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Abstract: Many studies are exploring the generated factors of carbon emissions to make a contribution
to environmentally sustainable development as carbon emissions have increased by more than
5% in the past ten years. However, few investigations have considered the effects of industrial
intelligence on carbon emissions. In order to discover whether the development of industrial robots
will influence the environment, this paper employs the IFR data of industrial robots from 2006 to 2021
to investigate their impacts on carbon emissions in the three largest economies by using the classical
linear regression model, OLS (Ordinary Least Squares), from the factors of robot installations and
robot density, which are measured by ownership per thousand manufacturing people, respectively.
The positive correlation coefficients of robot installation and density in the USA are 0.010 and 0.011;
they are 0.185 and 0.204 in China; and 0.156 and 0.142 in Japan. To ensure the reliability of the results,
we also do a robustness test and an endogeneity test by using the two-way fixed effect model, and
they show the same results. The main findings of our study show that industrial intelligence can
have significant positive impacts on carbon emissions in the three economies and this means that
the application of industrial intelligence not only accelerates economic growth, but also causes the
pressure on the environment. Moreover, the verification results also indicate that the impacts of
industrial intelligence on carbon emissions are dominated by driving effects, and the higher the robot
density, the stronger the driving effects on carbon emissions. Based on the findings, corresponding
policy suggestions are proposed to guide governments in trimming their environment protection
policies more efficiently.

Keywords: industrial intelligence; robots; robot density; carbon emissions

1. Introduction

With the rapid development of industrialization and globalization in the past few
decades, the increasing greenhouse gas (GHG) has threatened the climate and environ-
mental quality. In 2018, three quarters of global greenhouse gases were caused by carbon
dioxide and stimulate the global temperature to rise slightly; therefore, the persistent chal-
lenge for every country to maintain the sustainable development of the social–ecological
environment is to reduce carbon emissions, as carbon dioxide is the main component of
GHG [1]. At the end of 2015, the Paris global climate deal was signed by 195 economies
at the United Nations Framework Convention on Climate Change (UNFCCC) to address
climate change, and they reached a consensus that the global temperature growth should be
restricted to no more than 2 °C within this century compared with the last [2,3]. The report
of formerly British Petroleum shows that China is the largest carbon emission producer
worldwide, the USA is the second emitter, and Japan ranked fifth in 2020. As they are
the three largest economies, and accounting for their industrial development levels, their
policies on atmosphere change and industrial structure revolutions will have extraordinary
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influence. To demonstrate the responsibilities and lead the way in environmental protection,
the Chinese government announced their intention to achieve peak carbon emissions and
carbon neutrality before 2030 and 2060, respectively, in the UNFCCC, and Japan has been
aiming for carbon neutrality by the end of 2050 since the United States first proposed the
concept of carbon emissions trading [4,5]. The data of the World Bank also reveals that the
economies in these three countries maintain an upward tendency during this period and
account for more than 40% of the global GDP although they occupy only nearly about 24%
of the world population (World Bank, 2021). It is worth noting that China is the fastest
growing country in terms of GDP among them, the USA is the largest one in economic
aggregate, and Japan maintains a steady growth in total economic volume each year and
still holds an important position in the world economy despite its share decreasing from
about 8.8% in 2006 to 5.1% in 2021.

To realize the steady economic growth and carbon emission reduction dual goals,
upgrading industrial structure and improving production efficiency were taken into con-
sideration by these governments. In the past decade, robotic technologies are applied in
most traditional industries to make the production process more innovative and efficient.
For instance, these advanced robotic technologies not only promote production capacity
and economic growth but also can solve some of the problems of food, the environment,
and health [6]. Referring to the report of International Federation of Robots (IFR) [7–9],
global industrial robot installation increased rapidly from 166 thousand units in 2011 to
571 thousand units in 2021, and this number increased over three times within this ten-year
period. In addition, the report also pointed out that China, Japan, and the United States are
the top three largest markets of industrial robot installations, especially in the automotive,
electronics, and machinery industries [7–11]. Thus, we might find that intelligence manu-
facturing is not only changing traditional industrial production methods and participation
efficiency, but also affecting the social environment and atmosphere quality to some extent.
Figure 1 shows the industrial robots installation rates of the three largest economies and
their shares in the world from 2006 to 2021. It is clear from Figure 1 that there is a rising
trend in the application of the industrial robots in the world and the total installation
quantity is growing almost every year. The robot market was briefly hit by the financial
crisis which occurred in 2008, but after that it entered into a rapid growth period as the
economy and global trade recovered from the crisis. From 2010 to 2021, the intelligent
manufacturing industries began to develop fast because of the new automation and infor-
mation technologies which emerged in the world, and this stimulates the sustained and
rapid growth in the robots installation market.

As industry is the primary user of electric power, the amount of electricity con-
sumption is rising synchronously with the increase in industrial robots adopted by the
manufacturing industries. At present, global electric power is mainly generated from fossil
fuels, especially the coal-fired power which accounts for more than 60% of total energy
consumption used in thermal power generation [5,12]. Given the fact that the depletion
of coal on such a scale can creates more CO2 emissions and the dependence of industrial
production on electricity, it is worth pondering whether the adoption of robots will am-
plify or abate the CO2 pollution. At the same time, the mode of industrial transformation
and the energy consumption structure are usually accompanied by the development of
the economy, changes of supply and demand in the labor market, and the structure of
regional industries [13–15]. Therefore, this paper intends to answer the above question
by employing possible influencing factors—GDP per capita growth rate, employment
ration, industrial structure, and energy consumption structure—to evaluate the impacts of
industrial intelligence on carbon emissions.
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Figure 1. Robot installations from 2006 to 2021: World, the USA, China, Japan, and others. (Source:
IFR, https://www.ifre.com, accessed on 20 October 2021).

Referring to the previous research which investigate the relationships between robot
adoption and social development, most of them focused on production efficiency and
labor markets, and there is hardly any literature that has studied the impacts on carbon
emissions. We can sort them into two categories after reviewing these documents. On one
hand, studies about robot adoptions are organized into the roles of robots in economic
growth, production efficiency, labor market and firm revenue, etc. Fu et al. [16] used the
data of seventy-four countries, including developing and developed economies, to study
the correlations between the labor market and robot adoption with respect to inclusive
growth. They found that robot stocks have positive impacts on both labor productivity
and the employment rate. They also discovered that there is no significant influence of
robots on the employment gender because both male and female laborers can benefit from
it. Cette et al. [17] employed more than forty years of original data of thirty OECD countries
into their study to obtain the conclusion that robot adoption is not the significant source
of recovering productivity although it makes a contribution to productivity growth in a
certain period. Schmidpeter and Winter-Ebmer [18] found that automation increased the
career risks of employees in Austria because of their lower skills and poorer efficiency
compared with robots, and it also showed out that both men and women may suffer from it
strongly over time. The studies of Graetz and Michaels [19] showed that robots can not only
stimulate the growth of the economy and productivity, but can also have some positive
effects on the employment market at the same time. Aside for this, the results in the study
found that the increasing density of industrial robots can improve average wages, albeit
without revealing any significant negative effects on the total employment despite the fac
that the robots severely lower the income of low-skilled labor. From the above literature
review, we can notice that robotics manufacturing certainly has some impacts on different
countries, regions, and groups. On the other hand, the related articles which focused on the
factors which affect carbon emissions can be summed up as the following via the following
list of items: economic development level, trade openness, industrial structure, energy
consumption structure, and technological innovation, etc. Nguyen et al. [3] discovered
that for G6 countries, economic growth, import and export scales, and capital market are
cardinal drivers of carbon emissions, and CO2 emissions have a slightly negative impact
on the stock market and foreign investment. Cao et al. [20] and Zheng et al. [21] carried
out empirical tests in their research from the perspective of the urbanization process, and
both of these studies clarified that the energy systems and energy consumption can affect

https://www.ifre.com
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regional CO2 emissions to change both the economic and the social environment, which
are directly connected with the carbon emission reduction target. To mitigate climate
change, industrial layouts and renewable technological innovations are vital strategies
to realize green growth [1,22]. To balance the interests of economic development and
the green environment, it is meaningful to construct reasonable industrial structures by
expanding the tertiary industry and motivating high-tech industries. Z. Li et al. [13]
analyzed the industrial structure evolutionary trend between China and Japan, which is
based on the input–output mechanism by the integrated evolution model. The findings
revel that the carbon emissions can be curbed by increasing the share of the tertiary industry.
J. Li and Li [23] and Xie et al. [24] pointed out that renewable energy technologies and
clean production technologies must be implemented in order to burn less coal, as it is still
the pillar energy source for power generation in most districts in the world. In short, we
cannot neglect these factors, which are indeed closely related to carbon emissions and have
some impacts on climate change. Compared with the previous studies, this paper makes
three contributions. First of all, this study is one of the few which analyzed the interaction
between industrial intelligence and carbon emissions with respect to robots. In addition,
the results which are verified in this paper can guide governments in trimming their
environmental protection policies, noting the typical research objects are more instructive
for reference and powerful in the economy and industrial systems. Finally, in light of
the diversities in the levels of scientific and technological advancements among different
countries, we verify the correlations between industrial intelligence and total CO2 emissions
through two aspects—total number of installation robots and robot density (number of
robots per thousand people)—to ensure the accuracy of the results.

The remainder of our paper is divided into four parts. Section 2 describes the theoreti-
cal background of our study. Section 3 presents the data sources and the model which is
applied in this research. Section 4 analyzes the empirical results. Finally, Section 5 sets out
the main conclusions and suggestions.

2. Theoretical Background

On the one hand, the scale of industry and the advanced degree of industrialization
are essential to the economic growth and energy consumption structure in the sustain-
able development of the environment. On the other hand, there are various diversities
of development levels among different countries such as populations, employment rate,
science, and technology etc. Hence, this study verifies the impacts of increasing adoption of
industrial robots on carbon emissions separately from the total amount of industrial robot
installations and its density. We will take these factors—economic growth level, labor mar-
ket, industrial structure, energy consumption structure—into our research consideration to
investigate the influence of industrial intelligence on carbon emissions. Figure 2 presents
the design and steps of this study.
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2.1. Economic Growth Level

The real GDP per capita growth rate (GDPPG) in our paper is used to judge the degree
of economic growth. Acheampong et al. [25] employed this variable in their study to
research the relationship between financial market expansion and CO2 emission inten-
sity. In this study, they measured economic growth levels by real GDP per capita index.
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Lan et al. [26] and Zheng et al. [21] used the variable of GDP per capita into their research
to study how to balance economic growth and air pollution. The outcome of their study
shows that the energy consumption quantity will increase with the improvement of eco-
nomic development which will cause the rise of CO2 emissions worldwide. Meanwhile,
Fan et al. [27] also figured out that there exists the connection between labor costs and
robot stocks by analyzing the effects of high costs on the labor market in China. These
results indicate that different patterns of robot adoption can have diverse impacts on firm
productivity, labor productivity, labor incomes, and carbon emissions, which are closely
related to GDP per capita. In any case, an extensive literature has already pointed out the
symbiosis between economic growth and carbon emissions.

2.2. Labor Market

The labor market factor (EMP) is measured by the proportion of employees over the
age of 15 in the total labor force. Ballestar et al. [28] analyzed more than one thousand small
and medium manufacturing companies in Spain and concluded that the robot devices of
enterprises have more excellent performance in improving productivity level, labor pro-
ductivity, and employment rate, and expanding the relevance of multi-factor productivity
components compared with non-robotized enterprises. On the contrary, Acemoglu and
Restrepo [29] came up with the idea that the increasing use of robots in industries from
1990 to 2007 has already had a negative influence on the labor market in the USA. They
estimate that employment rate can be reduced by 0.18% to 0.34% and wages can be reduced
by 0.25% to 0.5% when adding one robot for per thousand employees. Although different
studies reveled opposing views in the previous research, the more flexible movement and
efficient robots have indeed had a non-negligible impact on the labor market.

2.3. Industrial Structure

The industrial structure (INDS) is judged by the percentage of the total output value of
the secondary industry in GDP, owing to the reason that it is the major energy consumption
industry. According to the characteristics of industrial structure, the government could
make a contribution to achieving the goal of reducing carbon emissions by restructuring
the secondary industry or increasing the occupation of the tertiary industry due to the fact
that the former is mainly related to manufacturing production and the latter with service
provision. T. Yang and Wang [14] and Zheng et al. [21] took the same view that properly
adjusting the industrial structures between these two trades can lessen carbon emissions
effectively. Therefore, it is essential to incorporate this variable into our research.

2.4. Energy Consumption Structure

Energy consumption structure (COALP) is measured by the ratio of coal consumption
to total energy consumption. It is well known that coal is still used widely in social
production as a fossil fuel although new energy technologies have been evolving constantly.
Many studies have pointed out that coal is the main cause of GHG. The districts dominated
by coal resources are facing problems and they should plan new energy policies and invest
in new energy technologies to achieve the carbon emission target as coal, as a natural
energy resource, can release more GHG than oil [23]. We find that the energy structure
can be reflected in the carbon emissions; coal consumption occupied 84.1% of the total
energy in China but only 47.2% in the USA because the latter used more natural gas and
nuclear energy [30]. Indubitably, energy consumption structure is one of the contributors
that cannot be ignored in environmental sustainable development. Figure 3 presents
the proportion of coal consumption in the total energy consumption of the three largest
economies from 2006 to 2021. From the chart, two phenomena could be observed: the first,
it shows that the energy consumption structures are changing in the USA and China as the
consumption of coal has been decreasing year by year from 2011, but the circumstances in
Japan are basically unchanged and even rises slightly; the second, the energy consumption
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in China is dominated by coal, and it is meaningful for the government of China to optimize
the energy consumption structure and formulate reasonable policies on climate protection.
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3. Methodology
3.1. Model and Variables

In order to verify the impacts of robot adoption on carbon emissions in the three largest
economies, we employ the amount of industrial robot installation as the independent
variable and incorporate some control variables—GDDPPC, EMP, INDS, COALP—into
our regression model, which we derived from the previous literature (see above). The
dependent variable is carbon emission. The most classical and commonly used method
to select a “best fit” line for a set of data to estimate the unknown parameters is the
OLS technique, which aims to minimize the square distance between the estimated and
observed values. At the same time, referring to the studies of Graetz and Michaels [19,31],
they introduced the OLS model to analyze the effects of industrial robots density on the
labor market in European countries. Meanwhile, some researchers applied OLS or DOLS
models to evaluate the carbon creation factors bearing on environmental pollution and
forecast the effects of carbon emission reduction policies in the USA and other European
economies [1,3,25]. Consequently, we select the OLS regression model in our investigation.
Our regression model equations are as follows:

LN Yct = α0 + α1 × LN robotsct + α2 × controlsct + εct (1)

LN Yct = β0 + β1 × LN ROBOTDct + β2 × controlsct + ε’ct (2)

where Yct is the observed variable of total amount of CO2 emissions in country c in
year t. In order to avoid heteroscedasticity problems, we take the logarithmic forms
of carbon emissions (LNCE), robot installation quantity (LNrobots), and robot density
(LNROBOTD) to replace the aggregate value. controlsct are the control variables, comprising
economic growth, employment rate, industrial structure, and energy consumption structure,
which are derived from the previous research. We define the GDP per capita growth rate
as economic growth (GDPPG), total employees to the total working age (aged over 15)
population as total employment rate (EMP), the percentage size of the secondary industry as

https://www.eia.gov
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industrial structure (INDS), and the ratio of coal consumption to total energy consumption
as energy consumption structure (COALP). Equation (1) is the model for estimating the
impacts of robot installations on carbon emissions; Equation (2) is for evaluating the effects
of robot density on carbon emissions.

Moreover, the residual tests of the data will be introduced into our study to eliminate
the interference of heteroscedasticity on the OLS model results. According to the theoretical
hypothesis, the stability of the model should be based on the rules of zero mean error
and the same variance. The hypothesis will be held when the observed residual values
are in an irregular scattered distribution with zero axis as the average level. At the same
time, the normal distribution tests of the data are needed before the regression verification.
The data should follow a normal distribution to ensure the reliability of our experimental
results. We will use the Q–Q (Quantile–Quantile) normality tests to check it; these have
been applied widely to present the testing data distribution in previous studies [24]. The
detection results of the variables used in robot installations and robot density are expressed
in Figure 4a,b. The trends by which the red curves move around the zero axis can prove
that the residual hypothesis could be held in both of these graphs. From the two Q–Q
pictures, the traces of the data points almost obey the straight line in the plots, and these
mean that the variables of robot installations and robot density are consistent with the
normal distributions. Thus, it is appropriate to apply the OLS regression model to our
study after the above data verifications.

3.2. Data Sources

This paper focuses on the impact of industrial intelligence on carbon emissions in the
USA, China, and Japan, and we employ the relevant data from 2006 to 2021 to verify this
influence. The main data source of industrial robots is from the International Federation
of Robotics (IFR), which contains robotic information from many national robot relevant
organizations, such as the Robotic Industries Association (RIA) in the USA, the Chinese
Robot Industry Alliance (CRIA) in China, the Japanese Robot Association (JARA) in Japan,
and so on. The increasing trend of robot adoptions globally from the IFR data in recent years
is easy to observe. The IFR reports that the total global industrial robots stock was over three
million units in 2021, and it increases two-fold within this ten year-period compared with
the increase in 2008. The aggregate robot installations in the USA, China, and Japan share
about a half of the world quantity, and most of them are widely applied in the automotive,
electronics, and machinery industries. The industrial robot usage in China maintained a
sustained increase as its economic grew from only a 2% share of the world in 2006 to 35%
in 2021. The share in the USA declines slightly from 16% in 2006 to 10.5% in 2021, but
the quantity is growing steadily. The share in Japan is opposite to the situation in China
because both of total quantity and share have decreased during this period; the occupation
decreases from 24% to only 13% in 2021. In summary, China has a rapid growth in both
aggregation and share in the world; the USA demonstrates a steady increase in quantity,
but not in share; Japan has neither the advantages in aggregation nor in occupation. Our
second main data sources are the World Bank and the International Labor Organization
(ILO). The World Development Indicators data of the World Bank provide total populations,
GDP growth rates, and GDP per capita growth rates. The ILO contributes total employment
rates and other data which relate to the labor force worldwide. Moreover, we also obtain
the data of coal consumption proportions and secondary industry occupations from the U.S.
Energy Information Administration (EIA), which can provide various data which relate to
energy consumption and carbon emissions. This unified data collection method grants the
conclusion guiding and reference significance for policy-makers.
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Table 1 presents the variables which are introduced into our regression models. Some
interesting phenomena expressed in the data can be observed. First, although China owns
the largest installation quantity, but the density of robot installation in Japan is much higher
than the other two. Second, the industrial structures and the coal consumption rates are
worth noting. In China, the GDP of the secondary industry accounts for nearly half of the
total, and the coal consumption rate is greater than that of the other two economies (the
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average figure is almost 70%). This means that fast economic growth and the expansion of
the secondary industry in this region are driven by coal energy, as they are in a country
with rich coal resources. As a developing country with the largest population in the world,
the real GDP per capita in China is the lowest among these three countries, although it has
a high GDP growth.

Table 1. Descriptive statistics (2006–2021).

Variable Definition
Source

Obs. Mean Obs. Mean Obs. Mean

USA China Japan

Robots Industrial robot stock (unit) IFR 16 25,101 16 77,019 16 35,161
LNrobots Log(robot installation) IFR 16 10.06 16 10.57 16 10.41

LNCE Log(carbon emissions) EIA 16 8.59 16 9.18 16 7.09
EMP Total employment rate (%) World Bank 16 58.98 16 66.55 16 58.10
INDS Secondary industry share (%) World Bank 16 19.18 16 43.06 16 28.31

COALP Coal consumption rate (%) EIA 16 17.25 16 67.25 16 23.44
GDPPC GDP per capita (Current US $) World Bank 16 55,330 16 6947 16 40,487
GDPPG GDP per capita growth rate (%) World Bank 16 1.02 16 7.78 16 0.43

Robot Density Robots per thousand people IFR and ILO 16 1.53 16 0.53 16 3.27
CO2 emissions CO2 (million metric tons) EIA 16 5356.26 16 9688.84 16 1199.89

4. Empirical Results
4.1. Carbon Emissions and Total Industrial Robot Adoption

Table 2 presents the empirical results concerning the effects of the total amount of
robot installations on carbon emissions in the USA, China, and Japan. It tells us that the
significant results only appear in China and Japan, not in the USA. The positive coefficients
of LNrobots in the results mean that a 1% increase in robot installations results in roughly
a 0.19% increase in carbon emissions in China and a 0.16% increase in Japan. Although
these impacts, which we can see from the testing results, are relatively slight, they do
indeed indicate the positive and driving effects of robots on carbon emissions. It is easy to
understand that China has the maximum coefficient among the three because of its largest
robot stock and installation in recent years. Why does Japan obtain a similar correlation
coefficient to China when it is not the country with the largest robot installations? It can
be explained by the fact that Japan dominated the robot stocks in the past few decades as
it is one of the most powerful countries in the high-tech manufacturing fields, especially
in automobile manufacturing and the electronics industry. These traditional automation
manufacturing industries are closely related to energy-intensive consumption and emit
GHG to a great extent.

Table 2. Carbon emissions and industrial robot installations (2006–2021).

LNCE

USA China Japan

LNrobots
0.010 0.185 *** 0.156 **

(0.022) (0.030) (0.056)

EMP
0.014 *** −0.041 −0.058 ***
(0.004) (0.024) (0.016)

COALP
1.342 *** 3.856 *** −0.501
(0.317) (1.149) (0.699)

GDPPG
0.004 * −0.002 −0.001
(0.002) (0.013) (0.005)

INDS
−0.001 −0.006 −0.006
(0.012) (0.020) (0.016)

Notes: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks denote
statistical significance: * p < 0.1; ** p < 0.05; *** p < 0.01 indicate statistical significance at 10%, 5%, and 1%
levels, respectively.
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Although the strategy of industry 4.0 was put forward a few years ago, it still needs
time to make some improvements and upgrade on traditional industrial transformation.
From Figure 1, we notice that China replaced Japan as the largest country in robot installa-
tion in 2013, and the transformation and upgrading of industrialization cannot catch up
with the pace of such rapid industrial development. This also implies that China needs
some time to update its industrial structure and construct a new intelligent manufactur-
ing system to reduce the consumption of fossil fuels. Therefore, new technologies which
can promote industrial transformation and reduce carbon emissions effectively should be
implemented, especially renewable energy technologies and new manufacturing system
technologies, and we should know all of these will take time to achieve their target. This
finding is consistent with Jin et al. [32]; they point out in their study the truth that the
development of manufacturing industries will still release a great quantity of GHG due to
high energy consumption characteristics, and the new manufacturing systems, including
new manufacturing processes, materials technologies, and product designs, can promote
the transformation of traditional industries and realize the carbon emission reduction in
the future. Except for this, the results also informed us that the positive influences of robot
adoption on CO2 emissions exist in all three countries, and the strong correlations are
verified in China and Japan; that is to say, the applications of robots show a driving effect
on carbon emissions and the intelligent manufacturing cannot reduce carbon emissions,
at least for now. To ensure the accuracy of the experimental results, we further carry on
the research to test the correlations between robot density and CO2 emissions in these
three economies.

4.2. Carbon Emissions and Industrial Robot Density

Figure 1 illustrates the fact that China is the country with the largest robot installations
in the world since it transcends Japan after 2012. However, this condition is quite different
from the perspective of robot density. Figure 5 expresses the robot density curves of the
three largest economies. From the graph, it can clearly be observed that Japan is the country
with the largest number of robots per thousand manufacturing employees among the
three countries and it has been in the advantageous state for a long time compared with
other two. Conversely, the robot density is at a low level constantly in China despite it
having the largest total robot adoptions. It is obvious to see the robot density is rising with
the expansion of the manufacturing industry in this country, and this makes it play an
indispensable role in the global industrial chain. The robot density in the United States is at
the second highest among the three countries, and it shows a steady upward trend.

We employ variables of robot density into Equation (2) to verify the correlations of
robot density and carbon emissions, and the results are shown in Table 3. Positive results
appear in all of the three countries, which are same with the installation test, and the results
of China and Japan demonstrate that the robot adoptions make greater contributions to
carbon emissions. The positive coefficients of LNROBOTD in the table mean that 1% robot
density growth can increase roughly 0.01% carbon emissions in the USA. Compared with
the slight influence in the USA, the impact in China and Japan is out of ordinary. The
coefficients of China and Japan are larger than the USA, and a 1% robot density rise can
increase carbon emission by about 0.2 and 0.14%. Many studies have pointed out the
fact that more robots can improve production efficiency and economic growth, but these
tendencies are unsustainable when the adoption of robots reaches a critical point [33]. This
can explain that the robot adoptions and robot density in Japan are at a high level, but the
increase in its economy cannot maintain the synchronous growth. In addition, the low
carbon emission efficiency in China can be caused by the low level of management and
technology in industry compared with the other two [34]. In any case, the results exactly
prove that robot adoption can promote CO2 emissions in all of the three countries and this
finding is consistent with the discovery of our test on the robot installations. In addition,
the empirical results reveal that higher robot density may lead to greater carbon emissions.
As the robot density in Japan is much larger than that in the USA, and the estimation
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outcomes in the table also show this tendency synchronously, the robot density in Japan
have more positive effects on Carbon dioxide emissions. It is interesting to observe that the
robot density in the USA is much larger than that of China, but the impact of it on carbon
emissions is smaller than that of China. The reason for this phenomenon is the difference in
energy structure between these two countries. Fossil energy has made a great contribution
to the rapid development of economy in China in the past twenty years, and coal resources
are the main contributor to this growth in terms of energy. The coal consumption rate
in Table 1 shows that coal accounts for about 67.3% of total energy consumption, and
this figure is only 17.3% in the USA. These different energy structures bring about the
differences in carbon emissions, although China is the one with the smallest robots per
thousand employees. Figure 3 demonstrates that the coal consumption rate in China is
higher than those in the USA and Japan. Z. Li et al. [13] also clarified this view in their
research when they investigate the influence of industrial structures on carbon emissions in
China and Japan; they concluded that diversified energy structures will produce different
carbon emission effects because coal is the energy with higher GHG emissions than oil and
gas, and coal consumption plays the vital role in carbon emissions [35].
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Table 3. Carbon emissions and industrial robot installation density (2006–2021).

LCEN

USA China Japan

LNROBOTD
0.011 0.204 *** 0.142 *

(0.023) (0.032) (0.065)

EMP
0.015 *** −0.041 −0.056 **
(0.004) (0.023) (0.018)

COALP
1.353 *** 4.428 *** −0.706
(0.316) (1.147) (0.805)

GDPPG
0.004 * 0.001 −0.001
(0.002) (0.013) (0.006)

INDS
−0.001 −0.008 −0.002
(0.012) (0.019) (0.017)

Notes: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks denote
statistical significance: * p < 0.1; ** p < 0.05; *** p < 0.01 indicate statistical significance at 10%, 5%, and 1%
levels, respectively.
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Consequently, it can be summarized from the experimental results that industrial
intelligence can have a positive and driving influence on carbon emissions in all of the three
countries, and it is more likely to cause carbon dioxide pollution with the higher density of
robots based on the existing energy and industrial structures.

4.3. Robustness Test

In order to eliminate the impacts of countries and time on the results, we introduce
the two-way fixed effect model to do the robustness tests. We will check the correlations
between the robot and carbon emissions from both the directions of aggregation and density
of robots. The regression model equations are as follows:

LNYct = a0 + a1 × LNrobotsct + a2 × controlsct + uc + vt + εct (3)

LNYct = b0 + b1 × LNROBOTDct + b2 × controlsct + uc + vt + εct (4)

where Yct is the observed variables of CO2 emissions in country c in year t. In order to avoid
heteroscedasticity problems, we take the logarithmic form of robots installation to replace
the total value. controlsct are the control variables—i.e., economic growth, employment rate,
industrial structure, and energy consumption structure—which may have some impacts on
the experimental results. uc and vt are country c time t fixed effects.

The results presented in Table 4 reveal that both of the robot installations and robot
density can have strong significant and positive effects on the carbon emissions, and this
supports the above verification results directly.

Table 4. CO2 emissions and industrial robot installations and robot density (2006–2021).

LNCE

LNrobots
0.269 ***
(0.053)

LNROBOTD
0.271 ***
(0.059)

EMP
−0.012 −0.002
(0.017) (0.018)

COALP
0.661 0.227

(0.646) (0.665)

GDPPG
0.016 0.013

(0.013) (0.014)

INDS
0.025 0.030

(0.017) (0.018)
Notes: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks denote
statistical significance: *** p < 0.01 indicates statistical significance at 1% level.

4.4. Endogeneity: IV Estimation

In order to exclude the influence of the characteristics of the selected samples on the
robot installation, we introduce the instrument variable (IV)—which was calculated by the
number of world installation robots minus that of each country—into the model by using
the 2SLS method. The regression model equation is as follows:

Yct = c0 + c1 × LNIV + c2 × controlsct + uc + vt + εct. (5)

From the results presented in Table 5, we could find that the correlation between IV
and robots is strongly significant and negative in the first stage, and this can be explained
by the fact that the adoption of robots among the world is competitive. In the second stage,
we once again proved that the robots could have positive effects on the carbon emissions,
and this also supports the above verification results.
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Table 5. Endogenous test: CO2 emissions and industrial robot installations in other countries.

First Stage Second Stage

LNrobot LNCE

IV
−3.584 ***

(0.657)

LNrobot
1486.975 ***

(164.107)

EMP
0.024 73.264

(0.030) (50.592)

COALP
0.260 5100.067 ***

(0.889) (1746.478)

GDPPG
−0.060 ** −100.197 **

(0.023) (42.995)

INDS
−0.008 0.362
(0.022) (50.886)

Individual Fixed Effects Yes Yes
Time Fixed Effects Yes Yes

Notes: Estimated coefficients are accompanied by robust standard errors in parentheses. Asterisks denote
statistical significance: ** p < 0.05; *** p < 0.01 indicate statistical significance at 5%, and 1% levels, respectively.

5. Conclusions

The investment of a large number of robots in industries is accompanied by the
increase in power consumption, and the destruction dealt by power generation energy to
the environment has simultaneously attracted more and more social attention. There is no
doubt that the combustion of fossil fuels, including oil, natural gas, and coal, can emit a lot
of GHG. This makes it meaningful to study the relationships between the application of
robots and carbon dioxide emissions with a view towards protecting climate quality. Owing
to the fact that robots are the dispensable part of the automation manufacturing industries,
this paper verifies the impacts of robots on carbon emissions from the perspectives of
robot installations and robot density. First, the main finding of our study shows that
robot adoptions can have strongly significant positive impacts on the total volume of
carbon emissions in China and Japan, and these positive effects also appear in all three
economics. Thus, the application of robots is a stimulus on carbon emissions. Moreover,
the verification results also indicate that the current impacts of industrial intelligence
on carbon emissions are dominated by driving effects, and the driving effects will be
more significant with higher robot density. Last but not least, the energy and industry
structures may interfere with the carbon emissions results. The energy consumption in
China is dominated by coal, and greater proportions of oil and natural gas are expended
in the USA and Japan. Considering that industrial production requires electricity, the
coal resources or fossil fuels can be replaced by renewable energy. Alternatively, we can
make efforts to change the energy structures to achieve carbon emission reduction targets.
The industry structure is also a critical factor with respect to carbon emissions in China,
and the secondary industry also accounts for a large proportion. This paper has certain
reference value, because the researching objects are powerful economic and industrial
systems, and their environmental and industrial strategies can affect the world’s climate
improvement. Hence, some suggestions are proposed based on the study results. On one
hand, governments should guide industrial investment to balance industrial structure
when they adopt robots to develop industrial intelligence. On the other hand, it is also
necessary to adjust the energy structure to promote environmental development while
developing the economy and promoting industrial development.

Nevertheless, there are some limitations in our research. For one thing, this paper veri-
fies the significant positive correlations between robot adoption and carbon emissions, but
whether improving industrial manufacturing processes can increase production efficiency
to reduce carbon emissions is not taken into account. For another, although it has been
verified that the energy structures will have some impacts on carbon emissions, whether
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renewable and clean energy can ensure economic growth while improving environmental
quality is unclear. We can further investigate these problems and clarify the transmission
mechanisms between industrial intelligence and climate change.
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