<@ sustainability

Article

A Digital Twin-Based Distributed Manufacturing Execution
System for Industry 4.0 with AI-Powered On-The-Fly
Replanning Capabilities

Jiti Vyskotil **(, Petr Douda *, Petr Novak 1*

check for
updates

Citation: Vyskotil, J.; Douda, P.;
Novék, P.; Wally, B. A Digital
Twin-Based Distributed
Manufacturing Execution System

for Industry 4.0 with AI-Powered
On-The-Fly Replanning Capabilities.
Sustainability 2023, 15, 6251. https://
doi.org/10.3390/5u15076251

Academic Editors: Udo
Kannengiesser, Alois Zoitl

and Manuel Pedro Rodriguez Bolivar

Received: 24 January 2023
Revised: 28 March 2023
Accepted: 30 March 2023
Published: 5 April 2023

Copyright: © 2023 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Bernhard Wally 2

Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague,
Jugoslavskych Partyzant 1580/3, Dejvice, 160 00 Prague 6, Czech Republic

Office of the Austrian Council for Research and Technology Development,

Pestalozzigasse 4/D1, 1010 Vienna, Austria

Correspondence: jiri.vyskocil@cvut.cz

t These authors contributed equally to this work.

Abstract: Industry 4.0 smart production systems comprise industrial systems and subsystems that
need to be integrated in such a way that they are able to support high modularity and reconfigurability
of all system components. In today’s industrial production, manufacturing execution systems (MESs)
and supervisory control and data acquisition (SCADA) systems are typically in charge of orchestrating
and monitoring automated production processes. This article explicates an MES architecture that
is capable of autonomously composing, verifying, interpreting, and executing production plans
using digital twins and symbolic planning methods. To support more efficient production, the
proposed solution assumes that the manufacturing process can be started with an initial production
plan that may be relatively inefficient but quickly found by an AI. While executing this initial plan,
the Al searches for more efficient alternatives and forwards better solutions to the proposed MES,
which is able to seamlessly switch between the currently executed plan and the new plan, even
during production. Further, this on-the-fly replanning capability is also applicable when newly
identified production circumstances/objectives appear, such as a malfunctioning robot, material
shortage, or a last-minute change to a customizable product. Another feature of the proposed MES
solution is its distributed operation with multiple instances. Each instance can interpret its part of the
production plan, dedicated to a location within the entire production site. All of these MES instances
are continuously synchronized, and the actual global or partial (i.e., from the instance perspective)
progress of the production is handled in real-time within one common digital twin. This article
presents three main contributions: (i) an execution system that is capable of switching seamlessly
between an original and a subsequently introduced alternative production plan, (ii) on-the-fly Al-
powered planning and replanning of industrial production integrated into a digital twin, and (iii) a
distributed MES, which allows for running multiple instances that may depend on topology or
specific conditions of a real production plant. All of these outcomes are demonstrated and validated
on a use-case utilizing an Industry 4.0 testbed, which is equipped with an automated transport
system and several industrial robots. While our solution is tested on a lab-sized production system,
the technological base is prepared to be scaled up to larger systems.

Keywords: production system; Industry 4.0; digital twin; Al planning; simulation; flexible automa-

tion system; robotics; manufacturing execution system

1. Introduction

Energy-wise sustainability of today’s industrial production systems [1] is a major chal-
lenge (available online: https://www.senseye.io/hubfs/Downloads/Senseye-Challenges-
of-Sustainability.pdf, accessed on 11 January 2023), both in terms of (i) the use of more

Sustainability 2023, 15, 6251. https:/ /doi.org/10.3390/su15076251

https:/ /www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su15076251
https://doi.org/10.3390/su15076251
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0002-3244-6221
https://orcid.org/0000-0003-1720-7334
https://orcid.org/0000-0001-7447-3757
https://www.senseye.io/hubfs/Downloads/Senseye-Challenges-of-Sustainability.pdf
https://www.senseye.io/hubfs/Downloads/Senseye-Challenges-of-Sustainability.pdf
https://doi.org/10.3390/su15076251
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su15076251?type=check_update&version=3

Sustainability 2023, 15, 6251

2 of 27

efficient production technologies and (ii) new algorithms for their automation and con-
trol [2,3]. Software development and maintenance of such systems account for a significant
part of their acquisition and operating costs [4,5]. Consequently, according to our extensive
experience from many industrial projects, control systems of a large proportion of today’s
industrial systems are programmed in a single-purpose manner with the aim of meeting
high operational reliability and repeatability. Other parameters of these control systems,
such as energy savings during production restarts [6], are not considered at all or only to a
very limited extent. This is mainly due to the unpreparedness of traditional industrial engi-
neering and programming practices for rapid development [7], validation, and debugging,
and the absence of an advanced and flexible infrastructure that can perform some parts of
production optimization fully or at least partially automatically.

Smart manufacturing [8,9], or Industry 4.0 (140) [10], includes the integration of cyber-
physical systems [11], their mutual interconnection using universal communication protocols
with the transfer of semantic information, the integration of artificial intelligence (Al) in planning,
scheduling [12,13], and optimizing production [14], digital twins [15], the internet of things
(IoT), and more [16,17]. Current trends, as well as already achieved 140 goals, are described
in a recent paper by Kagemann and Wahlster [18]. The role of Industry 4.0 in the domain of
sustainable industrial production is addressed in [19-21].

Contemporary production systems are typically characterized by a hierarchically
layered architecture, often referred to as automation hierarchy [22]. Atits lowest level (closest
to the equipment), the process data inputs and outputs (I/Os) provide direct connection to
all industrial components such as robots, sensors, transportation systems, etc. One layer
above, the programmable logic controllers (PLCs) run low-level control algorithms for basic
functions, thus operating the interfaces among shop-floor devices, and assuring the safety
features related to specific parts of the automation system. Next is the supervisory control
and data acquisition (SCADA) [23] layer, that implements a control system architecture
including processing units, data communication, and graphical user interfaces for high-
level supervision of machines and processes. The manufacturing operations management
(MOM) [24] layer is located on top of SCADA and functions as a real-time system that
allows for the controlling of multiple elements of the production line according to the
current production plan by utilizing a manufacturing execution system (MES). On the top
vertex of the automation stack lies an enterprise resource planning (ERP) [25] layer, which
is responsible for the integrated management of core business processes and usually also
provides longer-term and higher-level production and resource planning.

With the reference architecture model of Industry 4.0 (RAMI40) [26], a more timely view on
the smart manufacturing domain is provided, featuring a three-dimensional holistic map [27].
textcolorredMDPI: Please check that intended meaning is retained. However, RAMI40 is not
an implementation approach, nor does it prescribe specific requirements that can be directly
checked while provisioning production systems. As such, the trajectories towards 140 manufac-
turing systems are still very challenging to achieve [28].

This article describes a comprehensive concept for the 140 production line testbed
located at the Czech Technical University (CTU) in Prague—Czech Institute of Informatics,
Robotics and Cybernetics (CIIRC). The entire production line has its own continuously
synchronized digital twin with a formal symbolic representation of all feasible production
operations in each line state. This digital twin is used as a source of semantic information
for fully automated Al-powered production planning realized using the planning domain
definition language (PDDL) [29]. Thanks to this architecture, which will be described in
detail in Section 3, it is possible to on-the-fly inject new production goals or automatically
improve existing plans for current production goals according to actual changes and needs,
and therefore seamlessly alter the ongoing production process.

The distributed MES that we have implemented in this work allows the execution of
the production plan to be split among hierarchically interconnected and synchronized MESs.
With this decomposition, each individual MES can fully control all of its subordinate industrial
components in real-time with low latency, which are assumed to be interconnected using OPC

Sustainability 2023, 15, 6251

30f27

Unified Architecture (UA) [30]. However, for interconnection of individual MESs among each
other, we have implemented a representational state transfer (REST) application programming
interface (API) approach, given that OPC UA is not very suitable for unreliable communication
with high latency, as shown in the performance evaluation study [31] of different communication
protocols for 140. In contrast, our RESTful approach allows the MESs to be synchronized over
much larger distances (e.g., across buildings, cities, even countries) where network characteristics
are considered to feature lower bandwidth, lower connection reliability, and higher latency as
compared to an in-house production line network.

Compared to previous work [32], the distributed MES presented in this article is
extended with the ability to change the production plan on-the-fly. Similar to the approach
described in an earlier article [33] our implementation allows

() for a continuous search for a better and better production plan, and
(ii) the seamless conversion of an ongoing production to such a newly found plan without
requiring a global and time-consuming restart of the entire production process.

Compared to that earlier article and further previous work [34], we have integrated
into this work the concept of a distributed MES with replanning capabilities.

The remainder of this article is structured as follows. Section 2 presents related work in
terms of providing a background for understanding our improvements and achievements.
Section 3 explains the proposed solution involving a distributed MES that utilizes a digital
twin enhanced with on-the-fly Al-powered planning, replanning [35,36], and scheduling
capabilities /features. Section 4 demonstrates the proposed solution on a real example and
discusses the properties of results achieved. Section 5 concludes and suggests future work.

2. Materials and Methods

The most fundamental contribution of this article is the improved planning and
scheduling of industrial production systems that are controlled by a distributed MES.
Therefore, the state-of-the-art presented in this section provides a background and founda-
tion for describing and understanding the proposed contribution.

2.1. Al Planning and Scheduling

Today, advanced planning using artificial intelligence (Al) is receiving more and
more attention in order to ensure high flexibility and efficiency in industrial production
processes. Flexibility means that an ongoing production can automatically respond to
various situations without manual intervention in the production control source code.
Efficiency means, for example, that the production process is faster, less expensive, or more
energy efficient; or it can combine several of these factors. It is also important to note
that the terms planning and scheduling are frequently applied in a variety of contexts with
diverse meanings.

Automated planning (also called Al planning [37]) is an area of Al that solves the
problem of finding a sequence of operations that must be completed to achieve a given
goal given a certain starting condition and a set of possible actions. This sequence is called
a plan. The set of possible actions, including their pre- and post-conditions, as well as the
available relations between objects, is expressed in a domain description. The current state
(the starting condition) of all participating objects and their relations, as well as the aspired
state (the goal condition), are stated in a problem definition. Problems and domains can be
specified in a special language developed for Al planning, the planning domain definition
language (PDDL), which was introduced by McDermott et al. in 1998 [38]. Meanwhile,
PDDL has reached maturity (its latest version (3.1) was released in 2011 [39]), even being
deployed in industrial environments. Over time, various extensions to PDDL have been
developed, supporting, for example, modal operators, ontologies, probabilistic effects,
partial observability, goal rewards, durative actions, hierarchical action expansion, and
many more. Applications of some of these PDDL extensions in the context of production
and logistics, including a description of the techniques used in the solvers, are discussed by
Sousa and Tavares [40], while durative actions have, e.g., been utilized by Wally et al. [41].

Sustainability 2023, 15, 6251

4 of 27

Scheduling (as described by Pinedo [42]) refers to the problem of finding optimal
or sub-optimal schedules (such as Gantt charts) for executing finite (or repetitive) sets of
tasks/jobs, often related to resource capacities or soft and hard constraints among tasks
and resources. The problems addressed by scheduling can be formalized as optimization
problems to process a finite set of tasks in a system with limited and constrained resources.
In the scheduling, the time of arrival is specified for each task. In the production system,
each task passes through multiple processing phases that depend on the input conditions
of the problem. For each phase, feasible resource sets are assigned, and processing times
according to the selected resources are considered.

2.2. Planning with PDDL

Planning problems that are expressed using PDDL differentiate between two separate
specification files that describe (i) the domain of the problem and (ii) a specific problem
instance within this domain, as follows (the underlying PDDL domain and problem de-
scriptions used in this article are depicted in Figure 1):

(define (domain MONTRAC_DOMAIN) (define (problem MONTRAC_PROBLEM)
(:domain MONTRAC_DOMAIN)
(:requirements :adl :typing :equality :action-costs) (:objects
S100 - STATION S23 - STATION S300 - STATION
(:types BLOCKING-RESOURCE - object S$110 - STATION S200 - STATION S12 - STATION
RESOURCE STATION - BLOCKING-RESOURCE SHUTTLE1 - RESOURCE SHUTTLE2 - RESOURCE
SHUTTLE-RESOURCE - RESOURCE) SHUTTLE3 - RESOURCE SHUTTLE4 - RESOURCE
SHUTTLES - RESOURCE SHUTTLE6 - RESOURCE)
(:predicates (CONNECTION ?S - STATION D - STATION) (:init
(RESOURCE_IN_STATION ?V - SHUTTLE-RESOURCE ?S - STATION) (RESOURCE_IN_STATION SHUTTLE3 S100)
(RESOURCE_IN_PRESTATION ?V - SHUTTLE-RESOURCE ?S - STATION) (RESOURCE_IN_STATION SHUTTLE4 S200)
(IS_RESOURCE_ENABLED ?V - RESOURCE)) (RESOURCE_IN_STATION SHUTTLES S110)

ECCCEET L CEEE L L L CE LT L LI CEE XL E LI LT L LI CEE LTS (CONNECTION S100 S100) (CONNECTION S100 S23)
(:action SHUTTLE_DEPART (CONNECTION S100 S12) (CONNECTION S100 S110)
:parameters (?V - SHUTTLE-RESOURCE ?S - STATION ?D - STATION) (CONNECTION S100 S200) (CONNECTION S23 S23)

:precondition (and (IS_RESOURCE_ENABLED ?V) (CONNECTION S23 S12) (CONNECTION S23 S110)
(CONNECTION ?S ?D) (CONNECTION S23 S200) (CONNECTION S23 S100)
(forall (?R - SHUTTLE-RESOURCE) (CONNECTION S12 S23) (CONNECTION S12 S12)
(imply (IS_RESOURCE_ENABLED ?R) (CONNECTTION S12 S110) (CONNECTION S12 S200)
(not (RESOURCE_IN_PRESTATION ?R ?D))) (CONNECTION S12 S100) (CONNECTION S110 S23)
) (CONNECTION S110 S12) (CONNECTION S110 S110)
(RESOURCE_IN_STATION ?V ?S)) (CONNECTION S110 S200) (CONNECTION S200 S100)
:effect (and (increase (total-cost) 4) (CONNECTION S200 S23) (CONNECTION S200 S12)
(not (RESOURCE_IN_STATION ?V ?S)) (CONNECTION S200 S110) (CONNECTION S200 S200)
(RESOURCE_IN_PRESTATION 2V ?D))) (CONNECTION S300 S100) (CONNECTION S300 S23)
e e (CONNECTION S3@0 S12) (CONNECTION S300 S110)
(:action SHUTTLE_ARRIVE (CONNECTION S300 S200) (CONNECTION S300 S300)
:parameters (?V - SHUTTLE-RESOURCE ?D - STATION) (CONNECTION S100 S300) (CONNECTION S23 S300)
:precondition (and (IS_RESOURCE_ENABLED ?V) (CONNECTION S12 S300) (CONNECTION S110 S300)
(forall (?R - SHUTTLE-RESOURCE) (CONNECTION S200 S300)
(imply (IS_RESOURCE_ENABLED ?R) (IS_RESOURCE_ENABLED SHUTTLE3)
(not (RESOURCE_IN_STATION ?R ?D))) (IS_RESOURCE_ENABLED SHUTTLE4)
) (IS_RESOURCE_ENABLED SHUTTLES))
(RESOURCE_IN_PRESTATION ?V ?D)) (:goal (and
:effect (and (increase (total-cost) 2) (exists (?S - RESOURCE)
(not (RESOURCE_IN_PRESTATION ?V ?D)) (and (IS_SHUTTLE ?S)
(RESOURCE_IN_STATION ?V 2D))) (RESOURCE_IN_STATION ?S S12)
))

(:metric minimize (total-cost))
)

Figure 1. A simplified PDDL domain specification (left) and an example problem (right) for the
Montrac transportation system, PDDL keywords are highlighted in blue. The domain specification
lists the available types, predicates, and actions (along with their parameters, preconditions, and
effects). The problem specification encodes (i) the current state of the Montrac system, that is, which
shuttles are in operation, where are they located, what is the topology of connections, and (ii) what
the current production goal to be achieved is. The problem specification is regularly updated by the
digital twin of the production line (Figure 2).

Domain: specification of the types of entities that are available in this domain, their predi-
cates and functions as well as all the available actions including their input parameters,
their preconditions that must hold before a specific action begins, and their effects,
which are changes in the state-space done immediately after a specific action is final-
ized. Effects can optionally have assigned advanced attributes such as costs/fitness
and durations. Further, the used language extensions need to be specified in terms of
requirements.

Problem: specifies a particular instance of the problem, which contains a description of
the initial state, i.e., the available object instances and their properties and relations to

Sustainability 2023, 15, 6251

5 of 27

another (expressed through predicates) and the definition of the aspired goal state,
i.e., the predicate expression that needs to be evaluated in boolean true.

Rabor !
R2 station (:¥1)

R2_TABLE R1_TABLE R10_TABLE

Station

Station

$300

Figure 2. Topology of the 140 testbed’s flexible production line. It is equipped with five robots, one AGV
for manipulation with R20_TABLE, a transportation system operated by six shuttles, interconnecting
six workcells/workstations.The shuttles are not included in the figure because they can have any actual
position according to the current needs. Workstations 523, 512, and S110 are accessed by robots located on
both sides; and the workstation 5100 is reachable only by robot R20.

The solution of a planning problem specified in PDDL is called a plan, i.e., it is a sequence
of actions that have to be executed when beginning at the initial state of the planning problem,
with the goal condition being satisfied after all actions have been processed.

2.3. Digital Twins for Industrial Systems

A digital twin can be described as a digital replica (mathematical abstraction) of a
physical system. The digital twin concept consists of three parts: (i) the physical entity
(object or process) and its physical environment, (ii) the digital representation of the entity,
and (iii) the communication channel between the physical and virtual representations. The
bi-directional link between the physical version/twin and the digital version/twin involves
information flows and data, which include physical sensor flows between the physical and
virtual objects and environments.

The first concept of digital twin was published by Grieves in 2002 (available online: https://
www.researchgate.net/publication/307509727_Origins_of_the_Digital Twin_Concept (accessed
on 11 January 2023), and since then, the concept has been widely used in the context of 140 [4346].

Digital twins are usually designed domain-specifically, relying on a mathematical-physical
description of physical phenomena and their parameterization (including properties like shapes,
materials, or others). Papers by Hénel et al. [47,48] are good examples of mathematical-physical
descriptions, in this case of machining processes for high-tech/aerospace industry, of domain-
specific digital twins. Digital twins can also be automatically or semi-automatically generated
from various existing information sources. An example of such creation of digital twins coming
out of 2D and 3D CAD models is discussed by Sierla et al. [49]. It generates graphs from
available models, which are used for graph matching algorithms. Furthermore, improvements
to this solution were investigated in the follow-up paper [50], targeting the generation of digital
twins for brownfield process plants.

An explanation of the difference between simulation and digital twin was given by
Kritzinger et al. [51]. According to Kritzinger et al., digital system approximations fall
into three categories according to the level of integration: (i) digital models—a stand-alone
execution independent from the data from physical artifacts or with manual data exchange
only, (ii) digital shadows—updated with automated one-directional data flow from physical
artifacts to their digital counter-parts, and (iii) digital twins—synchronized with bi-directional
data flows among physical artifacts and their digital counter-parts. That paper includes a
systematic literature review of other digitalization solutions as well. Only a small part of
them are categorized as digital twins according to this aforementioned difference.

https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept
https://www.researchgate.net/publication/307509727_Origins_of_the_Digital_Twin_Concept

Sustainability 2023, 15, 6251

6 of 27

The solution presented in this article utilizes the bi-directional data flows among
digital and physical artifacts, and therefore the solution can be classified into the category
of digital twins (iii).

2.4. Manufacturing Execution Systems

A systematic review on present trends in research and development in the MES area is
provided by Shojaeinasab et al. [52]. The limited capabilities of legacy commercial MESs
are discussed by Bratukhin and Sauter [53]. Despite the fact that the reference is already
one decade old, the offer on the market has not improved sufficiently in the meantime. The
paper spot-lights a set of common corner-stones of a typical distributed MES [54], which
are order managers, resource managers, supervisors, and brokers. Such a distinction goes along
with the contribution by Mafik and McFarlane [55] that deals with threats and strengths of
adopting a multi-agent design principle for industrial automation and control, particularly
at the level of manufacturing execution.

The structure and implementation of generic MESs are addressed by Fei [56], by
identifying the fundamental components of MES: equipment management, production process
management, quality management, order management, production scheduling management, and
resource management.

Various achievements in the area of manufacturing execution are discussed by Pan
et al. [57]. These emerging trends cover: cloud-based MES, IoT-based MES, intelligent MES,
collaborative MES, supply chain linkage, MES mobility, and industrial data analysis. A special
demonstration of an IoT-based MES implemented for a motor plant is given by Gao et
al. [58], where a wide range of sensor data could be accessed through IoT means.

The conceptual integration between the ERP and MES layers is standardized by
ISA-95 [59], which has since become an international standard (IEC 62264) [22]. A concrete
alignment, including potential mapping issues, between an ERP ontology and ISA-95 has
been presented by Wally et al. [60], a graphical toolkit for manipulating ISA-95 models
by Lang et al. [61]. For the utilization of ISA-95 from within AutomationML model,s it
is useful to follow the corresponding application recommendation [62]. AutomationML
is a standardized data exchange format for 140 engineering tools [63], and is used in our
approach as described in Section 3. The integration between MES and shop-floor devices
(that is, between the two bottom-most levels of the automation pyramid) has already been
standardized by many communication protocols. In emerging 140 system architectures, the
most frequent protocol is OPC UA [64]. It is an open-source, cross-platform industrial stan-
dard (IEC62541) that unifies data representation, access, historical data access, and alarms
and events into a single and coherent specification [30]. OPC UA can be utilized for control
and data acquisition from automation devices, including smart sensors, programmable
logic controllers (PLCs), or robot controllers. One of the most significant advantages of
OPC UA (in comparison to most of the legacy industrial communication protocols) is that it
is not restricted for the classic client-server communication only, but also supports publish-
subscribe communication, causing the communication to be more efficient by eliminating
exhaustive and unnecessary /redundant polling. Due to its versatility and flexibility, the
OPC UA protocol is thus the preferred communication protocol in 140 environments. It
can be used for a flexible plug and produce system architecture and integration [65,66].
Support for ISA-95 within OPC UA has been standardized by a companion specification [67].
Further information about the use of standards, together with formal modeling approaches
in 140 production systems is given in a dedicated book chapter [68].

2.5. Industry 4.0 Smart Manufacturing Enabled by PDDL and Digital Twins

Manufacturing processes in automated manufacturing systems need to be capable of
being incrementally updated, modified, and evolved throughout the entire life cycle of the
manufacturing system. Consequently, this means, among other things, that software compo-
nents and their source codes need to evolve accordingly, as stated by Vogel-Heuser et al. [69].
The automated generation of simulation models for control code testing has been addressed

Sustainability 2023, 15, 6251

7 of 27

by Barth and Fay [70], but this is only a small piece in the overall mosaic of activities in the
design process of production system engineering.

The use of PDDL specifications in the planning of industrial problems is discussed
by Rogalla et al. [71]. They provide a collection of generic prototype cases, including the
corresponding formal representations. In contrast to that paper, the approach proposed in
this article targets more complex industrial-scale problems/systems (an industrial-scale
system is defined as a system whose topology includes such number and types of devices
that are comparable to a real environment of a production system in industry. In this
article, the use-case (see Section 3.1) comprises five robots arranged in a structure of six
workstations that are called by a transportation system with six shuttles. Communication
is implemented using OPC UA). Further, we use the PDDL specification not only for offline
planning, but also for on-the-fly planning, that is tightly integrated with the digital twin. In
other words, the solution proposed in this article poses an integrated intelligent production
planning and execution system that can react immediately to any change identified in the
production line or production goals.

The approach proposed by this article is based on our systematic investigation and
research in the field of advanced Al-based planning using PDDL. The production line is
symbolically represented in PDDL and it is bi-directionally synchronized with our proposed
distributed MES. An early proposal of a goal-oriented manufacturing execution using the
PDDL specification for automated planning is addressed in our paper [72] from 2019. It
already contains the concept of PDDL-based symbolic digital twin integration, however,
this original, but preliminary, concept is not described in detail there. The complete concept
of PDDL as a digital twin for 140 smart manufacturing was described in a follow-up
paper [73], and thoroughly evaluated by a further contribution [33].

An automatic translation of formal models for production system engineering into
PDDL representations is described in one of our initial contributions [74]. There, a set of
rules was proposed to directly convert a model for the automated production system into
a planning domain specification and a planning problem. The experiments performed
there have shown that even fully automated planning (demonstrated on a single scalable
use-case pattern/template) is feasible if the available models provide sufficient information.
Specifically, it allowed for the direct use of the vendor’s configuration file with a topology
description of the Montrac transport system. The main idea behind this approach was
based on concepts stemming from model-driven software engineering, enabling a formal
expression of domain metamodels and concrete instances that can be used for automated
transformation between different metamodels [75].

Subsequently, this approach was altered in the next paper [41] with the durative actions
extension of PDDL. This capability has moved the implemented production planning,
where the plan is a sequence of actions, more into the realm of production scheduling, where
a parallel run of actions is allowed. On the one hand, solutions of such planning/scheduling
problems can be of very high quality in terms of total duration (total production time).
The reason is rooted in paralleling the concurrent actions/operations (considered with
their exact time-durations) on multiple production resources precisely inside the dedicated
PDDL planner. On the other hand, the planning with durative actions leads to increasing
the computational complexity of planning enormously, with regard to the size of the
domain and the problem. It has been shown in [41] that this PDDL extension is rather
suitable only for problems of small size—for problems of similar size to our Industry 4.0
testbed, the time required for planning/scheduling is already prohibitively long and also
memory intensive. Based on this experience, in this article, we do not use durative actions
and instead split planning and scheduling into two separate processes.

3. Implementation and Results

This section presents the proposed solution in detail. Prior to describing the new
system architecture and the whole solution, the following description addresses the testbed
environment, which was used for testing, validating, and fine-tuning of the proposed

Sustainability 2023, 15, 6251

8 of 27

solution. Moreover, it provided us with the initial motivation and ideas for this research
direction.

3.1. Industry 4.0 Testbed

CIIRC’s Industry 4.0 testbed represents a unique environment to foster the technology
and knowledge transfer from science and academic research to industrial engineering
practice. The main mission is to make 140 visions real through concrete implementations.
Achievements and shifts in industrial production practice are presented to a wide audience
including students, engineers, experts, and other enthusiasts. This high-tech facility is
suitable for exploring new ways of control, optimizing the operation of robotic production
lines, innovating and designing new robotic cells, and supporting industrial control in
conjunction with energy consumption and optimization.

The entire research laboratory is accommodated to provide energy analyses and
optimizations. The laboratory includes power line connections to renewable energy sources,
namely photovoltaic panels located on the roof of the building. The photovoltaic system is
accompanied by additional battery storage, enabling smart load balancing and smoothing
of the energy demand from the distribution grid. All robots are equipped with power and
energy meters that allow continuous monitoring of power and energy consumption. In
the area of energy sustainability, the 140 testbed is an important body for analyzing and
evaluating the energy needs of medium- and large-scale robotic systems. It provides useful
support to industrial companies by recommending suitable solutions and as a physical
testbed for evaluating optimization scenarios.

In this article, we focus on a so-called flexible production line, which is a core system
of the 140 testbed. It consists of five industrial robots of three types: (i) a collaborative robot,
the KUKA LBR iiwa (frequently called cobot); (ii) three small and fast industrial robots,
the KUKA Agilus; and (iii) one extended-range robot, the KUKA Cybertech (cf. Figure 3).
Material is brought to the production system by automated guided vehicles (AGVs) for
intelligent mobile transport of the type KUKA KMP. These mobile platforms are capable of
moving pallets with semi-products on their tops and with a maximum load of 600 kg.

Robotic workcells are interconnected by the Montrac transport system (cf. Figure 2). It
is composed of a set of rails and junctions on which shuttles are moving. The rail system
is of a mono-rail nature, providing a stable positioning of shuttles. Each shuttle has its
own control unit and motor/powerdrive, so the shuttles move independently from each
other (they are equipped with an infrared light barrier at the front to ensure that the shuttle
stops if the route is blocked by another shuttle). Compared to traditional belt feeders, the
Montrac transport control is distributed and suitable for more difficult path routing. On
the other hand, the velocity of shuttles is rather low, therefore, the system is more suitable
for highly customized production (with diverse material and semi-product routing) than
for mass-production.

Sustainability 2023, 15, 6251

9 of 27

Figure 3. The production line of the 140 testbed hosted at the Czech Technical University in Prague
with robot R20 in the front and robots R3, R2, and R1 in the back. The robot is gripping a yellow car
dumper body in its end-effector when completing an assembly process for one of the two trucks from
the use-case described later on in Section 4.

From the system formalization perspective, transport and robotic operations are
considered “skills”. For production planning and scheduling, the available resources are
expressed in PDDL, including their supported skills. An important part that has been added
is the estimation of energy consumption needed to perform each production operation. In
the cost function utilized to specify the optimal production plan, energy needs are one of
the factors taken into account.

In our test cases, we focus on the assembly of 3D-printed truck models. Each truck
model consists of a chassis as a basic component, which can be further equipped with a
cabin, which can have one of four colors, and a body, which can be one of four shapes
and one of four colors. There are no fixed production recipes for individual products, but
the production recipes are planned by the production planner. During system operation,
these generated production plans are executed by a distributed MES by interpreting each
production plan operation per operation (some of the operations can be done in parallel on
different production resources).

The proposed smart and sustainable industrial production system is enabled by a
smart, distributed MES that is capable of interpreting production plans, as described in the
following subsection.

Sustainability 2023, 15, 6251

10 of 27

3.2. Manufacturing Execution System with Dynamically Generated Production Plans

Production orders, which determine what is to be produced, where and when, are key
factors in a typical industrial production. These orders are usually first processed by the
ERP and then passed on to the MES. The origin of production orders is out of the scope of
this article, but we will focus on the format of these orders and the automated technology
that is used to process them on a real production line.

Typically, for each production order, a production plan/recipe needs to be newly
created by hand or retrieved from a database — it is then executed by the MES on the
production line. In our case, the production processes are not hard-coded in the MES, but
the production plans are generated dynamically by the planner and scheduler service that
is a part of our digital twin (Figure 4). With this architecture, the planner and scheduler
have direct access to the current production system state equipped with the continuous
synchronization between the digital twin [51,76] and the real production system.

. HTTP
Enterprise
a WwWw
Resource Plannmg visualization and
(ERP) control interface

Digital Twin with Al Planner 9 HTTP/REST 7 = ":'

Basic Digital Twin based on PDDL model

HTTP/REST

D M ES HTTP

+ PDDL action Distributed

Al Production check/commit q
the current Manufacturin
Planner & Scheduler production line state * PDDLgoal N g
upload Execution Systems

Problem Generator

“|Measured Runtime Data + enabling/ PrOdUCtion Plan
Domain | Problem | Processor & Collector g disabling (LlspPIan)
resources .
PDDL Al Planner « the current supporting

valid production parallelization

Sequence ‘ of actions LispPlan Parameter plan sync

Estimator T
>
Scheduler 6 (duration, power i)|

Figure 4. Architecture of our automation system, bridging the gap between 140 devices/components

on the shop-floor level and the traditional ERP system level. Numbers in circles are used as references
for the further textual description of the architecture in details (see Section 3.3).

Our MES simply hands over the production goal in PDDL format to the digital twin
and then waits for the corresponding plan to be computed. It then executes the plan,
including validation checks for each upcoming action using the digital twin, and also
updates the twin’s status whenever the real production system changes (i.e., an action has
been started, an action has been successfully processed, production resources have changed
and as a result the plan has changed, etc.).

The production plan generated by the digital twin is technically a directed acyclic
graph (DAG) in Lisp (available online: https://lisp-lang.org/, accessed on 11 January 2023)
syntax, which we will denote as LispPlan. It includes information about all actions/tasks
(DAG vertices), their corresponding parameters, locations (properties of DAG vertices),
and requirements/dependencies on other tasks or actions (DAG directed edges). Action
vertices, with information about their runtime parameters and unique location, represent
140 components. Directed edges represent dependencies where source vertices specify
tasks/actions that have to be executed already before the task/action at the target vertex
can commence executing. Tasks can be nested recursively with corresponding sub-tasks
(including actions) and arbitrarily (but without loops) interconnected. Figures 5 and 6 show
a graphical and a textual representation of such a LispPlan, respectively.

https://lisp-lang.org/

Sustainability 2023, 15, 6251

11 of 27

TESTBED.CIIRC.CVUT.CZ

Task 1
Task BUILDING_TRUCK

Location TESTBED.CIIRC.CVUT.CZ|

Location R20
Requirements 0
ROBOTIC_PLACE R20 SHUTTLE2 100 X0_Y5_Z5_RO PART-BLACK-CHASSIS PART-TYPE-T-TRANSPORT|

Task 2

Location R20
Requirements 1
ROBOTIC_PICK R20 R20_TABLE SVR20 X0_Y1_Z0_R2 PART-WHITE-CABIN PART-TYPE-T-BIG-STORAGE|

Task 3

Location R20
Requirements 2
ROBOTIC_PLACE R20 SHUTTLE2 100 X0_Y21_Z7_R90 PART-WHITE-CABIN PART-TYPE-T-TRANSPORT]|

Task 4 Task 7
Task 0.

Location R20 Location MONTRAC
Requirements 3 Requirements 5
ROBOTIC_PICK R20 R20_TABLE SVR20 X2_Y3_Z0_R12 PART-YELLOW-DUMPER PART-TYPE-T-BIG-STORAGE| SHUTTLE_DEPART SHUTTLE2 5100 5200/

Location MONTRAC
SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 5100

Task 5 Tesk 8 Tsk 13

Location R20 Location MONTRAC Location MONTRAC
Requirements 4 Requirements 7 Requirements 7
ROBOTIC_PLACE R20 SHUTTLE2 5100 X0_Y5_Z7_R0 PART-YELLOW-DUMPER PART-TYPE-T-TRANSPOR SHUTTLE_DEPART SHUTTLE3 523 5100} SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 5200

Task 6 Tesk 9

Location R20 Location MONTRAC
Requirements 5 Requirements 8
ROBOTIC_PICK R20 R20_TABLE SVR20 X1_Y0_Z0_RS PART-BLACK-CHASSIS PART-TYPE-T-BIG-STORAGE SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 5100

Task 10

Location R20
Requirements 9 6
ROBOTIC_PLACE R20 SHUTTLE3 S100 X0_Y5_Z5_RO PART-BLACK-CHASSIS PART-TYPE-T-TRANSPORT)

Location R20
Requirements 10
ROBOTIC_PICK R20 R20_TABLE SVR20 X0_Y0_Z0_R1 PART-BLUE-CABIN PART-TYPET-BIG-STORAGE

Task 12

Location R20
Requirements 11
ROBOTIC_PLACE R20 SHUTTLE3 S100 X0_Y21_Z7_R90 PART-BLUE-CABIN PART-TYPE-T-TRANSPORT]

Location R20
Requirements 12
ROBOTIC_PICK R20 R20_TABLE SVR20 X2_Y1_Z0_R10 PART-WHITE-STAKEBED PART-TYPE-T-BIG-STORAGE|

Task 15 @ Tosk ouEvED Task data H
Location R20 Task PROCESSING L _ 3 Main MES H
Requirements 14 @ Tosk FATLED 03 subordinate MES 4
ROBOTIC_PLACE R20 SHUTTLE3 S100 X0_Y5_Z7_RO PART-WHITE-STAKEBED PART-TYPE-T-TRANSPORT| @ Task pone — Requirement

Figure 5. Example for a LispPlan that was computed in 7s using one of the faster heuristics (search
parameters: --search "lazy_wastar ([ff(),cea(),hmax()], bound=100, boost=0)").

3.3. Distributed Manufacturing Execution System with On-The-Fly Replanning Capability

Since the MES presented in this article is a distributed MES (DMES), it enables running
one or more instances on different servers/computers (uniquely identified by their URLs)
and with different competencies (such as 140 devices and sub-MESs). All DMES instances
are specified in one configuration file represented in the PyAutomationML [77] data format.
PyAutomationML (available online: https:/ /github.com /CIIRC-ISI/PyAutomationML,
accessed on 11 January 2023) is our extension for supporting Python 3 injections in the
AutomationML (available online: https:/ /www.automationml.org, accessed on 11 January
2023) data format. This extension makes it possible to efficiently represent the entire
production line (including 140 devices, digital twins, relationships of PDDL actions with
140 devices, etc.) in a single configuration file.

https://github.com/CIIRC-ISI/PyAutomationML
https://www.automationml.org

Sustainability 2023, 15, 6251

12 of 27

(DEFINE (TASK BUILDING_TRUCK)

(:METADATA
(:ID
(03C2CADED518237E30C983DF9837FCC3DIBAEEEDA07FB636D60621A01390A581
)
(:DURATION-IN-SECONDS 359.6869435933933)
(:TOTAL-TIME-SPENT-IN-SECONDS 426.5899835256443)
(:ENERGY-IN-WATT-HOURS 11.306758909567701)
(:TOTAL-ACTIONS 16))
(:LOCATION TESTBED.CIIRC.CVUT.CZ)
(DEFINE (TASK 0)
(:LOCATION MONTRAC)
(:ACTION (SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 $100)))
(DEFINE (TASK 1)
(:REQUIREMENTS ©)
(:LOCATION R20)
(:ACTION (ROBOTIC_PLACE
R20 SHUTTLE2 S100 X@_Y5_Z5_Re
PART-BLACK-CHASSIS PART-TYPE-T-TRANSPORT)))
(DEFINE (TASK 2)
(:REQUIREMENTS 1)
(:LOCATION R20)
(:ACTION (ROBOTIC_PICK
R20 R20_TABLE SVR20 X0_Y1_Z0_R2
PART-WHITE-CABIN PART-TYPE-T-BIG-STORAGE)))
(DEFINE (TASK 3)
(:REQUIREMENTS 2)
(:LOCATION R20)
(:ACTION (ROBOTIC_PLACE
R20 SHUTTLE2 S10@ XO_Y21_Z7_R90
PART-WHITE-CABIN PART-TYPE-T-TRANSPORT)))
(DEFINE (TASK 4)
(:REQUIREMENTS 3)
(:LOCATION R20)
(:ACTION (ROBOTIC_PICK
R20 R20_TABLE SVR20 X2_Y3_ZO_R12
PART-YELLOW-DUMPER PART-TYPE-T-BIG-STORAGE)))
(DEFINE (TASK 5)
(:REQUIREMENTS 4)
(:LOCATION R20)
(:ACTION (ROBOTIC_PLACE
R20 SHUTTLE2 S100 X@_Y5_Z7_Re
PART-YELLOW-DUMPER PART-TYPE-T-TRANSPORT)))
(DEFINE (TASK 6)
(:REQUIREMENTS 5)
(:LOCATION R20)
(:ACTION (ROBOTIC_PICK
R20 R20_TABLE SVR20 X1_Y@_Z0_RS
PART-BLACK-CHASSIS PART-TYPE-T-BIG-STORAGE)))

(DEFINE (TASK 7)
(:REQUIREMENTS 5)
(:LOCATION MONTRAC)
(:ACTION (SHUTTLE_DEPART SHUTTLE2 S100 S200)))
(DEFINE (TASK 8)
(:REQUIREMENTS 7)
(:LOCATION MONTRAC)
(:ACTION (SHUTTLE_DEPART SHUTTLE3 S23 $100)))
(DEFINE (TASK 9)
(:REQUIREMENTS 8)
(:LOCATION MONTRAC)
(:ACTION (SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 $100)))
(DEFINE (TASK 10)
(:REQUIREMENTS 9 6)
(:LOCATION R20)
(:ACTION (ROBOTIC_PLACE
R20 SHUTTLE3 S100 X0_Y5_Z5_RO
PART-BLACK-CHASSIS PART-TYPE-T-TRANSPORT)))
(DEFINE (TASK 11)
(:REQUIREMENTS 10)
(:LOCATION R20)
(:ACTION (ROBOTIC_PICK
R20 R20_TABLE SVR20 X@_Y@_z0_R1
PART-BLUE-CABIN PART-TYPE-T-BIG-STORAGE)))
(DEFINE (TASK 12)
(:REQUIREMENTS 11)
(:LOCATION R20)
(:ACTION (ROBOTIC_PLACE
R20 SHUTTLE3 5100 X0_Y21_Z7_R90
PART-BLUE-CABIN PART-TYPE-T-TRANSPORT)))
(DEFINE (TASK 13)
(:REQUIREMENTS 7)
(:LOCATION MONTRAC)
(:ACTION (SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 $200)))
(DEFINE (TASK 14)
(:REQUIREMENTS 12)
(:LOCATION R20)
(:ACTION (ROBOTIC_PICK
R20 R20_TABLE SVR20 X2_Y1_Z0_R10
PART-WHITE-STAKEBED PART-TYPE-T-BIG-STORAGE)))
(DEFINE (TASK 15)
(:REQUIREMENTS 14)
(:LOCATION R20)
(:ACTION (ROBOTIC_PLACE
R20 SHUTTLE3 S100 X0_Y5_Z7_RO
PART-WHITE-STAKEBED PART-TYPE-T-TRANSPORT)))))

Figure 6. Text representation of the LispPlan visualized in Figure 5.

The overall proposed architecture of our DMES, along with its digital twin, is shown
in Figure 4. Production orders are obtained from the ERP system (shown as 1) using
the HTTP-REST interface from the main DMES instance (shown as 2). The main DMES
instance then uploads the production goal in PDDL format to the digital twin (shown
as 3) that includes a planning and scheduling service (shown as 6), which combines this
goal specification with the PDDL domain formalization of the production line and the
current/latest state of the production line, which is retrieved from the encapsulated basic
digital twin (shown as 4) containing only the PDDL model. The expected costs of actions
for the PDDL Al planner are obtained empirically from the Measured Runtime Data Processor
and Collector (shown as 5). If a plan is found by the PDDL planner, then this sequential
plan is parallelized and translated by the scheduler into a LispPlan and then passed to the
LispPlan Parameter Estimator (shown as 7), which calculates estimates of expected remaining
time, energy consumption, etc., and adds these calculations as metadata to the LispPlan.
Then, the final LispPlan (shown as 8) is passed back to the main DMES instance in order to
be used for the next concrete production steps.

A typical DMES application consists of several instances of MES, with one of them
representing the main instance. The specific number of DMES instances depends on the size
of the real system and its spatial distribution. An example of a structure with five DMES
instances is shown in Figure 7. The main instance is denoted by MESy. This main instance is
the only instance that is able to receive the whole LispPlan and then delegates the respective
parts of this LispPlan directly to subordinate MESs. The “direct subordination” relationship
is fully specified by the location parameter of each DMES instance: just like the relationship
between Internet domains and their subdomains, by using a dot-separated syntax. This
LispPlan delegation process to direct subordinate MESs continues recursively, traversing the

Sustainability 2023, 15, 6251

13 of 27

tree structure of all relevant DMES instances. Figure 7 illustrates just one particular structure
of DMES instances, but other real system topologies can require different branching of this
tree structure of DMES instances, assignments of devices to the MES instances, as well
number of the instances. The specific structure depicted in Figure 7 covers two levels of
DMES instance subordination and each instance may have 0-n a number of subordinate
MESes. Each DMES instance may have 0-n devices assigned to it. Assigning no device
to some DMES instance may seem strange at first glance, but may, for example, represent
a situation when DMES instances 3 and 4 are spatially distributed from the rest of the
system and they work in parallel and should be orchestrated as a whole. This is frequently
the case in material handling where two parallel loading or unloading stations operate
independently of each other but are managed as a unit by a common fleet or logistics
management system. An important observation from Figure 7 is not only the tree structure
of DMES instances and their communication with direct parental and child nodes only,
but also communication of all DMES instances with one common/shared digital twin that
serves as the main entity keeping the actual state of the production system.

MES,

Device, M Esl M ESZ Device,

K AOR
.
K .
- '0.
o .
o .~
| .
» hT'

Device, M E53 M ES4

Digital Twin 7
with / \ y

Al Planner Device, Device, Deviceg

Figure 7. A generic example of the hierarchical DMES communication structure. Each DMES instance
(denoted MESy-MES,) can control directly connected 140 devices (denoted Devicey—Devices) that are
spatially and logically close to the specific DMES instance. In order to synchronize the manufacturing
execution process, each DMES instance communicates only with its parental DMES instance, or with its
subordinate DMES instances, but it cannot communicate with any other instances. In addition, each MES
instance communicates with the digital twin to get and to update the state of the production system and
its digital replica. The numbers of DMES instances as well as connected devices are arbitrary and set up by
system integrators/engineers based on the size and nature of the production system.

A detailed description of this delegation and execution process of the LispPlan is given
in Algorithm 1: each DMES instance is represented by one running MES procedure defined
in Algorithm 1. The procedure starts by waiting for the input parameters plan and source
(line 2), where plan is a LispPlan and source is either a location of the parental MES (i.e.,
the MES sending the delegated segment of the LispPlan) or None, if it is the main DMES
instance. After the initialization phase (lines 3-8), the mes_pool variable will contain all
MESs that are directly connected (for LispPlan delegation and execution) to the current
MES and are involved in the current LispPlan execution. The delegation process of sending
sub-plans to directly subordinate MES instances is performed on lines 5-8. Once all parts
of the LispPlan that can be delegated to other MES instances have been delegated, the
execution core of MES procedure can begin (lines 9-42).

Sustainability 2023, 15, 6251 14 of 27

Algorithm 1: Definition of an instance of a distributed MES

1 procedure MES:

2 wait until this MES instance is delegated with a tuple (plan: LispPlan, source®: location of where the plan came from) ;
3 mes_pool =@ ; // this set will contain only direct children or parent MESs
4 if source is not None then add the parent MES from source to mes_pool ;

5 foreach fask’ in plan using DFS or BFS ordering® do

6 if task is not yet delegated and there is another ready/waiting MES instance m that is able? to process task then
7 Delegate the task and all its sub-tasks to MES m as a new standalone sub-LispPlan ;
8 L Add MES m to mes_pool ;

9 foreach task’ in plan where task is not delegated to another MES do
10 if task can be processed by the current MES then

1 begin parallel thread

12 Set the state of task to QUEUED;

13 wait until all task requirements are fulfilled® ;

14 Set the state of task to PROCESSING ;

15 if task contains an action then

16 switch result of action start committed to the Digital Twin do

17 case the action has already started do

18 L break ;

19 case successful but a new plan is available do

20 L Report that a new plan is available to this MES instance ;

21 case successful // in accordance with the current plan

2 do

23 if Process the action on the real hardware and then

2 Commit action done to the Digital Twin then

25 L Set the state of task to DONE ;

26 else Set the state of task to FAILED ;

27 break ;

28 case failed but a new plan is available do

29 L Report that a new plan is available to this MES instance ;

30 otherwise do // failed and no new plan is available

31 Set the state of task to FAILED ;

32 break ;

33 else

34 Set the state of task to PENDING ;

35 wait until all its sub-tasks are processed or any sub-task is failed ;

36 if all sub-tasks were processed successfully then

37 L Set the state of task to DONE ;

38 else Set the state of task to FAILED ;

39 terminate thread ;
40 else // task cannot be processed on the current MES infrastructure

Il Set the state of task to FAILED ;

2 L break ;
43 repeat
4 wait until task state is changed or a new plan is available ;

45 if a new plan is available then

16 terminate all local tasks in state QUEUED or PENDING ;

47 Redistribute to MESs in mes_pool that the new plan is available ;

48 if source is None then

49 Download the new plan from the Digital Twin into plan ;

50 goto line 3 ; // The main MES instance starts with the new plan.
51 else

52 L goto line 2 ; // The MES instance will wait for a new plan.
53 if task state changes/ then sync plan and redistribute to MESs in mes_pool;

54 until plan is completed® or MES is interrupted;
55 if MES is interrupted because of failure or external intervention then
56 L terminate safely all local tasks ;

57 gotoline2; // The MES instance will wait for a new plan.
? to distinguish between a main LispPlan (source==None) or a redistributed part of that LispPlan on a specific sub-MES.
b including all sub-tasks
¢ any parent must be processed prior to its children
d

determined from task location

¢ all tasks specified in requirements are in DONE state and the parent task is in PROCESSING state
/' sync is received from another MES

8 all tasks including all sub-tasks in plan are in DONE state

Each task of the LispPlan is processed in parallel in a separate thread. First, the task is
initialized to the QUEUED state (line 12). If all the requirements of task are met, the execution

Sustainability 2023, 15, 6251 15 of 27

of this task can begin and its state changes to PROCESSING. Then two cases need to be
resolved (if condition at line 15):

1. If task contains no action but has sub-tasks, then (lines 34-38) task waits for the
sub-tasks to be processed (lines 34-35) in the PENDING state, and then if everything
succeeds (line 36), task is set to DONE. Otherwise, task is set to FAILED (line 38).

2. If task contains an action (and has no sub-task, which is the only option according to
the LispPlan format), then the process continues on the switch statement (lines 16-32).
The switch control expression contains the response of the digital twin to action start
with the following cases:

(a) The action has already started in the past.
Then, leave the switch statement (lines 17-18).

(b) The action started successfully in the digital twin, but a new plan was com-
puted in the digital twin.
In this case, the action can start on the real production line because it is valid
with the digital twin (the PDDL model and the new plan), but the new plan
needs to be downloaded into all DMES instances.
Because of that, this new plan availability is reported to the current instance of
DMES (line 20), and then this case continues to the next subsequent case.

(c) The action started successfully (and the current plan is still valid).
The processing on the real production line is started (line 23) and then action
done is committed to the digital twin (line 24). If a problem occurs, something
unexpected must have happened, and the task state is set to FAILED (line 26).
Otherwise, everything has been successful and task is set to DONE (line 25).

(d) The action cannot be started (because it does not conform to the model or plan
of the digital twin), and a new plan was computed in the digital twin.
Then, this new plan availability is reported to the current instance of DMES,
and then this case continues to the next subsequent case.

(e) The action cannot be started because it does not conform to the model of the
digital twin, and the current plan is still valid.
Let the task state be set to FAILED (line 31).

Now, the thread has resolved all the cases and can be safely terminated (line 39).

If any task state changes, the current DMES instance is immediately informed / syn-
chronized from lines 12, 14, 25, 26, 31, 34, 37, and 41. Such changes are then gradually
propagated (line 52) to all DMES instances. If a new plan availability is reported to the
current DMES instance (line 44), then all tasks (which were started by this DMES instance)
in state QUEUED or PENDING are terminated, and then information about the new plan
availability is reported (line 46) to all neighboring DMES instances from mes_pool.

Now, if the current DMES instance is the main instance, then the new plan from the
digital twin is downloaded, and the DMES instance is reinitialized by jumping to line 3.
Otherwise, the current instance is reinitialized by jumping to line 2, which means waiting
for a new sub-plan.

As soon as all of the tasks become DONE, then the LispPlan processing is completed
successfully (line 53), and all DMES instances start waiting for the next LispPlan job by
jumping to line 2. If any of the tasks become FAILED, then the LispPlan execution has to be
interrupted (lines 54-55), the root problems resolved, and the MES execution procedure
can be restarted with a new valid LispPlan.

3.4. Basic Digital Twin Based on PDDL Model

In this article, we use nesting of digital twins. The advantages of this approach include
reduced risk of programming errors (decomposing the problem into smaller well-defined
units simplifies the code, facilitates the creation of unit tests, and thus reduces the overall
risk of errors), and it improves the possible horizontal scalability, which is increasingly
important, especially when moving to cloud platforms.

Sustainability 2023, 15, 6251

16 of 27

The role of the basic digital twin is to check and interpret the actions defined in the
PDDL domain against the current PDDL state. The following actions are supported:

* action check — Checks whether the action can be executed.

* action start — Starts the action if possible. Otherwise, an error code is returned.

* action done — Completes the action if possible. Otherwise, an error code is returned.

e get state — Returns the current state of the basic digital twin in terms of a PDDL
problem.

* set domain and problem — Sets up a new PDDL domain and problem.

The main difference of the basic digital twin compared to the classic PDDL interpreter
is the support to initiate multiple operations in parallel. Without this support, it would
be impossible to validate the execution of a potentially parallel LispPlan. However, the
basic PDDL standard does not provide such support and its durative extension is not
feasible, as discussed above. Therefore, it was necessary to add support for a retrospective
parallelization effort, while supporting a simple and safe form of parallelization of actions.
The idea of parallelization in our case is based on the analysis of blocking resources. A
blocking resource is a special resource type that cannot be used more than once at the
same time. We have used PDDL action parameters to indicate blocking resources for
each action. More precisely, if an action contains a parameter with a type derived from
BLOCKING-RESOURCE type, then this parameter represents a blocking resource.

A simple example of the use of this type mechanism is the PDDL domain description
in Figure 1, where all the parameters of both SHUTTLE_DEPART and SHUTTLE_ARRIVE actions
are derived from the BLOCKING-RESOURCE type. Note, that the PDDL code in this figure is
very simplified in comparison to the full version that is used in our digital twin: e.g., (i) it
does not include the locking mechanism that is available in some of the stations for precise
positioning and (ii) in the simplification, all the specified types are actually blocking
resources which is not the case in the full PDDL domain specification, which cannot be
reasonably included, as it would be too large.

When the action starts, the digital twin checks whether all blocking resources of
the action are available and whether the precondition of the action is met. All blocking
resources of such an action are released only after the action is successfully completed. This
mechanism allows multiple actions to run in parallel, and the domain programmer only
needs to specify blocking resources for each action in the parameters. Practical experiments
have shown that this way of defining parallel actions simplifies and shortens the entire
formal domain specification in PDDL. Moreover, any standard off-the-shelf sequential
PDDL planner, such as fast downward planning system [78], can be used.

3.5. Digital Twin with Al Planner

To extend the potential of digital twin technology, we decided to add more advanced
features such as Al planning and scheduling to the external/outer digital twin, and we
encapsulated the basic digital twin within it as shown in Figure 8.

The main motivation for this extension of such a digital twin is the idea that both the
production goal (i.e., what is to be produced) and the production plan (i.e., how it is to be
produced) are actually implicit and explicit parts of the real production line. So, we decided
to also reflect this fact (production goal and production plan) in the digital twin as parame-
ters. Since changing the production goal or changing the parameters/resources/skills of
the production line means the need to find a new production plan (LispPlan in our case), we
have integrated an Al planner and scheduler into this digital twin, which can be utilized
whenever needed.

Sustainability 2023, 15, 6251 17 of 27
Digital Twin with Al Planner
Basic Digital Twin based on PDDL model
= definedoman) | (defie (problem ..) HTTP/REST

)) * action check
* qaction start

Al Production the current * action done
Planner & Scheduler production line state * setgoal
as PDDL state * setdomain &
s problem
Problem Generator | |e———
parameters | Measured Runtime
i Data Processor & |
Domain lL Problem JL of act.|ons
as We|ght5 Collector
for planning
PDDL Al Planner parameters
of actions
v
Sequence l f actions parallelized
q ° actions into | LispPlan Parameter
LispPlan Estimator — >
Scheduler | (duration, power . et state
consumption, ...) g
e getplan

Figure 8. A detailed look at the architecture of a digital twin with the Al planner described in
Section 3.5, which includes a nested basic digital twin based on the PDDL production line model (a
detailed example is shown in Figure 1) and an Al-powered planner and scheduler. There is also a
component for collecting and processing information about the runtime parameters of each action,
such as the duration of the action, the energy required to execute the action, etc., and a component
for enriching LispPlan with metadata of expected energy consumption, duration, etc. An overview of
the entire distributed MES architecture, utilizing and benefiting from the digital twin with the AI
planner, is given in Figure 4.

An important advantage of the integration of planning into the digital twin is the
possibility of deeper semantic control during testing or virtual execution of a production
operation/action. Now, the digital twin can detect not only whether a production operation
is valid against the PDDL model of the production line (the functionality of the basic
digital twin) but also whether the production operation is in accordance with the existing
production plan. If it is not in accordance, a new production plan can be automatically
replanned. The following operations extend the functionality of the basic digital twin:

* action check—Checks if the action can be executed and also if the action is in accordance
with the current plan.

* action start—Starts the action if possible and reports back whether the action is in
accordance with the current plan (if not, a replanning is automatically triggered).
Otherwise, an error code is returned.

* action done—Completes the action, if possible, and reports back whether the action is in
accordance with the current plan (if not, a replanning is automatically triggered). Otherwise,
an error code is returned. This action/operation can be enriched with various data
measured from the real production line, such as operation time or power consumption.

* set goal—Sets a production goal in PDDL format and automatically starts the plan-
ning process.

Sustainability 2023, 15, 6251

18 of 27

e set domain and problem—Sets up a new PDDL domain and problem and then automati-
cally starts the planning process if the goal is already specified.

s get state—Returns the current state of the digital twin as a PDDL problem.

e get plan—Returns the current LispPlan, if any, or reports the status of the planning
process. Operations already performed are continuously reflected in the returned plan.
A newly computed plan is identifiable by changing the unique hash tag of the plan
(calculated as SHA256), which is stored in the plan’s metadata. The resulting LispPlan
also contains in its metadata estimations of the remaining time, the total number of
actions/operations, and the total energy consumption.

Another important feature of the digital twin with an Al planner is the ability to
improve an existing plan (even while production is running) by speculatively replanning,
using a different PDDL planner or the same PDDL planner with a different search strategy.

After a PDDL problem change (i.g., due to a new production goal or a production line
state change), the PDDL planner is first run with a search strategy so that the potential
resulting plan is found in the shortest possible time, regardless of the quality of the plan.
Once such a “quick” plan is found and scheduled, production can immediately begin in
the spirit of “time is money”. However, since the production process itself takes time, this
time can be used for a more time-consuming search for higher quality plans (with shorter
execution time, lower energy consumption, or other relevant metrics).

In our experiments we used the fast-downward (lavailable online: https:/ /www.fast-
downward.org, accessed on 11 January 2023) PDDL planner. With appropriately optimized
search strategy parameters and partial decomposition of the PDDL goal into sub-goals, we
were able to find even very complex plans within seconds (Figure 9). On the other hand,
finding high-quality plans without decomposing the PDDL problem into sub-problems
took easily tens of hours of planning with very high RAM consumption. Given the large
variance in the computing times of different planners (or the same planners with different
search strategy configurations), we started with the fastest planning strategy and then
gradually called potentially higher quality but slower planners if there was still time for
further planning. If any of the previously invoked strategies was complete (such as A* [79])
and if no plan was found, we could terminate further searches with the assumption that
the completeness of the search strategy guaranteed the non-existence of a plan.

There is another important aspect of finding a new plan while an existing plan is
being already executed by the DMES. It is the selection of the correct initial state (from all
reachable states of the current plan) as a starting point from which the new plan will be
computed. In case the currently executed plan reaches or even exceeds the assumed initial
state while the new plan has not yet been found, the search for this new plan should be
canceled, as it would not be possible to continue after its eventual completion because the
current plan and the new plan no longer share a common state from which DMES could
switch from one plan to the other. The following different strategies/approaches can be
considered to select a suitable starting point:

1. Empirical ad-hoc approach, where each search strategy has its own time limit based
on the empirical knowledge of the programmer. If this time limit is exhausted, the
search stops and another search strategy is used instead. The pre-known time limit
for each search strategy determines the appropriate starting point for beginning the
planning process.

2. Backward iterative deepening approach, where planning starts at the point of the last
operation before the end of the current plan and then iteratively extends in time
toward the beginning of the plan. Since the computation time of such a plan usually
increases exponentially with the expected length of the plan, the time required to
compute all previous plans usually does not significantly exceed the computation
time of the new plan in the next iteration.

3. Machine learning estimation approach where the task is to estimate the duration of
the planning process. Inputs can be a suitable representation of the particular search
strategy used, the PDDL goal, and possibly even the entire PDDL problem.

https://www.fast-downward.org
https://www.fast-downward.org

Sustainability 2023, 15, 6251

19 of 27

TESTBED.CIIRC.CVUT.CZ

@ Task QUEUED Task data > [EULD
Task PROCESSING I _ ¥ Main MES -

@ Tosk FaTiED 75 subordinate MES _

@ Task ponEe — Requirement

m
i
i

RT

Figure 9. An example of a rather complex LispPlan, which was automatically computed using the digital
twin with AI planner in less than ten seconds. It consists of 164 operations and produces three different
trucks at once. The purpose of this figure is not to go into detail, but to illustrate the manageable complexity
of the proposed on-the-fly planning in conjunction with flexible manufacturing execution.

In this article, we have implemented the first approach, but we plan to focus on the
other two in future research. Of course, several search strategies could be run in parallel,
but in this article we relied on a sequential approach to run different search strategies.
However, we are planning to parameterize the maximum number of parallel running
search instances inside the digital twin with Al planner to achieve (i) better scalability and
(ii) an overall speed-up of the entire planning and, subsequently, the production process.

4. Evaluation and Discussion

Our implementation was evaluated on the 140 testbed, based on the assumption that
the use of our digital twin with an Al planner with its online support for instantaneously
changing the executed plan in our distributed MES can effectively reduce the energy
consumption of production, and thus contribute to better sustainability in industry.

Sustainability 2023, 15, 6251

20 of 27

The following example illustrates the overall process of our DMES together with the
digital twin with Al planner. It all starts with a production order for two trucks (truck
one consists of a black chassis, a blue cabin, and a white stakebed and it will be finally
transported to station S200; truck two consists of a black chassis, a white cabin, and a yellow
dumper and will be finally transported to station S100). It is transmitted in the following
PDDL goal formulation:

(:goal
(and
(exists
(?P1 - POSITION ?P2 - POSITION ?P3 - POSITION
7?81 - SHUTTLE-RESOURCE ?7S2 - SHUTTLE-RESOURCE)
(and
(RESOURCE_CONTAINS_PART_AT ?S1 PART-TYPE-T-TRANSPORT PART-BLACK-CHASSIS 7P1)
(RESOURCE_CONTAINS_PART_AT ?S1 PART-TYPE-T-TRANSPORT PART-YELLOW-DUMPER ?P2)
(RESOURCE_CONTAINS_PART_AT ?S1 PART-TYPE-T-TRANSPORT PART-WHITE-CABIN ?7P3)
(IS_RESOURCE_ENABLED ?7S1)
(RESOURCE_CONTAINS_PART_AT ?S2 PART-TYPE-T-TRANSPORT PART-BLACK-CHASSIS ?7P1)
(RESOURCE_CONTAINS_PART_AT 7S2 PART-TYPE-T-TRANSPORT PART-WHITE-STAKEBED ?7P2)
(RESOURCE_CONTAINS_PART_AT 7S2 PART-TYPE-T-TRANSPORT PART-BLUE-CABIN ?P3)
(IS_RESOURCE_ENABLED 7S2)
(RESOURCE_IN_STATION 7S1 S200)
(RESOURCE_IN_STATION 7S2 $100))))

This PDDL goal is then sent to the digital twin with an Al planner. There, the current
production state is retrieved from the basic digital twin, as well as the expected action costs
from the measured runtime data processor and collector. From these data, the problem
generator creates the PDDL domain and the problem for the PDDL Al planner. If a solution
is found in the form of a sequence of actions, then it is sent to the scheduler to be parallelized
in terms of a LispPlan. Next, the LispPlan parameter estimator enriches with the following
additional metadata (hash ID of the plan and calculated estimates of energy consumption,
plan execution duration, etc.):

(:METADATA

(:ID
C999DCD2A01F6B0902055CDAFSFOAOSD93F7A80C98ED0282AC9539F7C77ESD80

)
(:DURATION-IN-SECONDS 360.34093340513164)
(:TOTAL-TIME-SPENT-IN-SECONDS 490.91739162084514)
(:ENERGY-IN-WATT-HOURS 13.051901711931999)
(:TOTAL-ACTIONS 20)

Table 1 provides the expected execution time and energy consumption of operations
that have already been collected and processed in previous runs and that are used for the
estimates in the metadata. Next, LispPlan is sent back to the main instance of the DMES,
where it is partitioned for each MES instance. The resulting plan visualization (including
partitioning) from this stage can be seen in Figure 10. In this particular case, three MES
instances were used:

¢ The main TESTBED.CIIRC.CVUT.CZ MES instance (marked by the outer dashed line
with transparent fill in Figure 10).

® The MONTRAC.TESTBED.CIIRC.CVUT.CZ MES instance (marked by a dashed line with
cyan fill in Figure 10).

¢ The R20.TESTBED.CIIRC.CVUT.CZ MES instance (marked by a dashed line with cyan
fill in Figure 10).

Sustainability 2023, 15, 6251

21 of 27

TESTEED CIIRC.CVUT.CZ

Task 2

Tazk BUILDING_TRUCK.

Cocoton R20
ROBOTIC_PICK 120 R20_TABLE SVR20 X1Y3 2078 PARTBLACK CHASSIS PARTTYPE T51G-STORAGE

sk 0

Location MONTRAC

s
ROBOTIC_PICK R20 R20_TABLE SVR20 X2_Y3_Z0_R12 PART-YELLOW-DUMPER PART-TYPE-T-BIG-STORAGE e DEPART SHUTTLE2 222 2100

R20

6
ROBOTIC_PLACE R20 SHUTTLE2 5100 X0_Y FYELLOW-DUMPER PART-TYPE-T-TRANSPORT)

Teck 14 Task 13 Task 11

Location R20 Location MONTRAC Location MONTRAC
Requirements 7 Requirements Requirements 10
[ROBOTIC_PICK R20 R20_TABLE SVR20 X1_Y2_Z0_R7 PART-BLACK-CHASSIS PART-TYPE-T-BIG-STORAGE | [SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 5100 |SHUTTLE_DEPART SHUTTLE $12 5200)

@ Tosk oosen [Tosk data
Task procEssING L _ 3 Main MES,
- Tosk e T35 subordinate Mes

T @D Tosk vone —> Requirement
ROBOTIC_PLACE R20 SHUTTLE3 5100 X0_Y5_27_RO PART-WHITE-STAKEBED PARTTYPE-T-TRANSPORT

Figure 10. An example of a LispPlan that was computed in less than one second using the fastest
heuristic (with worst quality) composed of several fast-downward calls on PDDL subgoals. The
visualization is part of the DMES web interface and was automatically generated from the LispPlan.

The entire process from the beginning up to this point took less than one second of
computation time on a single core of the 140 testbed server (Intel® Xeon® CPU E5-2630
v2 @ 2.6 GHz, 4 cores in total, 32 GB RAM, 500 GB SSD storage, OS: Ubuntu 20.04.4 LTS
(GNU/Linux 5.4.0-121-generic x86_64)).

At this point, the real production as well as the speculative replanning inside the digital
twin has started. More precisely, the first two actions without requirements (Task 0 and Task 2)
were started on the digital twin (by calling action start) and on the real production line.

While both actions are being executed and later passed to the digital twin (by calling action
done), a new and better plan was found. The information about the new plan is now propagated
to the DMES and subsequently distributed to all MES instances as described in Algorithm 1. The
situation, where a new action has already started with the new plan, is visualized in Figure 5.
The resulting LispPlan source code of the new plan is shown in Figure 6.

The replanning resulted in saving two actions that performed shuttle movement.
Task 8: SHUTTLE_DEPART and Task 10: SHUTTLE_ARRIVE_AND_LOCK of the old plan are
not necessary in the new plan. While the total estimated time to complete the plan
(:DURATION-IN-SECONDS) has remained almost the same, the expected energy savings
due to the reduction in the number of operations sum up to almost 0.87 Wh. In reality, the
energy savings were lower than expected (approximately 0.77 Wh) because our model for

Sustainability 2023, 15, 6251

22 of 27

estimating the energy consumption of individual operations is not able to simulate com-
plete behavior of measured devices, especially when measuring the operations performed
by the Montrac transport system (so we now estimate the consumption proportionally to
the duration of the operation only). Table 2 reports all measurements of execution times
and energy consumption made during the production of this example on an 140 testbed
production line.

Table 1. Selected measured execution time and energy consumption of production operations related
only to the use-case in Section 4 out of a total of 1113 recorded operations at 140 testbed. The symbol
“...” indicates that the parameter (or part of it) in operation is not relevant for the measurement and
is therefore not included in the table. Every measured operation in this table was recorded at least
ten times. The energy measurement is the difference between the energy consumption in the idle

state and the energy consumption in the active state on a specific related device.

. . Execution Time Energy Consumption

Operation/Action (Mean + SD) [s] (Moan - SD) [Wh]

(ROBOTIC_PICK R20 ... SVR20 ...R8 PART-BLACK-CHASSIS ...) 16.74+0.17 0.9626 + 0.0099
(ROBOTIC_PLACE R20 ... S100 ... PART-BLACK-CHASSIS ...) 10.73 £0.26 0.3291 £+ 0.0079
(ROBOTIC_PICK R20 ... SVR20 ... PART-WHITE-CABIN ...) 15.84 +£0.23 0.9106 £ 0.0130
(ROBOTIC_PLACE R20 ... S100 ... PART-WHITE-CABIN ...) 12.36 +0.20 0.3789 £ 0.0062
(ROBOTIC_PICK R20 ... SVR20 ... PART-YELLOW-DUMPER ...) 17.00 +0.23 0.9776 £+ 0.0131
(ROBOTIC_PLACE R20 ... S100 ... PART-YELLOW-DUMPER ...) 10.53 +0.12 0.3228 + 0.0037
(ROBOTIC_PICK R20 ... SVR20 ...R5 PART-BLACK-CHASSIS ...) 15.73 £0.03 0.9045 + 0.0017
(ROBOTIC_PICK R20 ... SVR20 ... PART-BLUE-CABIN ...) 15.48 +0.28 0.8903 £ 0.0159
(ROBOTIC_PLACE R20 ... S100 ... PART-BLUE-CABIN ...) 12.39 +0.17 0.3799 £ 0.0052
(ROBOTIC_PICK R20 ... SVR20 ... PART-WHITE-STAKEBED ...) 16.00 £ 0.38 0.9202 £+ 0.0219
(ROBOTIC_PLACE R20 ... S100 ... PART-WHITE-STAKEBED ...) 10.45+0.04 0.3203 £+ 0.0013
(SHUTTLE_DEPART SHUTTLE2 S12 S100) 0.52+0.36 0.0017 £+ 0.0012
(SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 S100) from S12 117.40 £ 6.36 1.9566 + 0.1060
(SHUTTLE_DEPART SHUTTLE3 S100 S200) 0.49 +0.21 0.0016 £ 0.0007
(SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 S200) from S100 50.67 £1.91 0.8446 + 0.0318
(SHUTTLE_DEPART SHUTTLE2 S12 S200) 0.51+0.05 0.0017 £ 0.0002
(SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 S200) from S12 61.91+1.20 1.0319 £ 0.0200
(SHUTTLE_DEPART SHUTTLE3 S23 S100) 0.57 +0.19 0.0019 £ 0.0006
(SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 S100) from S23 109.74 £ 3.13 1.8289 + 0.0521

Finally, due to the design of the proposed DMES and the digital twin with AI planner,
it was possible to successfully switch from the old plan to the new one (according to case
(b) in the description of Algorithm 1).

On the one hand, this illustrative example showed real energy savings in the execution
of two fewer actions/operations, representing more than 5%, as a result of the new planning
compared to the first quickly found plan. On the other hand, if we run the better planning
strategy (parameters are described in Figure 6) immediately on the original problem,
it would need 30 seconds of computation with the same resulting quality as the new
plan, which applied two strategies that need less than one second of computation before
production can start. Given that the idle power consumption of the entire production line
of the I40 testbed is at least 410 W and the peak power consumption is not more than
1100 W, this means that this illustrative example showed real power saving of at least 3%
due to the production with the new planning compared to the production with the plan
found by the better strategy only. Based on the test scenarios already performed during
long-term testing in the Industry 4.0 testbed and on our previous results [41], where the
only criterion was the overall plan execution time, a reduction in the total execution time
of the plan has been achieved by reducing the number of operations/actions used. This
leads to energy savings in almost all cases. Therefore, we are convinced that the presented
DMES with integrated Al-based planning can achieve up to 30% energy savings compared
to the first/initial plan found (i.e., using an aggressive search strategy to reach the PDDL
goal as quickly as possible). For further data on execution time reduction using continuous
replanning, see our previous article [33].

Sustainability 2023, 15, 6251

23 of 27

Table 2. Measured execution time and energy consumption of production operations during a
particular run of the use-case in Section 4. The symbol “. . .” indicates that the parameter (or part
of it) in operation is not relevant for the measurement and is, therefore, not included in the table.
The asterisk next to the task ID (two upmost rows of the table) indicates the task/operation from the
first/fastest plan, shown in Figure 10. The operation IDs without the asterisk refer to the improved
plan, depicted in Figure 5. The energy measurement is the difference between the energy consumption
in the idle state and the energy consumption in the active state of specific related devices.

Execution Time Energy

Task ID Operation/Action Consumption
ts] [Wh]

0* (SHUTTLE_DEPART SHUTTLE2 S12 S100) 0.65 0.0022
2% (ROBOTIC_PICK R20 ... SVR20 ...R8 PART-BLACK-CHASSIS ...) 16.67 0.9586
0 (SHUTTLE_ARRIVE_AND_LOCK SHUTTLE2 S100) from S12 121.33 2.0221
1 (ROBOTIC_PLACE R20 ... S100 ... PART-BLACK-CHASSIS ...) 10.68 0.3276
2 (ROBOTIC_PICK R20 ... SVR20 ... PART-WHITE-CABIN ...) 15.85 0.9111
3 (ROBOTIC_PLACE R20 ... S100 ... PART-WHITE-CABIN ...) 12.39 0.3799
4 (ROBOTIC_PICK R20 ... SVR20 ... PART-YELLOW-DUMPER ...) 17.16 0.9870
5 (ROBOTIC_PLACE R20 ... S100 ... PART-YELLOW-DUMPER ...) 10.65 0.3265
6 (ROBOTIC_PICK R20 ... SVR20 ...R5 PART-BLACK-CHASSIS ...) 16.39 0.9423
7 (SHUTTLE_DEPART SHUTTLE3 S100 S200) 0.50 0.0017
8 (SHUTTLE_DEPART SHUTTLE3 S23 S100) 0.51 0.0017
9 (SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 S100) from S23 109.74 1.8289
10 (ROBOTIC_PLACE R20 ... S100 ... PART-BLACK-CHASSIS ...) 10.58 0.3245
11 (ROBOTIC_PICK R20 ... SVR20 ... PART-BLUE-CABIN ...) 15.31 0.8806
12 (ROBOTIC_PLACE R20 ... S100 ... PART-BLUE-CABIN ...) 12.39 0.3798
13 (SHUTTLE_ARRIVE_AND_LOCK SHUTTLE3 S200) from S100 51.22 0.8536
14 (ROBOTIC_PICK R20 ... SVR20 ... PART-WHITE-STAKEBED ...) 15.96 0.9175
15 (ROBOTIC_PLACE R20 ... S100 ... PART-WHITE-STAKEBED ...) 10.60 0.3252
Sum total 447.92 12.3687

5. Conclusions and Future Work

Decreasing the size of production lots in production systems requires a very high
degree of flexibility in production planning and execution, along with a suitable product
design and production system setup. This article addresses the automation system solution
that enables on-the-fly planning and replanning in such a way that the production of
a required product can be started with an initial version of an automatically generated
production plan. The main idea behind the initial plan is that it can be found quickly by the
Al planner at the cost of a possible loss of quality. Once this initial plan is being executed, it
can be improved by replanning using different potentially more computationally intensive
strategies, leading to a higher quality plan with respect to production metrics such as
energy efficiency, total production time, or resources used. Since the newly found plan
must take into account the operations already started (where they may have been started
while searching for this plan), it is essential that the planner is tightly connected to the
digital twin to guarantee a collision-free transition from the original plan to the new one.
Encapsulating the digital twin (basic digital twin based on PDDL model) with a planner
into a new enhanced digital twin (digital twin with Al planner) is one of the most essential
cornerstones of this article.

The proposed solution is in direct contrast to current industrial solutions that are based
on predefined production recipes that are hard-coded or embedded in manufacturing
execution systems, as well as industrial devices used in daily industrial practice right
now. The proposed solution combines the advantage of replanning capabilities with
a distributed MES. This approach enables, for example, a reaction to erroneous states
instantly and a replanning of the production on-the-fly. Therefore, the proposed solution
targets the emerging generation of true Industry 4.0 systems capable of high flexibility
and reconfigurability. This realization has been supported by advances in Al methods
on the level of planners, but also on the level of justifying the running production plans,
mimicking skills of human practitioners, and investigating newly emerging orchestration
and integration patterns for industrial automation.

Testing and validation of the proposed approach has been done in CIIRC’s 140 testbed
during long-term extensive validation studies and presentations for scientists, industrial

Sustainability 2023, 15, 6251

24 of 27

References

practitioners, and even to a wide public audience. The prototype implemented during this
validation period showed that this solution is not just a vision of the far future, butitis a
viable and fully functional option, tested on a laboratory scale. This testing period proved
that the proposed solution is appropriate for long-term and robust deployment.

The benefits of the proposed digital twin-centric solution for flexible and sustainable
manufacturing, i.e., (i) flexible reactions to errors and changes in production, together with
(ii) flexible production following the current needs in the volatile market, lead to a better
utilization of resources and facilitate risk management for 140 production. The approach is
applicable even in incrementally designed 140 systems and processes, since its realization is
based on a software solution and does not require changing machines or other hardware
components (if the shop-floor devices have communication capabilities and can be flexibly
controlled). The approach also improves technical and organizational interoperability in
the automation verticals within smart factories. The level of flexibility fosters resilience and
reliability of the entire manufacturing system and its automation.

Future Work

In future work, it would be interesting to test the proposed approach on a real pro-
duction facility in order to perform stress tests under large-scale industrial conditions. In
our experience, real industrial usage brings significantly higher amounts of data to be
processed, and it would be worthwhile to check response times under such conditions.

Additionally, investigating the distribution of the digital twin with separate models
coupled with planners in a similar manner, like the distributed MES instances, could
prove useful. The intention would be improving the level of reuse and reconfigurability
in large-scale production system engineering projects, in order to be able to easily and
reliably reinstantiate selected parts of production lines to other applications, such as to
duplicate one production line to a new one. Such operations seem to be simple at first, but
they frequently require significant rework with a risk for numerous mismatches (e.g., in
IP addresses). The goal should be to eliminate manual rework and to efficiently support
human engineers with a model-based implementation for such engineering work.

Author Contributions: J.V,, PD. and PN. contributed to the main idea and to the conceptualization.
The software prototypes were implemented by J.V. and P.D. The validation and testing was done by
J.V. and P.D. The structure of the article was designed by J.V. The whole article was written, finalized
and proofread by J.V.,, PD., PN. and B.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This work was funded by the Ministry of Education, Youth and Sport of the Czech
Republic within the project Cluster 4.0 (No. CZ.02.1.01/0.0/0.0/16_026/0008432) and the RICAIP
project that has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 857306. The publication was created with support of the
project “Regeneration of used batteries from Electric Vehicles” (Slovak ITMS2014+ code 313012BUNS),
which is a part of the Important Project of Common European Interest (IPCEI) called the European
Battery Innovation (code OPII-MH/DP/2021/9.5-34), announced as a part of Operational Program
Integrated Infrastructure (EZOP ID 71235).

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Examples of data from this study can be made available upon request.

Conflicts of Interest: The authors declare no conflict of interest.

1. Renna, P; Materi, S. A Literature Review of Energy Efficiency and Sustainability in Manufacturing Systems. Appl. Sci. 2021,

11, 7366. [CrossRef]

2. Tonelli, E; Evans, S.; Taticchi, P. Industrial Sustainability: Challenges, perspectives, actions. Int. J. Bus. Innov. Res. 2013,

7,1751-0252. [CrossRef]

http://doi.org/10.3390/app11167366
http://dx.doi.org/10.1504/IJBIR.2013.052576

Sustainability 2023, 15, 6251 25 of 27

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.

22.

23.
24.

25.

26.

27.

28.

29.

30.
31.

Lezak, E.; Ferrera, E.; Rossini, R.; Masluszczak, Z.; Fialkowska-Filipek, M.; Hovest, G.; Schneider, A.; Lourenco, E.; Baptista, A;
Cardeal, G.; et al. Towards Industry 4.0: Efficient and Sustainable Manufacturing Leveraging MTEF — MTEF-MAESTRI Total
Efficiency Framework. In Research Anthology on Cross-Industry Challenges of Industry 4.0; IGI Global: Hershey, PA, USA, 2021;
pp. 411-435. [CrossRef]

Zarnekow, R.; Brenner, W. Distribution of Cost over the Application Lifecycle—A Multi-case Study. In Proceedings of the
European Conference on Information Systems (ECIS), Regensburg, Germany, 26-28 May 2005; pp. 68-79.

Berghout, E.; Nijland, M.; Powell, P. Management of lifecycle costs and benefits: Lessons from information systems practice.
Comput. Ind. 2011, 62, 755-764. [CrossRef]

Gong, G.; Chiong, R.; Deng, Q.; Han, W.; Zhang, L.; Huang, D. Energy-efficient production scheduling through machine on/off
control during preventive maintenance. Eng. Appl. Artif. Intell. 2021, 104, 104359. [CrossRef]

Amar, B.; Subhrojyoti, R.C.; Barnali, B.; Dhakshinamoorthy, R.; Seenivasan, A.; Naveenkumar, S. Knowledge driven rapid
development of white box digital twins for industrial plant systems. In Proceedings of the IECON 2021—47th Annual Conference
of the IEEE Industrial Electronics Society, Toronto, ON, Canada, 13-16 October 2021; pp. 1-6. [CrossRef]

Tao, F; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157-169. [CrossRef]

Zenisek, J.; Wild, N.; Wolfartsberger, J. Investigating the Potential of Smart Manufacturing Technologies. Procedia Comput. Sci.
2021, 180, 507-516. [CrossRef]

Vogel-Heuser, B.; Bauernhansl, T.; Ten Hompel, M. Handbuch Industrie 4.0 Bd. 4. Allg. Grund. 2020, 2. [CrossRef]

Etz, D.; Frithwirth, T.; Kastner, W. Flexible Safety Systems for Smart Manufacturing. In Proceedings of the 25th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA 2020), Vienna, Austria, 8-11 September 2020; Volume 1,
pp. 1123-1126. [CrossRef]

Wenzelburger, P.; Allgower, F. Model Predictive Control for Flexible Job Shop Scheduling in Industry 4.0. Appl. Sci. 2021, 11, 8145.
[CrossRef]

Garcia-Menéndez, D.; Moréan-Palacios, H.; Vergara-Gonzalez, E.P.; Rodriguez-Montequin, V. Development of a Steel Plant
Rescheduling Algorithm Based on Batch Decisions. Appl. Sci. 2021, 11, 6765. [CrossRef]

Renna, P. Special Issue: The Planning and Scheduling of Manufacturing Systems. Appl. Sci. 2022, 12, 1713. [CrossRef]

Segovia, M.; Garcia-Alfaro, J. Design, Modeling and Implementation of Digital Twins. Sensors 2022, 22, 5396. [CrossRef]

Matt, D.T.; Modrék, V.; Zsifkovits, H. Implementing Industry 4.0 in SMEs: Concepts, Examples and Applications; Palgrave Macmillan,
Springer: Cham, Switzerland, 2021. [CrossRef]

Xu, L.D,; Xu, E.L,; Li, L. Industry 4.0: State of the art and future trends. Int. . Prod. Res. 2018, 56, 2941-2962. [CrossRef]
Kagermann, H.; Wahlster, W. Ten Years of Industrie 4.0. Sci 2022, 4, 26. [CrossRef]

Ejsmont, K.; Gladysz, B.; Kluczek, A. Impact of Industry 4.0 on Sustainability—Bibliometric Literature Review. Sustainability
2020, 12, 650. [CrossRef]

Kiel, D.; Miiller,] M.; Arnold, C.; Voigt, K.I. Sustainable Industrial Value Creation: Benefits and Challenges of Industry 4.0. Int.].
Innov. Manag. 2017, 21, 1740015. [CrossRef]

Ghaithan, A.; Khan, M.; Mohammed, A.; Hadidi, L. Impact of Industry 4.0 and Lean Manufacturing on the Sustainability
Performance of Plastic and Petrochemical Organizations in Saudi Arabia. Sustainability 2021, 13, 1252. [CrossRef]

International Electrotechnical Commission. Enterprise Control System Integration—Part 1: Models and Terminology; ISA-95.00.01-
CDV3; IEC: Durham, NC, USA, 2013.

Hajda, J.; Jakuszewski, R.; Ogonowski, S. Security Challenges in Industry 4.0 PLC Systems. Appl. Sci. 2021, 11, 9785. [CrossRef]
Trebuna, P.; Pekarcikova, M.; Dic, M. Comparing Modern Manufacturing Tools and Their Effect on Zero-Defect Manufacturing
Strategies. Appl. Sci. 2022, 12, 1487. [CrossRef]

Qureshi, M.R.N.M. Evaluating Enterprise Resource Planning (ERP) Implementation for Sustainable Supply Chain Management.
Sustainability 2022, 14, 4779. [CrossRef]

Deutsches Institut fiir Normung. Reference Architecture Model Industrie 4.0 (RAMI4.0). 2016. Available online: https:/ /ec.europa.
eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf (accessed on 11
January 2023).

Wally, B.; Huemer, C.; Vogel-Heuser, B. Modelling the Top Floor: Internal and External Data Integration and Exchange. In Digital
Transformation: Core Technologies and Emerging Topics from a Computer Science Perspective, 1st ed.; Vogel-Heuser, B., Wimmer, M.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2023.

Vogel-Heuser, B. Herausforderungen und Anforderungen aus Sicht der IT und der Automatisierungstechnik. In Handbuch
Industrie 4.0 Bd.4: Allgemeine Grundlagen; Vogel-Heuser, B., Bauernhansl, T., ten Hompel, M., Eds.; Springer: Berlin/Heidelberg,
Germany, 2017; pp. 33—44. [CrossRef]

Estivill-Castro, V.; Ferrer-Mestres, J. Path-finding in dynamic environments with PDDL-planners. In Proceedings of the 2013 16th
International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25-29 November 2013; pp. 1-7. [CrossRef]
International Electrotechnical Commission. OPC Unified Architecture—Part 1: Overview and Concepts; IEC: Durham, NC, USA, 2020.
Profanter, S.; Tekat, A.; Dorofeev, K.; Rickert, M.; Knoll, A. OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of
Industry 4.0 Protocols. In Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT), Melbourne,
VIC, Australia, 13-15 February 2019; pp. 955-962. [CrossRef]

http://dx.doi.org/10.4018/978-1-7998-8548-1.ch022
http://dx.doi.org/10.1016/j.compind.2011.05.005
http://dx.doi.org/10.1016/j.engappai.2021.104359
http://dx.doi.org/10.1109/IECON48115.2021.9589912
http://dx.doi.org/10.1016/j.jmsy.2018.01.006
http://dx.doi.org/10.1016/j.procs.2021.01.269
http://dx.doi.org/10.1007/978-3-662-45537-1
http://dx.doi.org/10.1109/ETFA46521.2020.9211905
http://dx.doi.org/10.3390/app11178145
http://dx.doi.org/10.3390/app11156765
http://dx.doi.org/10.3390/app122211713
http://dx.doi.org/10.3390/s22145396
http://dx.doi.org/10.1007/978-3-030-70516-9
http://dx.doi.org/10.1080/00207543.2018.1444806
http://dx.doi.org/10.3390/sci4030026
http://dx.doi.org/10.3390/su12145650
http://dx.doi.org/10.1142/S1363919617400151
http://dx.doi.org/10.3390/su132011252
http://dx.doi.org/10.3390/app11219785
http://dx.doi.org/10.3390/app122211487
http://dx.doi.org/10.3390/su142214779
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
https://ec.europa.eu/futurium/en/system/files/ged/a2-schweichhart-reference_architectural_model_industrie_4.0_rami_4.0.pdf
http://dx.doi.org/10.1007/978-3-662-53254-6_2
http://dx.doi.org/10.1109/ICAR.2013.6766456
http://dx.doi.org/10.1109/ICIT.2019.8755050

Sustainability 2023, 15, 6251 26 of 27

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.
56.

57.

58.

59.

Novaék, P; Douda, P; Kadera, P.; Vysko¢il, J. PyMES: Distributed Manufacturing Execution System for Flexible Industry 4.0
Cyber-Physical Production Systems. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics,
SMC 2022, Prague, Czech Republic, 9-12 October 2022; pp. 235-241. [CrossRef]

Wally, B.; Vyskocil,].; Novék, P.; Huemer, C.; Sindelat, R.; Kadera, P; Mazak-Huemer, A.; Wimmer, M. Leveraging Iterative Plan
Refinement for Reactive Smart Manufacturing Systems. IEEE Trans. Autom. Sci. Eng. 2021, 18, 230-243. [CrossRef]

Novak, P; Vysko¢il, J. Digitalized Automation Engineering of Industry 4.0 Production Systems and Their Tight Cooperation with
Digital Twins. Processes 2022, 10, 404. [CrossRef]

Zhao, Y,; Yan, L.; Chen, Y.; Dai, J.; Liu, Y. Robust and Efficient Trajectory Replanning Based on Guiding Path for Quadrotor Fast
Autonomous Flight. Remote. Sens. 2021, 13, 972. [CrossRef]

Novoa-Flores, G.I; Carpente, L.; Lorenzo-Freire, S. A Vehicle Routing Problem with Periodic Replanning. Proceedings 2018, 2,
1192. [CrossRef]

Ghallab, M.; Nau, D.S,; Traverso, P. Automated Planning and Acting; Cambridge University Press: Cambridge, UK, 2016.
Ghallab, M.; Howe, A.; Knoblock, C.; Mcdermott, D.; Ram, A.; Veloso, M.; Weld, D.; Wilkins, D. PDDL—The Planning Domain
Definition Language; Tech Report CVC TR-98-003/DCS TR-1165 ; Yale Center for Computational Vision and Control: New Haven,
CT, USA, 1998.

Kovacs, D.L. Complete BNF Description of PDDL 3.1.; Language Specification, Department of Measurement and Information
Systems, Budapest University of Technology and Economics: Budapest, Hungary, 2011.

Sousa, A.R.; Tavares,].].P.Z.S. Toward Automated Planning Algorithms Applied to Production and Logistics. IFAC Proc. Vol.
2013, 46, 165-170. [CrossRef]

Wally, B.; Vyskod¢il,].; Novak, P.; Huemer, C,; Sindela¥, R.; Kadera, P,; Mazak, A.; Wimmer, M. Production Planning with IEC
62264 and PDDL. In Proceedings of the 17th IEEE International Conference on Industrial Informatics (INDIN), Espoo, Finland,
23-25 July 2019; pp. 492-499.

Pinedo, M.L. Scheduling: Theory, Algorithms, and Systems, 5rd ed.; Springer: Berlin/Heidelberg, Germany, 2016.

Schroeder, G.N.; Steinmetz, C.; Rodrigues, R.N.; Henriques, R.V.B.; Rettberg, A.; Pereira, C.E. A methodology for digital twin
modeling and deployment for industry 4.0. Proc. IEEE 2020, 109, 556-567. [CrossRef]

Negri, E.; Fumagalli, L.; Macchi, M. A review of the roles of digital twin in CPS-based production systems. Procedia Manuf. 2017,
11, 939-948. [CrossRef]

Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital twin: Enabling technologies, challenges and open research. IEEE Access 2020,
8,108952-108971. [CrossRef]

Uhlemann, T.H.J.; Lehmann, C.; Steinhilper, R. The digital twin: Realizing the cyber-physical production system for industry 4.0.
Procedia Cirp 2017, 61, 335-340. [CrossRef]

Hanel, A.; Seidel, A.; Friefs, U.; Teicher, U.; Wiemer, H.; Wang, D.; Wenkler, E.; Penter, L.; Hellmich, A.; Thlenfeldt, S. Digital
Twins for High-Tech Machining Applications—A Model-Based Analytics-Ready Approach. J. Manuf. Mater. Process. 2021, 5, 80.
[CrossRef]

Hénel, A.; Schnellhardt, T.; Wenkler, E.; Nestler, A.; Brosius, A.; Corinth, C.; Fay, A.; Ihlenfeldt, S. The development of a digital
twin for machining processes for the application in aerospace industry. Procedia CIRP 2020, 93, 1399-1404. [CrossRef]

Sierla, S.; Azangoo, M.; Fay, A.; Vyatkin, V.; Papakonstantinou, N. Integrating 2D and 3D Digital Plant Information Towards
Automatic Generation of Digital Twins. In Proceedings of the 2020 IEEE 29th International Symposium on Industrial Electronics
(ISIE), Delft, The Netherlands, 17-19 June 2020; pp. 460—467. [CrossRef]

Sierla, S.; Azangoo, M.; Rainio, K.; Papakonstantinou, N.; Fay, A.; Honkamaa, P; Vyatkin, V. Roadmap to semi-automatic
generation of digital twins for brownfield process plants. J. Ind. Inf. Integr. 2021, 27, 100282. [CrossRef]

Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in manufacturing: A categorical literature review and
classification. IFAC-PapersOnLine 2018, 51, 1016-1022. [CrossRef]

Shojaeinasab, A.; Charter, T.; Jalayer, M.; Khadivi, M.; Ogunfowora, O.; Raiyani, N.; Yaghoubi, M.; Najjaran, H. Intelligent
manufacturing execution systems: A systematic review. J. Manuf. Syst. 2022, 62, 503-522. [CrossRef]

Bratukhin, A.; Sauter, T. Functional Analysis of Manufacturing Execution System Distribution. IEEE Trans. Ind. Inform. 2011,
7,740-749. [CrossRef]

Matt, D.T.; Rauch, E.; Dallasega, P. Trends towards Distributed Manufacturing Systems and Modern Forms for their Design.
Procedia CIRP 2015, 33, 185-190. [CrossRef]

Matik, V.; McFarlane, D. Industrial Adoption of Agent-Based Technologies. IEEE Intell. Syst. 2005, 20, 27-35. [CrossRef]

Fei, L. Manufacturing execution system design and implementation. In Proceedings of the 2nd International Conference on
Computer Engineering and Technology 2010, Chengdu, China, 16-18 April 2010; Volume 6. . [CrossRef]

Pan, F,; Shi, H.; Duan, B. Manufacturing Execution System present situation and development trend analysis. In Proceedings of
the IEEE International Conference on Information and Automation, Lijiang, China, 8-10 August 2015; pp. 535-540. [CrossRef]
Gao, Q.; Li, F; Chen, C. Research of Internet of Things applied to manufacturing execution system. In Proceedings of the 2015
IEEE International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), Shenyang, China,
8-12 June 2015; pp. 661-665. [CrossRef]

Unver, HO. An ISA-95-based manufacturing intelligence system in support of lean initiatives. Int. J. Adv. Manuf. Technol. 2012,
65, 853-866. [CrossRef]

http://dx.doi.org/10.1109/SMC53654.2022.9945350
http://dx.doi.org/10.1109/TASE.2020.3018402
http://dx.doi.org/10.3390/pr10020404
http://dx.doi.org/10.3390/rs13050972
http://dx.doi.org/10.3390/proceedings2181192
http://dx.doi.org/10.3182/20130911-3-BR-3021.00081
http://dx.doi.org/10.1109/JPROC.2020.3032444
http://dx.doi.org/10.1016/j.promfg.2017.07.198
http://dx.doi.org/10.1109/ACCESS.2020.2998358
http://dx.doi.org/10.1016/j.procir.2016.11.152
http://dx.doi.org/10.3390/jmmp5030080
http://dx.doi.org/10.1016/j.procir.2020.04.017
http://dx.doi.org/10.1109/ISIE45063.2020.9152371
http://dx.doi.org/10.1016/j.jii.2021.100282
http://dx.doi.org/10.1016/j.ifacol.2018.08.474
http://dx.doi.org/10.1016/j.jmsy.2022.01.004
http://dx.doi.org/10.1109/TII.2011.2167155
http://dx.doi.org/10.1016/j.procir.2015.06.034
http://dx.doi.org/10.1109/MIS.2005.11
http://dx.doi.org/10.1109/ICCET.2010.5486065
http://dx.doi.org/10.1109/ICInfA.2015.7279345
http://dx.doi.org/10.1109/CYBER.2015.7288019
http://dx.doi.org/10.1007/s00170-012-4223-z

Sustainability 2023, 15, 6251 27 of 27

60.

61.

62.
63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.
79.

Wally, B.; Huemer, C.; Mazak, A. Aligning Business Services with Production Services: The Case of REA and ISA-95. In
Proceedings of the 10th IEEE International Conference on Service Oriented Computing and Applications (SOCA), Kanazawa,
Japan, 22-25 November 2017; pp. 9-17. [CrossRef]

Lang, L.; Wally, B.; Huemer, C,; Sindelér, R.; Mazak, A.; Wimmer, M. A Graphical Toolkit for IEC 62264-2. In Proceedings of the
53rd CIRP Conference on Manufacturing Systems (CMS), Chicago, IL, USA, 1-3 July 2020. [CrossRef]

Wally, B. Provisioning for MES and ERP; AR_MES_ERP 2.0.0.; Business Informatics Group, CDL-MINT, TU: Wien, Austria, 2018.
International Electrotechnical Commission. Engineering Data Exchange Format for Use in Industrial Automation Systems Engineering—
Automation Markup Language—Part 1: ARCHITECTURE and General Requirements; Durham, NC, USA, 2018.

Lange, J.; Iwanitz, F; Burke, T.]. OPC—From Data Access to Unified Architecture; VDE Verlag: Berlin, Germany, 2010.

Profanter, S.; Dorofeev, K.; Zoitl, A.; Knoll, A. OPC UA for plug & produce: Automatic device discovery using LDS-ME. In
Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol,
Cyprus, 12-15 September 2017; pp. 1-8. [CrossRef]

Dorofeev, K.; Profanter, S.; Cabral, J.; Ferreira, P.; Zoitl, A. Agile Operational Behavior for the Control-Level Devices in
Plug&Produce Production Environments. In Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), Zaragoza, Spain, 10-13 September 2019; pp. 49-56. [CrossRef]

Ono, T.; Ali, S.; Hunkar, P,; Brandl, D. OPC 10030: ISA-95 Common Object Model, 2013. Available online: https:/ /reference.
opcfoundation.org/ISA-95/docs/ (accessed on 11 January 2023).

Mazak-Huemer, A.; Wimmer, M.; Huemer, C.; Wally, B.; Frithwirth, T.; Kastner, W. Rahmenwerk zur modellbasierten horizontalen
und vertikalen Integration von Standards fiir Industrie 4.0. In Handbuch Industrie 4.0: Produktion, Automatisierung und Logistik; ten
Hompel, M., Vogel-Heuser, B., Bauernhansl, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020. [CrossRef]

Vogel-Heuser, B.; Fay, A.; Schaefer, I.; Tichy, M. Evolution of software in automated production systems: Challenges and research
directions. J. Syst. Softw. 2015, 110, 54-84. [CrossRef]

Barth, M.; Fay, A. Automated generation of simulation models for control code tests. Control. Eng. Pract. 2013, 21, 218-230. .
[CrossRef]

Rogalla, A.; Fay, A.; Niggemann, O. Improved Domain Modeling for Realistic Automated Planning and Scheduling in Discrete
Manufacturing. In Proceedings of the 23rd IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), Turin, Italy, 4-7 September 2018; pp. 464—471.

Novak, P; Vyskotil, J.; Kadera, P. Plan Executor MES: Manufacturing Execution System Combined with a Planner for Industry 4.0
Production Systems. In Industrial Applications of Holonic and Multi-Agent Systems, Proceedings of the 9th International Conference on
Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS); Matik, V., Kadera, P., Rzevski, G., Zoitl, A., Anderst-Kotsis,
G., Tjoa, AM., Khalil, I, Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 67-80.

Novak, P; Vysko¢il, J.; Wally, B. The Digital Twin as a Core Component for Industry 4.0 Smart Production Planning. IFAC-
PapersOnLine 2020, 53, 10803-10809. [CrossRef]

Wally, B.; Vyskodil, J.; Novak, P.; Huemer, C.; Sindelat, R.; Kadera, P; Mazak, A.; Wimmer, M. Flexible Production Systems:
Automated Generation of Operations Plans Based on ISA-95 and PDDL. IEEE Robot. Autom. Lett. 2019, 4, 4062-4069. [CrossRef]
Wally, B.; Huemer, C.; Mazak, A. A View on Model-Driven Vertical Integration: Alignment of Production Facility Models and
Business Models. In Proceedings of the 13th IEEE International Conference on Automation Science and Engineering (CASE),
Xi’an, China, 20-23 August 2017. [CrossRef]

Singh, M.; Fuenmayor, E.; Hinchy, E.P.; Qiao, Y.; Murray, N.; Devine, D. Digital Twin: Origin to Future. Appl. Syst. Innov. 2021, 4.
[CrossRef]

Novadk, P; Douda, P.; Vysko¢il, J.; Wally, B. PYAML: Enhancing AutomationML for Advanced Virtualization of Industry 4.0
Cyber-Physical Production Systems with Python Code Injections. In Proceedings of the 26th IEEE International Conference on
Emerging Technologies and Factory Automation, ETFA 2021, Vasterds, Sweden, 7-10 September 2021.

Helmert, M. The Fast Downward Planning System. J. Artif. Int. Res. 2006, 26, 191-246. [CrossRef]

Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.
Sci. Cybern. 1968, 4, 100-107. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/SOCA.2017.10
http://dx.doi.org/10.1016/j.procir.2020.03.049
http://dx.doi.org/10.1109/ETFA.2017.8247569
http://dx.doi.org/10.1109/ETFA.2019.8869208
https://reference.opcfoundation.org/ISA-95/docs/
https://reference.opcfoundation.org/ISA-95/docs/
http://dx.doi.org/10.1007/978-3-662-45537-1_94-2
http://dx.doi.org/10.1016/j.jss.2015.08.026
http://dx.doi.org/10.1016/j.conengprac.2012.09.022
http://dx.doi.org/10.1016/j.ifacol.2020.12.2865
http://dx.doi.org/10.1109/LRA.2019.2929991
http://dx.doi.org/10.1109/COASE.2017.8256235
http://dx.doi.org/10.3390/asi4020036
http://dx.doi.org/10.1613/jair.1705
http://dx.doi.org/10.1109/TSSC.1968.300136

	Introduction
	Materials and Methods
	AI Planning and Scheduling
	Planning with PDDL
	Digital Twins for Industrial Systems
	Manufacturing Execution Systems
	Industry 4.0 Smart Manufacturing Enabled by PDDL and Digital Twins

	Implementation and Results
	Industry 4.0 Testbed
	Manufacturing Execution System with Dynamically Generated Production Plans
	Distributed Manufacturing Execution System with On-The-Fly Replanning Capability
	Basic Digital Twin Based on PDDL Model
	Digital Twin with AI Planner

	Evaluation and Discussion
	Conclusions and Future Work
	References

