long-term effectiveness of plant-
based coagulants as regards environmental impact have been reported [43]. This was
incorporated with inadequate evidence on how their usage will positively affect human
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health due to long-term consumption. Another main problem with the present research
is the lack of investment in nature-based solutions (NBS). Despite research evidence that
proves the benefits of NBS to both humans and the environment, insufficient investments
are being made toward their implementation [47–51]. For example, researchers have
shown how modified plant-based natural coagulants could serve as good alternatives to
chemical-based coagulants [52]. They are capable of working 70% more than conventional
coagulants. Sludges produced from the use of plant-based natural coagulants are regarded
as less voluminous, biodegradable and biocompatible; therefore, they reduce water waste
as sludge and can be used for agricultural soil amendments [24]. Notwithstanding, research
on nature-based solutions is strongly underfunded, and this lack of financing has been
identified as an obstacle to the application of nature-based solutions worldwide [49,53–55].

Table 5. The actual and predicted values of turbidity reduction percentage for kaolin synthetic
wastewater and river water.

Wastewater Coagulants pH Dosage (mg/L) Predicted Percentage of
Turbidity Reduction (%)

Actual Percentage of
Turbidity Reduction (%)

Kaolin
synthetic

wastewater

Annona
diversifolia seed
extract (ADE)

1 3.89 33.79 44.48 45.34
2 4.11 27.38 38.89 37.87
3 4.38 25.67 31.52 32.89

FeCl3
1 4.34 13.50 83.16 83.90
2 3.18 11.21 92.27 91.54
3 4.37 12.56 81.79 80.98

River water

ADE
1 3.09 16.61 95.62 98.40
2 3.47 16.52 84.94 85.81
3 3.19 11.95 92.72 92.88

Alum
1 3.12 21.63 93.63 97.95
2 3.57 21.63 94.18 98.40
3 4.24 29.87 96.37 98.83

The future perspectives on the use of nature-based solutions will first require a sys-
temic state-of-the-art change in the way we conduct research and run academic and indus-
trial institutions. Research to enhance the efficiency of promising plant-based materials
should be encouraged. Modification using grafting copolymerisation for example has
shown to be highly effective, particularly in altering and enhancing the coagulation and
flocculation potentials of natural materials. More investigations need to be conducted on
other co-benefits of plant-based coagulants, including their potential as disinfectants, their
biodegradability and biocompatibility, and their positive benefits to human health. Pilot
studies need to be designed and run to enable the scaling up of positive research, thus
actualising plant-based natural coagulants as an alternative to chemical coagulants.

4. Conclusions

In this study, the use of nature-based solutions and their benefits were introduced, and
a natural coagulant was extracted from the Annona diversifolia seed extract (ADE), with its
effectiveness being evaluated for water treatment and sludge dewatering. Three experiments
were conducted to determine the optimum coagulant dosage and pH for turbidity reduction in
kaolin synthetic wastewater and river water, and for time-to-filter values in sludge dewatering.
FeCl3 and alum coagulants were used with similar synthetic wastewater and river water for
comparison purposes. The optimisation of independent variables was conducted to determine
the optimum conditions for the best treatment performance.

It was concluded that the Annona diversifolia seed extract (ADE) coagulant works
well in acidic conditions (pH 3) with a concentration of 25 mg/L for water treatment and
50 mg/L for sludge dewatering. The coagulation capability of ADE was comparable to the
metal–salts coagulants.
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Further research can be conducted to determine ADE coagulant ability for heavy metal
removal from industrial effluents and sludges. Interaction between the surface charge and
the pH of a coagulant could be investigated in future studies. Further modifications can
be conducted to enhance the coagulation and flocculation properties of Annona diversifolia
seed extract. Similarly, research on different plant waste can be conducted to maximize the
possibility of establishing nature-based coagulants readily available for use. This could
be more useful in remote locations where no water treatment plants are in existence. This
research could contribute towards achieving Sustainable Development Goal 6 (SDG 6).
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